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Abstract

m is the disjoint union o m| for a e N, where m | is the set of a
Q(vm)\@ is the disjoint union of Q"(Vk’m) for all keN, where @'(vk’m) is th f all

roots of primitive second degree equations ct®+ 2at+b =0, with reduced discriminant A =a’-bc
equal to kzm. We study the action of two Hecke groups—the full modular group H(4,)=PSL,(Z)

and the group of linear-fractional transformations H (/14) = <x, y:xi=y'= 1> on Q(\/ﬁ )\Q. In

particular, we investigate the action of H(4,)NH(4,) on Q° (\/ kzm) for finding different orbits.
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1. Introduction

In 1936, Erich Hecke (see [1]) introduced the groups H (/1) generated by two linear-fractional transformations

T(z):_—1 and S(z):_—l. Hecke showed that H (1) is discrete if and only if A=4, =2cos I,
z 2+ 2 K q

geN, g=3 or 1>2. Hecke group H (ﬂq) is isomorphic to the free product of two finite cyclic group of
order 2 and g, and it has a presentation

H(2,)=(T,8:T?=8%=1)=C, *C,
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The first few of these groups are H (4;)=G = PSL(2,Z), the full modular group having special interest for
mathematicians in many fields of Mathematics, H(4,)=H and H(4)=M .

A non-empty set Q with an action of the group G on it, is said to be a G-set. We say that Q is a transitive
G-set if, for any p,q in Q there exists a g in G such that p®=q. Let n=k’m, where keN and misa
square free positive integer. Then

@*(\/ﬁ)={a+\/ﬁ :a,c,b= azc—n eZ|(a,b,c):1}

c

is the set of all roots of primitive second degree equations ct®+2at+b=0, with reduced discriminant
A=a’—bc equal tonand

Q(\/ﬁ)\(@:{ww\/ﬁ:t,o;tWeQ}

is the disjoint union of Q(Jﬁ) for all k. If a(a,b,c)eQ*(\/ﬁ) and its conjugate @ have opposite signs
then « is called an ambiguous number [2]. The actual number of ambiguous numbers in Q*(\/ﬁ) has been

discussed in [3] as a function of n. The classification of the real quadratic irrational numbers «(a,b,c) of
Q(\/ﬁ) in the forms [a,b,c] modulo n has been given in [4] [5]. It has been shown in [6] that the action of

the modular group G :<x’, y'ix = y3:1>, where x’(z)z_—1 and y’(z):_—ll, on the rational projective
z Z+

-1

d
2(2+1)

line QU{eo} is transitive. An action of H :<x,y:x2:y4:1>,where x(z):;—; and y(z)=

its proper subgroups on QU{oo} has been discussed in [7] [8].
Q" (x/ﬁ invariant under the action of modular group G but Q" \/ﬁz‘ is not invariant under the action of H.
Thus it motivates us to establish a connection between the elements of the groups G and H and hence to deduce

a common subgroup H™=(xy,yx) of both groups such that each of Q”(\/ﬁ):{ae(@*(«/ﬁ):zk} and
Q"(Jﬁ)\@“(«/ﬁ) is invariant under H™ and hence we find G-subsets of Q(\/ﬁ) and H-subsets of Q**(\/ﬁ)

or @*~(ﬁ):[@*(&]\@“(\/g}ju@“(dﬁ) according as n#0(mod 4) or n=0(mod 4) and @’“(Jﬁ)

for all non-square n. Also the partition of Q(\/ﬁ) has been discussed depending upon classes [a,b,c] mod-
ulo p,p,.

2. Preliminaries

We quote from [5] [6] and [8] the following results for later reference. Also we tabulate the actions on
a(ab,c)e Q*(\/ﬁ) of x,y’" and x,y, the generators of G and H respectively in Table 1.

Theorem 2.1 (see [5]) Let n=2(mod 8), n#2.Then B'= {a eQ (\/ﬁ) :b or ¢ =+1(mod 8)} and
B® = {06 eQ (x/ﬁ) ‘b or ¢ = +3(mod 8)} are both G-subsets of Q" (Jﬁ) _

Theorem 2.2 (see [5]) Let n=6(mod 8).Then B= {a eQ (\/ﬁ) :b or ¢ =1or 3(mod 8)} and
-B= {a eqQ (Jﬁ) :borc=-1or—3(mod 8)} are both G-subsets of Q" (Jﬁ) _

Theorem 2.3 (see [6]) If n=0or3(mod 4), then S = {a eQ’ («/ﬁ) :bor ¢ =1(mod 4)} and

—S:{ae(@*(\/ﬁ):borcE—l(mod 4)} are exactly two disjoint G-subsets of (@*(Jﬁ) depending upon

classes [a,b,c] modulo 4.
Theorem 2.4 (see [6]) If n=1(mod 4), then Q’(\/ﬁ) = {a € (@*(\/ﬁ) : 2|(b,c)} and
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Table 1. The action of elementsof Gand Hon « e Q(\/ﬁ) .

-1
’ - —-a C b
(a) ="
, a-1
Y (a)=—= —a+b —2a+b+c c
[0
(y’)z(oz)=L —a+c c —2a+b+c
l-a
"t a
Xy'(a)=— a-b b —2a+b+c
-
yX'(a)=1+a a+c 2a+b+c c
2 [24
N2 o _ b b 2a+b
(Y) x() Y. a+ a+b+c
1 c
) -a = 2b
( ) 2a 2
y(a): -1 —a-c e 2(2a+b+0)
2(a+1) 2
- 1
y'(a)= (Z(Z;)) -3a-2b—c 2a+b+c 4a+4b+c
yz(a)=(2a+l) -a—-2b da+4b+c 2(2a+b+c)
2a 2
xy(a)=a+1 a+c 2a+b+c c
[24
yx(a) 70 a-2b b —4a+4b+c
2 ~ 1-2a —4a+4b+c
yx(a)= 2(-1+a) 3a-2b-c — 2(-2a+b+c)
yx(a)=a-1 a-c 2a+b+c c

v (‘/H)\Q'(\/ﬁ) = {0! eQ (\/ﬁ) 124 (b,c)} are both G-subsets of Q" (Jﬁ) _

Lemma 2.5 (see [8]) Let «(a,b,c)e Q*(\/ﬁ). Then:
1) If n£0(mod 4) then %e @"(Vn) ifandonlyif 2|b.
(24 ok . .
2) EEQ (m) ifand only if 24b.
Theorem 2.6 (see [8]) The set Q(\/ﬁ) = {% aecQ (\/ﬁ)t =1, 2} , Is invariant under the action of H.

Theorem 2.7 (see [8]) For each non square positive integer n=1,2 or 3(mod 4),

QM(\/H) = {a € Q*(\/ﬁ) ; 2|c} is an H-subset of (@”(Jﬁ) _

3.Actionof H(4;)NH(4,) on Q° (\/ﬁ)

We start this section by defining a common subgroup of both groups G = <x’, y X' 2=y 3= 1> and
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-1 a-1 -1 -1 .
H=(xy:x*=y*=1), where X'(a)=—, y'(a)=—=, x(a)=— and y(a)=————. For this, we
(xy:x =yt =1) (@)= v === x(@) =5 and yle)=5 o=y
need the following crucial results which show the relationships between the elements of G and H.
Lemma3.1Let x',y" and X,y be the generators of G and H respectively defined above. Then we have:

1 ’ ’ 2 ’
1) y?*=(xy')’(yX) and y3=5(x (y)z) X'

2

2) xy=yx" and yx=(xy’)
3) y’x= x'(y')2 and xy® = ((y’)2 x’)z.

2y 1 ' 12 "yt 2 _ 1 ! AN
4) y X—E(X (y") )(xy) and xy —E(yx)((y) x).
5) x'=2x and y'=(2x)(2y)(2x).
6) xYy'= 2(yx)% and x’(y’)2 =y3x.. In particular (x’y’)’1 = 2(xy3)% and (x’(y’)2)= Xy .
Following corollary is an immediate consequence of Lemma 3.1.
Corollary 3.2 1) By Lemma 3.1, since xy=yx' and yx:(x’y')2 o) H*:<xy, yx) is a common sub-
a
1-2a

group of G and H where xy, yx are the transformations defined by xy(«)=a+1 and yx(a) =

2) As yxxy = y?, Xxyyx = xy’x, so <y2 : xy2x> is a proper subgroup of H”.

3) <H*,x>=<H*, y>= H and <H*,x’>=<H*, y’>=G .

Since for each integer n, either (n/p):O or (n/p) =+1 for each odd prime p. So in the following lemma,
we classify the elements of Q(\/ﬁ) in terms of classes [a,b,c](mod p) with 0 modulo p or gr, gnr nature

of a, b and ¢ modulo p.

Lemma 3.3 Let p be prime and n=0(mod p). Then E{ consists of classes [0,0,qr], [0,0,qnr],
[0,ar,0], [0,qnr,0], [ar,qr,ar], [anr,ar,qr], [qr,gnrqnr] or [an,an,an].

Proof. Let [a,b,c](mod p) be any class of «(a,b,c). Then a®=bc(mod p) leads us to exactly three
cases. If a=0(mod p) then exactly one of b,c is zo(mod p) and the other is gr or gnr of p as other-
wise (a,b,c)=1 and hence the class [a,b,c] is one of the forms [0,0,qr], [0,0,qnr], [0,qr,0], [O,qnr,0].
If (a/p)=1 then (bc/p)=1 and the class takes the form [qr,qr,qr] or [qr,gnr,gnr]. In third case if
(a/p)=-1 then (az/p)zl so again (bc/p)=1. This yields the class in the forms [qgnr,qr,qr] or
[anr,qnr,gnr]. Hence the result. W

Lemma3.4 Let (n/p)=1 andlet [a,b,c](mod p) be the class of «,(a,b,c) of (@*(\/ﬁ . Then:

1) If p=1(mod4) then [a,b,c](mod p) has the forms [0,qr,qr], [O,qnr,qnr], [qr,0,qr],
[qr,0,qnr], [ar.qr,0], [ar,anr,0], [anr,0,qr], [gnr,0,gnr], [anr,qr,0], [anr,qnr,0], [anr,0,0] or
[qr,0,0] only.

2) If p=3(mod 4) then [a,b,c](mod p) has the forms [0,qnr,qr], [0,qr,anr], [ar,0,qr], [qr,qr,0],
[ar,0,qnr], [ar,anr,0], [qnr,0,qr], [anr,qr,0], [anr,0,anr], [gnr,qnr,0], [gnr,0,0] or [qr,0,0] only.

Proof. Let [a,b,c](mod p) be the class of «,(a,b,c) with a’—n=bc. As (n/p)=1 so if (a/p)=0

then ((az—n)/p):ﬂ according as p =1(mod 4) or p=3(mod 4). Thus we have [0,qr,qr], [0,qnr,qnr]
if p=1(mod4) and [0,qnr,qr], [0,qr,qnr] if p=3(mod 4).If (a/p)==+1 then ((az—n)/p)zo, SO we
get [ar,0,qr], [qr,0,qnr], [ar,qgr,0], [qr,qnr,0], [anr,0,qr], [anr,0,qnr], [gnr,qr,0], [gnr,qnr,0],
[qnr,0,0] or [qr,0,0] only. This proof is now complete. W

Lemma3.5Let (n/p)=-1 andlet [a,b,c](mod p) be the classof «(a,b,c) of Q ﬁ).Then:

1) Ifp=1(mod 4) then [a,b,c](mod p) has the forms [0,qnr,qr], [0,qr,qnr], [ar.qr,gr], [ar,qnr,qnr],

[anr,qr,qr] or [gnr,qnr,gnr] only.
2) If p=3(mod4) then [ab,c](mod p) has the forms [0,qr,qr], [O,qnr,qnr], [ar,qr,gnr],

[ar.anr,gr], [anr,qr,gnr] or [gnr,qnr,qr] only.
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Proof. The proof is analogous to the proof of Lemma 3.4. W
Note: If (n/2)=0 then [1,1,1], [0,0,1] and [0,1,0] are three classes of Q*(Jﬁ) in modulo 2. If n'is

an odd then three classes of Q" (+/n) are |1,0,1], [1,1,0] and |0,1,1] modulo 2. These are the only classes
“(Vn

of Q*(Jﬁ) if n=3(mod 4). But if n=1(mod 4) then [1,0,0] is also a class of Q" Jﬁ) and there are
no further classes. These classes in modulo 2 of Q" \/ﬁ) do not give any useful information during the stud

of action of G on Q*(\/ﬁ) except that if n=1(mod 4) then the set consisting of all elements of Q" (Vn

of the form [1,0,0] is invariant under the action of the group G. Whereas the study of action of

Q" (+/n) gives some useful information about these classes. The following crucial result determines the H-
subsets ‘of Q" (~/n) depending upon classes [a,b,c] modulo 2. It is interesting to observe that Q*(Jﬁ)

splits into Q**( n) and Q*(\/ﬁ)\Q”(\/ﬁ) in modulo 2. Each of these two H’-subsets further splits into

proper H™-subsets in modulo 4.

Lemma 3.6 @”(\/—) and Q*(ﬁ)\(@”(\/ﬁ) are two distinct H -subsets of Q*(Jﬁ) depending upon
classes [a,b,c] modulo 2.

Theorem 3.7 and Remarks 3.8 are extension of Lemma 3.6 and discuss the action of H on Q" (Jﬁ) de-
pending upon classes [a b, c] modulo 4. Proofs of these follow directly by the equations

Xy[a+cx/ﬁJ: a+c+\/ﬁ, y){am/ﬁ}z a-2b++/n

and classes [a,b,c] modulo 4 given in [6].

c c —4da+4b+c
Theorem 3.7 Let n be any non-square positive integer. Then ( ) ( n) splits into two proper H'-
subsets Al:{ae(@*wﬁ)\(@"(\/ﬁ):cEl(mod 4)} : {a (\/ﬁ):cEs(mod 4)}
Similarly Q™ (ﬁ) splits into two proper H'-subsets B, ={ ( ) ¢ =0(mod 4)} and

B, :{aeQ”(\/_) ¢ =2(mod 4)}

Remark 3.8 1) Let n=1(mod 4). Then Q(\/ﬁ) = {a e Q”(\/ﬁ) : 2|(b,c)} and Q” («/ﬁ)\@’(ﬁ) are
H’-subsets of @”(\/ﬁ). In particular if n=5(mod 8), then B, :Q“(ﬁ)\@’(\/ﬁ) and B, :Q'(ﬁ) are
H"-subsets of Q" (\/ﬁ) . Whereas if n=1(mod 8), then C, = {a e Q'(\/ﬁ)ﬂ B, :a=1(mod 4)} :

C, ={a e(@’(\/ﬁ)ﬂ B,:a=3(mod 4)} , C= {a E Q(\/ﬁ) ;¢ =2(mod 4)} and C, = Q“(«/ﬁ)\@'(\/ﬁ) are
H"-subsets of Q™ (\/ﬁ) . Specifically, B,=C,UC,UC,, B,=C,.

2) As we know that if n and c are even, then a must be even as (a,b,c)=1. If n=2(mod 4), then
B, =Q"(\/ﬁ) and B, =¢.
3)If n= Oor3(mod 4), then B, or B, isempty accordingas n=0 or 3(mod 4). As we know that if n

and c are even, then a must be evenas (a,b,c)=1. However D, = {a eQ” (\/ﬁ) :b=1(mod 4)} ,

D, = {a eQ” (x/ﬁ) :b =3(mod 4)} are proper H'-subsets of Q™ (Jﬁ) depending upon classes [a,b,c]
modulo 4.
Lemma 3.9 Let n be any non-square positive integer. Then Q™ (\/ﬁ) and Q (\/ﬁ)\(@” (Jﬁ) are distinct

s otantsat @ () = (V[ ()\@" ().

Proof. Follows by the equations x( “(Vah@ (Vn )) Q" (V/4n) and vice versa. Hence
@ (Vn)\Q"(Vn) isequivalentto @~ (v/4n).
& (Va5 (VA -

Clearly

Q; (\/ﬁ)‘ where QI(JH) denotes the set of all ambigious numbers in

1288
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Q' (Vn) (see 8]).

Remark 3.10 1) Each G-subset X of Q*(\/ﬁ) splits into two H™-subsets X \ Q"™ (\/ﬁ) and X ﬂQ”(\/ﬁ)
v {31 ) (X0 ) ¢

2) Each H-subset Y of Q*~ (\/ﬁ) splits into two H™-subsets Y \ Q™ (\/ﬁ) and YNQ~ (\/ﬁ) .

3) Each H-subset Y of Q*”(\/ﬁ) , n#0(mod 4) splits into two H-subsets Y\Q" (\/ﬁ) and
YNQ” (V4n).

4) Each H-subset Y of Q™ (\/ﬁ) n=0(mod 4) splits into two H™-subsets Y \ Q" (\/ﬁ) and YNQ™ (\/ﬁ)

Theorem 3.11 a) If A is an H™-subset of @”(Jﬁ) or @(ﬁ)\@”(\/ﬁ) ,then AUX'(A) is a G-subset
of Q*(Jﬁ).

b) If A is an H™-subset of Q“(\/ﬁ) ,then AUX(A) is an H-subset of Q“(\/ﬁ) or Q*N(\/ﬁ) according
as n#0(mod 4) or n=0(mod 4).

c) If A is an H'-subset of Q (f)\(@ (\/ﬁ) then AUx(A) is an H-subset of Q*”(\/ﬁ) for all non-
square n.

Proof. Proof of a) follows by the equation x’(Q** (\/ﬁ)) =Q (\/ﬁ)\(@“ (\/ﬁ)
Proof of b) follows by the equations x(@”(\/ﬁ)):(@“(\/ﬁ) or x(@”(\/ﬁ))z(@*( EJ\Q”[ EJ ac-

4
cordingas n#0(mod 4) or n=0(mod 4).
Proof of c) follows by the equation x( (\/_)\Q (f)) Q“(«/ﬁ). |

Following examples illustrate the above results.

Example 3.12 1) Let n=8. Then a=1+£/§eQ (v8) but £ 1+2f 2*;/> Q" (+32). Also

ﬂ=2+1\/§e(@*(\/§) but gzﬁe@( 2)\Q"(V2) . similarly y—2+4\/§€@ﬁ(*/§) whereas

L g (). o o (B)-(E) U @ ()= () U so ()

has exactly 4 orbits under the action of H whereas Q" (\/§) splits into two G-orbits namely (I)G , (—«/5)6 .

2) Q"(\/ﬁ) splits into nine H-orbits. Also

@ (V38) - (7" U] U 23T | 2| 2T 2T

-3

@”(\/377)=[1+\/§J U[Hﬁj U(_lt;f/ﬁJ . Whereas Q(\/ﬁ) splits into four G -orbits namely

2 4
(\/ﬁ)G (1+\2/§J (1+;/§J and (—1“:;/§J . (see Figure 1) &

Theorem 3.13 Let p be an odd prime factor of n. Then S = {a eQ’ (\/ﬁ) :(b/p)or(c/p) =1} and
Sy = {a e (@*( n):(b/p) or(c/p)= —1} are two H'-subsets of Q" (ﬁ) In particular, these are the only H™-

subsets of Q*(Jﬁ) depending upon classes [a,b,c] modulo p.
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—_ Q 1-time

1-time

Figure 1. Orbit of ,B:1+;/3—7 and (xy)s(xyz)(xy3)5(xyz)(xy)z(ﬁ):ﬂ.

Proof. Let [a,b,c](mod p) be the class of «(a,b,c)e@Q Jn). In view of Lemma 3.3, either both of b,c
are grs or gnrs and the two equations xy(a(a,b,c)) =a'(a+c,2a+b+c,c),
yx(a(ab,c))=a’(a-2b,b,~4a+4b+c) fixb, c modulop.If a=b=0(mod p) then ((2a+b+c)/p)=1
or ((2a+b+c)/p)=—1 according as (c¢/p)=1 or (c¢/p)=-1. similarly for a=c=0(mod p). This

shows that the sets S and S} are H -subsets of Q" (\/ﬁ) depending upon classes modulo p. B

The following corollary is an immediate consequence of Lemma 3.6 and Theorem 3.13.
Corollary 3.14 Let p be an odd prime and n=0(mod 2p). Then (@(Jﬁ) splits into four proper H’-
subsets depending upon classes modulo 2p.

Proof. Since a®>—n=bc implies that a® = bc(mod 2p). This is equivalent to congruences a’= bc(mod p)
and a’=bc(mod 2). By Theorem 3.13 SP, S} are H -subsets and then, by Lemma 3.6, each of S and
S further splits into two H -subsets SP ﬂ@“(\/ﬁ), SP ﬂ@“(ﬁ), SP\Q” (Jﬁ) and S \Q”(\/ﬁ). ]

The next theorem is more interesting in a sense that whenever (n/p):J_rl, Q(Jﬁ) is itself an H’-set
depending upon classes [a,b,c] modulo p.

Theorem 3.15 Let p be an odd prime and (n/p):J_rl. Then Q*(\/ﬁ) is itself an H -set depending upon
classes [a,b,c] modulo p.

Proof. follows from Lemmas 3.4, 3.5 and the equations xy(a) =a+1 and yx(a) :% given in Table

1.

Let us illustrate the above theorem in view of Theorem 3.4. If (n/3) =1, then the set
{[0.1,2],[0,2,1],[1,0,1],[1,1,0],[2,0,2],[2,0,1],[2,1,0],[2,2,0],[1,2,0],[1,0,2],[1,0,0],[2,0,0]} is an H'-set.
That is, Q(ﬁ) is itself an H™-set depending upon classes [a,b,c] modulo 3. Similarly for (n/3)=-1.

Theorem 3.16 Let p be an odd prime and n is a quadratic residue (quadratic non-residue) of 2p. Then
Q*(\/ﬁ) is the disjoint union of three H"-subsets Q*(\/ﬁ)\(@“wﬁ), Q”(\/ﬁ)\Q’(\/ﬁ) and Q'(\/ﬁ) de-
pending upon classes [a,b,c] modulo 2p.

Proof. Follows by Theorems 2.6, 2.7 and 3.15. W

The following example justifies the above result.

Example 3.17 Since 17 =5(mod 6) , then Q° (\/E) splits into these three H -subsets
{[0.1,1].[1,2,1].[2,5,1],[3,4,1].[4,5.1].[5,2,1].[0,5,5].[5,4,5],[4,1,5],[3,2.5].[ 2,1,5].[1,4,5]} ,
{[1.1,2].[3,5,2],[5.1,2].[3,1,4].[1.5,4].[5,5.4]} , {[1.2,4].[5.2,4],[3,4,4],[1.4,2].[3.2,2].[5.4,2]}. &
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The next theorem is a generalization of Theorem 3.13 to the case when n involves two distinct prime factors.
Theorem 3.20 Let p, and p, be distinct odd primes factors of n. Then S, =S NS, S, =S*NS}?,
S,,=SNS/* and S,, =SS} are four H -subsets of Q*(Jﬁ). More precisely these are the only H™-

subsets of (@*(Jﬁ) depending upon classes [a,b,c] modulo pp,.

Proof. Let [a,b,c](mod p,p,) be any class of a(a,b,c)e(@*(«/ﬁ) with n=0(mod p,p,). Then
a’—n=>bc implies that

a’ =bc(mod p,p,) 1)

This is equivalent to congruences a’ =bc(mod p,) and a®=bc(mod p,). By Theorem 3.14, the congru-
ence a’=bc(mod p,) gives two H'-subsets S = {a cQ (\/ﬁ) :(c/p,)or(c/p,) :1} and

Sp :{a eQ*(ﬁ):(c/ p)or (c/p)=- } of Q*(\/ﬁ). As a’=bc(mod p,), again applying Theorem 3.13
oneachof S™ and S* we have four H -subsets S,;, S,,, S,; and S,, of @*(\/ﬁ )
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