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Abstract 
We study the approximation of variational inequality related to American options problem. A 
simple proof to asymptotic behavior is also given using the theta time scheme combined with a fi-
nite element spatial approximation in uniform norm, which enables us to locate free boundary in 
practice. 
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1. Introduction 
Since the work of Black-Scholes in 1973 see [1], the financial markets have expanded considerably and traded 
products are increasingly numerous and sophisticated. Most widespread of these products are the options. The 
basic options are the options to sell and purchase, respectively called put and call. If option can be exercised at 
any time until maturity, we speak about American option otherwise it is a European option. 

The two researchers provide a method of evaluation of European options by solving a partial derivative equa-
tion called (black-Scholes’s equation). However, we cannot get explicit formula for pricing of American options, 
even the most simple. The formalization of the problem of pricing American options as variational inequality, 
and its discretization by numerical methods, appeared only rather tardily in the article of Jaillet, Lamberton and 
Lapeyre see [2]. A little later, the book of Wilmott, Dewynne and Howison see [3] has made it much more ac- 
cessible the pricing by L.C.P from American Option problem. For the problems at free boundary several numer-
ical results have been obtained for parabolic and elliptic variational and quasi-variational inequality see [4]-[8]. 
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For our part, we are interested to asymptotic behavior of V.I related to the American options problem. Where 
we adapted to our problem result obtained in [4] and we eliminated an additional factor log h . We discretize 
the space ( )1H Ω  by a space ( )1hV H⊂ Ω  constructed from polynomials of degree 1 and the time by θ- 
scheme. Subsequently, we demonstrated the error estimate between the continuous solution and the discrete so-
lution of the problem given by: 

For 
1
2

θ ≥ , we have 

2, 2 1log ,
1

n
n

hu u C h h
t

θ

βθ
∞

∞

  
− ≤ +  + ∆   

 

and for 
10
2

θ≤ < , we have 

( )
2

2, 2
2

2log .
2 1 2

n

n
h

Chu u C h h
Ch

θ

βθ θ
∞

∞

  
 − ≤ +    + −   

 

We used the uniform norm, because it is a realistic norm, which gives us the approximation described above 
and which enables us to locate the free boundary, a crucial thing in practice of the American options. 

The paper is organized as follows. In Section 2, we give the problem of American options as a parabolic vari-
ational inequality. In Section 3, we discretize by the finite elements method and we deal the stability of 
θ-scheme for our V.I. In Section 4, we adapt to our problem results obtained for similar problems see ([7] [9]) 
namely a contraction associated with our problem which allows us to define an algorithm of Bensoussan-Lions 
[10]. Finally, in Section 5, we establish the estimate of the asymptotic behavior of θ-scheme by the uniform 
norm for American options problem. 

2. Formulation of American Options Problem as Variational Inequality 
In this section, we recall the context of our problem (see [11]-[13]). An American option is a contract which  
gives the right to receive the payoff ( )( )i

th S  at some time [ ]0,t T∈ , where T < +∞ . This payoff is then given  

as a function of the prices ( )( )
1, ,

i
t i n

S
= 

 at the time t of n financial products constituting the underlying asset. 

Such as these prices are strictly positive, we set 
( ) ( )( )log for 1, , ,i i
t tX S i n= = 

                              (1) 

and we express the payoff under the form 
( )( ) ( )( ) ,i i
t th S Xψ=                                    (2) 

where 

: nψ →   is a given regular function.                         (3) 

We assume that the following stochastic differential equation is satisfied by the logarithmic transformation of 
the prices 

( ) ( )2
1 1

1d d d , 1, , .
2

n ni j
t ij ij tj jX r t W i nσ σ

= =

 = − + = 
 

∑ ∑                     (4) 

where 0r >  is the interest rate, ( ) , 1, ,ij i j n
σ

= 

 is invertible Volatility matrix and ( ) [ ]0,t t T
W

∈
 is a standard n-  

dimensional Brownian motion defined on a probability space ( )Ω, , .F P  

The Continuous Problem 
Under some assumptions on financial markets (no-arbitrage principle) see [2] [14] and the above assumptions 
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one can prove, that ( ),U x t  is a solution of the following parabolic inequality: 

( ) ( )

( ) ( ) ( ) ( )

( ) ( )( )

2
2

, 1 1 1 1

2
2

, 1 1 1 1

1 1 0, for , 0,
2 2

, for , 0,

1 1 , 0,
2 2

n n n n
n

ik jk ij
i j k j ii j j

n

n n n n

ik jk ij
i j k j ii j j

U U Ur rU x t T
t x x x

U x t x x t T

U U Ur rU x U x t
t x x x

σ σ σ

ψ

σ σ σ ψ

= = = =

= = = =

∂ ∂ ∂   
+ + − − ≤ ∈ ×   ∂ ∂ ∂ ∂   

≥ ∈ ×

 ∂ ∂ ∂   
+ + − − − =     ∂ ∂ ∂ ∂    

∑ ∑ ∑ ∑

∑ ∑ ∑ ∑





( ) ( )

( ) ( )

for , 0,

, for

n

n

x t T

U x T x xψ







 ∈ ×

 = ∈





 (5) 

Now we will give the variational inequality related to American options problem in a more compact form, 
where we starts by giving new notations and imposed certain conditions.  

By a change of variable ( ) ( ), ,u t x U T t x= − , the problem (5) becomes: 
Find u K∈  solution of 

( ) ( )for , 0, ,u Au f x t T
t

∂
+ ≥ ∈Ω×

∂
                              (6) 

where K is a closed convex set defined as follows: 

( ) ( )( ) ( ) ( ) ( ) ( ){ }2 1, 0, ; , , , 0, dans ,K v t x L T H v t x x v x xψ ψ= ∈ Ω ≥ = Ω                (7) 

with 

( ) ( )1 ,x Hψ ∈ Ω                                      (8) 

and Ω  is a bounded smooth domain in , 1n n ≥ , with boundary Γ . 
A is an operator defined over ( )1 ΩH  by: 

0, 1 1 ,n n
ij ji j j

j j j

u uAu a b a u
x x x= =

∂ ∂ ∂
= − + +

∂ ∂ ∂∑ ∑                          (9) 

and the coefficients: 0, , ,ij ja b a  where 1 i n≤ ≤  and 1 j n≤ ≤  are satisfy the following conditions: 

, , 01

1 ; 0, where is constant,
2

n
i j j i ik jkka a a rσ σ β β

=
= = = ≥ >∑                  (10) 

2
,, 1 , , 0, ,n n

i j i ji j a xε ε γ ε ε γ
=

≥ ∈ > ∈Ω∑                           (11) 

2
1

1 .
2

n
j ijib rσ

=

 = − 
 
∑                                   (12) 

f is a positive function. 
For more detail on the parabolic inequality associated with American options problem (see [2] [13] [15]-[17]). 
We can reformulate the problem (6) to the following parabolic variational inequality: 

( ) ( ), , , , ,u v u a u v u f v u v K
t

∂ − + − ≥ − ∈ ∂ 
                         (13) 

where ( ).,.a  is a continuous bilinear form associated with operator A defined in (9). Namely, 

( ) ( ) ( ) ( )0, 1 1, d .n n
ij ji j j

j j j

u v ua u v a x b x v a x uv x
x x x= =Ω

 ∂ ∂ ∂
= + +  ∂ ∂ ∂ 

∑ ∑∫                 (14) 

Theorem 1 (Cf. [10]): If ( )1 ΩHψ ∈ , the problem (13) has an unique solution u K∈  Moreover, one has 

( )( ) ( )( )2 1 2 20, : Ω 0, : Ω .uu L T H et L T L
t

∂
∈ ∈

∂
                        (15) 
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3. Study of the Discrete Problem 
We decomposed Ω  into triangles and let hτ  denotes the set of all those elements, where 0h >  is the mesh 
size. We assume that the family hτ  is regular and quasi uniform. Let hV  denote the standard piecewise linear 
finite element space, and   be the matrix with generic coefficients ( ),i ja ϕ ϕ  where iϕ , ( ){ }1,2, ,i m h=  , 
are the basis function of the space hV , defined by ( ) ,i j ijMϕ δ=  where jM  is a vertex of the considered 
triangulation.  

We introduce the following discrete spaces hV  of finite element constructed from polynomials of degree 1: 

( )( ) ( )( ){ }2 1 1
10, : 0, : , such that ,h h k hv L T H C T H v P k τ∈ Ω Ω ∈ ∈                  (16) 

and 

( ){ }, , ,0 in .h h
h h h hK v V v r v x rψ ψ= ∈ ≥ = Ω                          (17) 

We consider rh be the usual interpolation operator defined by: ( )( ) ( )( )2 1 10, : 0, :hv L T H C T H∀ ∈ Ω Ω  

( ) ( )( )
1

m h
h j jjr v v M xϕ

=
= ∑                                 (18) 

The discrete maximum principle assumption (d.m.p): We assume that the matrix   defined above is an 
M-matrix (Cf. [18]). 

Theorem 2 (Cf. [19]): Let us assume that the bilinear form ( ).,.a  is weakly coercive in ( )1 ,H Ω  there ex-
ists two constants 0α >  and 0λ >  such that 

( ) 2 1
,h h h ha u u u uλ α+ ≥                                (19) 

Notation: 

( ) ( )2.,.  denotes the inner product in .L Ω  

1 21 2. . , . . and . .L H L∞ ∞
= = =  

3.1. Discretization 
We discretize the space ( )1H Ω  by a space discretization of finite dimensional ( )1hV H∈ Ω  constructed 
from polynomials of degree 1 and for the regularity of the solution see [20]. In a second step, we discretize the 
problem with respect to time using the θ-scheme. Therefore, we search a sequence of elements n h

hu V∈  which 
approaches ( ) , Δn

n nu t t n t= , with initial data 0
0 .h hu u=  

We apply the finite element method to approximate inequality (13), and the semi-discrete P.V.I takes the form 
of 

( ) ( ), , , , hh
h h h h h h h h

u v u a u v u f v u v K
t

∂ − + − ≥ − ∈ ∂ 
                     (20) 

Now, we apply the θ-scheme on the semi-discrete problem (20); for any [ ]0,1θ ∈  and 1, ,k n=  , we have 
for h

hv K∈  

( ) ( )
1

, , , , ,, , , ,
k k

k k k k kh h
h h h h h h h

u u v u a u v u f v u
t

θ θ θ θ θ
− −

− + − ≥ − ∆ 
                   (21) 

where 

( ), 11k k k
h h hu u uθ θ θ −= + −                                  (22) 

( ) ( ) ( ),
11k

k kf f t f tθ θ θ −= + −                               (23) 

We have ,k
huθ  that is admissible because 

( ) ( ), 11 1 .k k k
h h h h h hu u u r r rθ θ θ θ ψ θ ψ ψ−= + − ≥ + − =  

Thus we can rewrite (21) as: for ,k h
hu Kθ ∈  and h

hv K∈  
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( )
, 1

, , , , ,, , , .
k k

k k k k kh h
h h h h h h h

u u
v u a u v u f v u

t t

θ
θ θ θ θ θ

θ θ

−   
− + − ≥ + −   

∆ ∆   
                  (24) 

Thus, our problem (24) is equivalent to the following coercive discrete elliptic variational inequality: 

( ) ( ), , , 1 ,, , , .k k k k k h
h h h h h h hb u v u f u v u v Kθ θ θ θµ −− ≥ + − ∈                      (25) 

Such that 

( ) ( ) ( ), , , , , ,, , , .k k k k k k
h h h h h h h h hb u v u a u v u u v uθ θ θ θ θ θµ− = − + −                     (26) 

1 .
Δ

n
t T

µ
θ θ

= =  

3.2. Stability Analysis of θ-Scheme for the P.V.I 
The study of the stability of θ-scheme for the American options problem is adapted to [4]. 

It is possible to analyze stabilitytaking advantage of the structure of eigenvalues of the bilinear form ( ).,. ,a  
and wecall that W is compactly embedded in ( )2L Ω  since Ω  is bounded. 

Let { }ihω  the eigenvectors of ( ).,.a  form a complete orthonormal basis of hW  in the finite dimensional 
problem. At each time step k h

hu K∈ , can be expressed k
hu  as well: 

( )

( )
1

and , .
m h

k k k k
h i ih i h ih

i
u u u uω ω

=

= =∑  

Moreover, let k
hf  be the 2L -orthogonal projection of ,kf θ  into hW , that is, k h

hf W∈ , one has 
( )

( )
1

and , .
m h

k k k k
h i ih i h ih

i
f f f fω ω

=

= =∑  

We are now in a position to prove the stability for 
10
2

θ≤ < , choosing in (21) 0v = , thus we have for 

,k h
hu Kθ ∈  

( ) ( ) ( )1 , , , , ,1 , , , .k k k k k k k
h h h h h hu u u a u u f u

t
θ θ θ θ θ−− + ≤

∆
                      (27) 

For each ( )1, ,i m h=  , the inequalities (27) is equivalent to 

( )( )
1

11 .
Δ

k k
k k ki i

ih i i i
u u

u u f
t

λ θ θ
−

− −
+ + − ≤ 

 
                        (28) 

Since ihω  are the eigenfunctions means 

( ) ( ), , .ih ih ih ih ih ih ii iha ω ω λ ω ω λ δ λ= = =                          (29) 

If one solves relative to k
iu , we find: 

( ) 11 1
.

1 1 Δ
ihk k k

i i i
ih ih

t tu u f
t t

θ λ
θ λ θ λ

−− − ∆ ∆
≤ +

+ ∆ +
                         (30) 

This inequality system stable if and only if 

( )1 1 Δ
1,

1 Δ
ih

ih

t
t

θ λ
θ λ

− −
<

+
                                (31) 

that is to say 

22 1 ,
Δih t

θ
λ

− > −                                   (32) 
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means 

( )
2 .

1 2 ih

t
θ λ

∆ <
−

                                   (33) 

So that this relation satisfied for all the eigenvalues ihλ  of the bilinear form ( ).,.a , we have to choose their 
highest value, we take it for ( ).mhλ ρ=   

Lemma 1 (Cf. [4]):  

For 
1
2

θ ≥  the θ-scheme way is stable unconditionally i.e., stable Δ .t∀  

And if 
10
2

θ≤ <  the θ-scheme is stable unless 

( )
22 .

1 2
Ct h
θ

∆ <
−

                                   (34) 

With 

21
22 .mh

c c h
h

λ −≤ =                                   (35) 

( )mhλ ρ=   (spectral radius of  ). 

Notice that this condition is always satisfied if 
10
2

θ≤ < . Hence, taking the absolute value of (30), we have 

10
1 ,

1
nn k

i i ik
ih

tu u f
tθ λ

−

=

∆
< +

+ ∆ ∑                              (36) 

also we deduce that 

10
1

Δ .
1 Δ

nn k
i i ik

ih

tu u f
tθ λ

−

=∞ ∞ ∞
∞

< +
+ ∑                          (37) 

Remark 1 (Cf. [4]): 
We assume that the coerciveness assumption (19) is satisfied with 0λ = , and for each 1; ;k n=  , we find 

( ) ( )( )2 2 2, , ,
1 12 2 2

02 , Δ .nk nk k k
h h h hk ku t a u u C n u t fθ θ θ

= =
+ ∆ < +∑ ∑                (38) 

where 
( ) ( ) ( ),

11 .k
k kf f t f tθ θ θ −= + −  

4. Existence and Uniqueness for Discrete P.V.I 
We consider that u∞  and hu∞  are respectively the stationary solutions of the following continue and discrete 
inequalities: 

( ) ( ), , .b u v u f u v uλ∞ ∞ ∞ ∞− ≥ + −                             (39) 

( ) ( ), , .h h h h h hb u v u f u v uλ∞ ∞ ∞ ∞− ≥ + −                            (40) 

where the bilinear form ( ) ( ) ( ), , ,b u v a u v u vλ= +  satisfies the coercivity condition. 
Theorem 3 (Cf. [9]): Under the previous assumptions, and the maximum principle, there exists a constant C 

independent of h such that 
22 log .hu u Ch h∞ ∞

∞
− ≤  

4.1. A Fixed Point Mapping Associated with Discrete Problem 
We consider the mapping 
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( )
( )

:

,

h
h

h h

T L K

w T w ξ

∞
+ Ω →

→ =
                                   (41) 

where hξ  is the unique solution of the following discrete coercive V.I: find h
h Kξ ∈  

( ) ( ),, , , .k h
h h hb v f w v v Kθξ ξ µ ξ− ≥ + − ∈  

Lemma 2 (Cf. [6]): Under the d.m.p we have if F F≥   then .h hξ ξ≥   

Proposition 1: Under the previous hypotheses and notations, if we set 
1
2

≥ , the mapping hT  is a contrac-

tion in ( )L∞ Ω , i.e., 

( ) ( ) 1 .
1 Δh hT w T w w w

tβθ ∞∞
− ≤ −

+
                            (42) 

Therefore, Th admits a unique fixed point, which coincides with the solution of discrete coercive V.I (25). 
Proof: For ( )w L∞∈ Ω  and ( )w L∞∈ Ω , we consider ( ) ( ), ,k

h h h hT w f w rθξ µ ψ= = ∂ +  (respectively, 

( ) ( ), ,k
h h h hT w f w rθξ µ ψ= = ∂ +

   solution to discrete coercive variational inequality (25) with right-hand side 
, ,k kF f wθ θ λ= +  (respectively , ,k k

hF f wθ θ µ= +

 ). 
Now, set 

, ,1Φ .k kF Fθ θ

µ β ∞
= −

+
  

Since, 
, , , , .k k k kF F F Fθ θ θ θ

∞
≤ + −   

, , , ,0 .k k k ka
F F F Fθ θ θ θµ

µ β ∞

+
≤ + −

+
   

(because 0 0a β≥ > ).  

( ), ,
0 Φ.k kF F aθ θ µ≤ + +  

So using Lemma 2 gives 

( ) ( )( ), ,
0, Φ, .k k

h h h hF r F a rθ θψ µ ψ∂ ≤ ∂ + +

  

On the other hand, one has 

( ) ( )( ), ,
0, Φ Φ, Φ .k k

h h h hF r F a rθ θψ µ ψ∂ + = ∂ + + + 

   

Indeed, Φhξ +  is solution of 

( )( ) ( ) ( )( ),
0Φ, Φ Φ Φ, Φ Φk

h h hb v F a vθξ ξ µ ξ+ + − + ≥ + + + − +    

Φ Φ, Φ Φ, ,h
h h hr v r v Kξ ψ ψ+ ≤ + + ≤ + ∀ ∈

   

thus 

( ) ( )( ) ( )( ), , ,
0 0, Φ, Φ, Φ .k k k

h h h h h hF r F a r F a rθ θ θψ µ ψ µ ψ∂ ≤ ∂ + + ≤ ∂ + + + 

   

Therefore 

Φ.h hξ ξ≤ +  

Similarly, interchanging the roles of w  and w  we also get 

Φ.h hξ ξ≤ +  

Consequently, 
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( ) ( )

( )

, ,

, ,

1

1

.

k k
h h

k k

T w T w F F

f w f w

w w

θ θ

θ θ

µ β

µ µ
µ β
µ

µ β

∞ ∞

∞

∞

− ≤ −
+

≤ + − +
+

≤ −
+









 

( ) ( ) 1
1 Δh hT w T w w w

tβθ ∞∞
− ≤ −

+
   

which is the desired result. 

Remark 2: If we set 10
2

θ≤ < , the mapping hT  is a contraction in ( )L∞ Ω , i.e.,  

( ) ( )
( )
2

2

2 .
2 1 2h h

ChT w T w w w
Ch βθ θ ∞∞

− ≤ −
+ −

                       (43) 

Therefore, hT  admits a unique fixed point, which coincides with the solution of discrete coercive V.I (25). 

Proof: Under condition of stability, we have shown the θ-scheme is stable if and only if 22 ,
1 2

Ct h
θ

∆ <
−

 thus 

it can be easily show that 

( ) ( )

( )

2

2

2

1 1
1 21 Δ 1
2

2 ,
2 1 2

h hT w T w w w w w
t

Ch
Ch w w

Ch

θβθ βθ

βθ θ

∞ ∞∞

∞

− ≤ − ≤ −
−+  +  

 

= −
+ −

  



 

also it can be found that 

( ) ( )
( )
2

2

2
2 1 2h h

ChT w T w w w
Ch βθ θ ∞∞

− ≤ −
+ −

   

which is the desired result. 

4.2. Iterative Discrete Algorithm 
We choose 0

hu  as the solution of the following discrete equation 

( ) ( )0 0, , , ,h
hb u v g v v V= ∈                                   (44) 

where 0g  is a regular function given. 
Now we give our following discrete algorithm 

, 1 ,, 1, , , ,k k k h
h h h hu T u k n u Vθ θ−= = ∈                              (45) 

where ,k
huθ  is the solution of the problem (25). 

Remark 3 cf. [7]: If we choose 1θ =  in (45) we get Bensoussan’s algorithm. 
Proposition 2: Under the previous hypotheses and notations, we have the following estimate of convergence  

1
2

θ ≥  

, 01 .
1 Δ

k
k

h h h hu u u u
t

θ

βθ
∞ ∞

∞ ∞

 
− ≤ − + 

                            (46) 

And if 
10
2

θ≤ <  
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( )
2

, 0
2

2 .
2 1 2

k

k
h h h h

Chu u u u
Ch

θ

βθ θ
∞ ∞

∞ ∞

 
− ≤ −  + − 

                       (47) 

Proof: We set a first case 
1
2

θ ≥ , and we have  

,h h hu T u∞ ∞=  

,1 0 01
1 Δh h h h h h h hu u T u T u u u

t
θ

βθ
∞ ∞ ∞

∞ ∞ ∞
− = − ≤ −

+
 

We assume that  

, 01 ,
1 Δ

k
k

h h h hu u u u
t

θ

βθ
∞ ∞

∞ ∞

 
− ≤ − + 

 

so  

, 1 1
1 Δ

k k k
h h h h h h h hu u T u T u u u

t
θ

βθ
+ ∞ ∞ ∞

∞ ∞ ∞
− = − ≤ −

+
 

thus 
1

, 1 01
1 Δ

k
k

h h h hu u u u
t

θ

βθ

+
+ ∞ ∞

∞ ∞

 
− ≤ − + 

 

For a second case 
10
2

θ≤ <  one can easily show that 

( )
2

, 0
2

2
2 1 2

k

k
h h h h

Chu u u u
Ch

θ

βθ θ
∞ ∞

∞ ∞
− ≤ −

+ −

 
  
 

 

which is the desired result. 

5. Asymptotic Behavior 
This section is devoted to the proof of principal result of the present paper, where we prove the theorem of the 
asymptotic behavior in L∞ -norm for parabolic variational inequalities. 

Now, we evaluate the variation in L∞  between ( ),hu x T∞ , the discrete solution calculated at the moment 
T n t= ∆  and u∞ , the continuous solution of (39). 

Theorem 4: (The principal result). Under conditions of Theorem (3) and Proposition (2), we have for the first  

case 
1
2

θ ≥  

2, 2 1log ,
1 Δ

n
n

hu u C h h
t

θ

βθ
∞

∞

  
− ≤ +  +   

                        (48) 

and for the second case 
10
2

θ≤ <  

( )
2

2, 2
2

2log ,
2 1 2

n

n
h

Chu u C h h
Ch

θ

βθ θ
∞

∞

  
 − ≤ +    + −   

                    (49) 

where C is a constant independent of h and k. 
Proof: We have 

( ) ( ), , for 1 ; ,k
h hu u x t t k t k tθ = ∈ − ∆ ∆    
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thus 

( ) ( ), ,n
h hu x u x Tθ =  

Then  

( ) , , .n n
h h h h hu T u u u u u u uθ θ∞ ∞ ∞ ∞ ∞

∞ ∞ ∞ ∞
− = − ≤ − + −  

Using the Theorem (3) and the Proposition (2), we have for 
1
2

θ ≥  

2, 2 1log ,
1 Δ

n
n

hu u C h h
t

θ

βθ
∞

∞

  
− ≤ +  +   

 

and for 
10
2

θ≤ <  we have 

( )
2

2, 2
2

2log .
2 1 2

n

n
h

Chu u C h h
Ch

θ

βθ θ
∞

∞

  
 − ≤ +    + −   

 

6. Perspective 
In the following, we will consolidate our theoretical results by numerical simulation, which allows us to locate 
the free boundary, a very interesting thing in practice to calculate the price of the American options. 
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