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Abstract 
It is established that for finite number of electrons, <N ∞ , and in the limit = 0T , the line of rea-
soning leading to the proof of Janak’s theorem is flawed, based on the incorrect treatment of a 
mixed state as a pure state. The derivative discontinuity at integral values of N  of the total 
ground state energy, [ ]vE N , of an interacting N-particle system under an external single-particle 
potential, ( )v r , is shown to follow from general quantum principles governing the behavior of 
ensembles of systems with varying particle number, and its presence is shown to be independent 
of the particular approximation used in determining the total ground-state energy of an ensemble. 
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1. Introduction 
In 1978, Janak published [1] a seemingly remarkable paper. It purported to show that “the variation of the total 
energy, as constructed in the density-functional theory, with respect to an orbital occupation, is equal to the 
orbital and independent eigenvalue of the detailed form of the exchange-correlation functional.” He further went 
on to propose that “this leads to a rigorous connection between the ground-state energies of N− and (N + 1)- 
particle systems, which is useful in the calculation of certain excitation energies.” 

Janak’s theorem has provided the foundation of a number of formal developments [2]-[8], notably that of 
density functional theory for open systems [2] [3], related concepts such as the derivative discontinuity [4] of the 
exchange-correlation potential at integral values of electrons, as well as the study of physical properties [5] [8] 
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of materials. At the same time, some difficulties are indicated by numerical studies [5] that show deviations 
from the linear behavior predicted by the theory (see Equation (1.6) below). 

These difficulties can be traced to the fundamental level. Unfortunately, and in spite of the applications just 
cited (and many others, too numerous to mention here), Janak’s proof of the theorem turns out to be invalid. 
This does not negate the theorem per se, but does point to the need of an alternative proof. As shown below, the 
lack of validity results from the incorrect treatment of a fractionally normalized charge as associated with a pure 
state (and an antisymmetric wave function) that, by the foundational postulates of quantum mechanics, must be 
normalized to unity and lead to densities with integral normalization. No potential acts instantaneously on a 
fractional number of electrons and no Schrödinger equation describes the evolution of such a system. Hence, no 
pure state (or wave function) exists for non-integral charges. 

2. Analysis of the Theorem 
The two opening sentences in the paper by Janak [1] imply the existence of a general theorem on total energies 
whose validity in a special case (that of ground states of systems with an integral number of electrons) was 
established by the theorems of Hohenberg and Kohn [9]. The statement is then interpreted mathematically in the 
form of a functional expression,  

[ ] ( ) ( ) [ ] [ ] [ ]xcd ,sE n n v T n U n E n= + + +∫ r r r                     (1.1) 

where ( )v r  is the external single-particle potential acting on the system, [ ]sT n  is the kinetic energy of a non- 
interacting electron system with the same density, ( )n r , [ ]U n  is the classical Coulomb energy for a charge 
density, n, and [ ]xcE n  is the exchange and correlation functional [10]. Then, as summarized in the paper, in 
the theorems of Hohenberg and Kohn, the density, n, is that of the ground state of an interacting N-particle 
system, and is hence normalized to N,  

( )d .n N=∫ r r        (1.2) 

This density is also given within the Kohn-Sham formalism [10] in terms of a Slater determinant constructed 
out of the lowest-in-energy eigenfunctions, ( )jf r , of a single-particle in an effective field, thus taking the 
form,  

( ) ( ) 2

1
.

N

j
j

n f
=

= ∑r r         (1.3) 

The generalization attempted by Janak is an extension of Slater’s transition state [11] to the formalism of 
density functional theory (DFT). It is based on the use of the expression in (1.1) but interpreted in terms of a 
function of a charge density (an expression in which the charge density occurs as a parameter) that is normalized 
to a fractional number by including the fractional occupation of the next state higher in energy of a non- 
interacting N-particle system, taking the form, 0 1α< < ,  

( ) ( ) ( ) ( )
12 22

1
1 1

,
N N

j N j j
j j

n f f n fα
+

+
= =

= + =∑ ∑r r r r                            (1.4) 

where jn  denotes the occupancy of the state (orbital), ( )jf r . With the orbitals normalized to unity, we have,  

( )d .n N α= +∫ r r      (1.5) 

In a result that ostensibly bridges the application of ground-state DFT to excited states as well as the passage 
from the ground state energy of a system of N  particles to that of 1N +  particles under the same external 
potential, Janak purports to establish the central result of the paper, Janak’s Theorem,  

,j
j

E
n
∂

=
∂

   (1.6) 

where j  is the single-particle eigenvalue corresponding to ( )jf r  in the potential, ( )v r . 
It is now shown that in the limit of finite number of particles (electrons) at the zero of temperature, the 

formalism in the paper by Janak is invalid because it fails to distinguish between pure and mixed states. 
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In quantum mechanics, the study of physical systems defined in terms of a fixed number, N , of mutually 
interacting particles is carried out on the basis of pure states (Solutions of a Schrödinger equation, say). Such a 
system is described by quantum states, N

jΨ , that are elements of an abstract Hilbert space and obey the 
normalization condition, N N

j k jkδΨ Ψ =  (see also (1.7) below). The projection of a state onto a coordinate 
point in N3 -dimensional space, ( ) ( )1 2, , , NN =r r r r , gives rise to a wave function (dropping the subscripts), 

( )( )N
NΨ r , whose modulus squared gives the classical probability of encountering the system in the 

configuration described by the positions of the particles in ( )Nr . For Fermions, wave functions are anti- 
symmetric with respect to interchange of single-particle coordinates (and spins for electrons). Because of the 
requirement that the sum of probabilities must equal unity, every state in N-particle Hilbert space satisfies the 
normalization condition,  

( )( ) ( )

2
d 1.N N

N NΨ Ψ = Ψ =∫ r r                        (1.7) 

The single-particle (charge) density, the probability of finding a particle at 1r , is defined by the integral over 
all but one coordinate of the modulus squared of the wave function, (with the electronic charge set equal to one),  

( ) ( )( ) 2

1 2d d ,NNn N= Ψ∫r r r r
                    (1.8) 

while the pair density, the probability of finding simultaneously a particle at 1r  and one at 2r , is given by the 
expression,  

( ) ( )
( )( ) 2

1 2 3

1
, d d .

2 NN

N N
n

−
= Ψ∫r r r r r                          (1.9) 

Finally, the Hamiltonian of a many-particle interacting system takes the form,  
ˆ ˆ ˆˆ ,N N N NH v T U= + +                             (1.10) 

where the operators, ˆNv , ˆ NT  and ˆ NU  correspond to the external potential, the kinetic energy and inter- 
particle potential of the N-particle system. Hilbert spaces are identified by the number of particles and the 
potential, so that different numbers of particles define different and mutually disjoint Hilbert spaces, even if the 
potentials acting on the separate systems are identical. 

Therefore, the last three expressions are sensible if and only if N  is an integer. 
Because of (1.7), a density must be normalized to an integer number, a condition fulfilled in (1.2). The 

requirement clearly fails in (1.5). Furthermore, energies are given as expectation values of Hamiltonians, ˆ NH , 
with respect to quantum states in the Hilbert space of N  particles, so that energies (expectation values) are 
restricted by the dimensionality of the system to correspond to densities with integral normalization. Therefore, 
the expression for the energy in (1.1) when interpreted in terms of a density, such as that in (1.4), cannot 
possibly correspond to an expectation value of a Hamiltonian with respect to a wave function in any Hilbert 
space. 

The formalism in the paper by Janak overlooks the true character of the density in (1.5) as that associated with 
an ensemble, or mixed state. Mixed states, in the form of reduced density matrices (RDMs) encode the statistics 
of measurement outcomes of a system described by the states in a particular RDM. In the case of, say (1.4), it 
denotes the fact that a strictly single-particle system is found in one and only one of the states, jf , without 
the knowledge of which state is occupied. The expression can only give the classical probability, 

2
jw , of 

finding the system in the state jf . This classical expression (describing the results of measurement on a single- 
particle system) has no bearing on the question of the single-particle occupation of a state in an otherwise 
interacting many-particle system. 

Let NΨ  and 1N +Ψ  denote the ground states of two systems, one with N  and the other with 1N +  
particles, both under the same external potential. Then the density matrix describing an ensemble of the two 
systems consisting of the N-particle system occurring in the ensemble with likelihood 2

1w , while that of the 
1N +  particles with likelihood 2

2w , with 2 2
1 2 1w w+ = , can be written in the Fock-space representation in 

the form,  
2 2 1 1

1 2
ˆ .N N N Nw w + +Γ = Ψ Ψ + Ψ Ψ                      (1.11) 

Projecting each state on a point in its multi-particle coordinate space, and integrating over all coordinates but 
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one, we obtain,  

( ) ( ) ( )2 2 1
1 2 ,N Nn w n w n += +r r r                         (1.12) 

where superscripts denote normalization. With 2 2
1 21 w wα = − = , one gains the normalization in (1.5). 

Consistent with the classical nature of the mixed state density, the lowest energy of the state corresponding to 
the density, ( )n r , is given exactly by the ensemble average of the ground-state energies of the separate systems 
in Γ̂ ,  

[ ] ( ) [ ] [ ]1 1 .v v vE n E N E Nα α= − + +                   (1.13) 

For an ensemble density of the form,  

{ }( ) ( ) ( )
2

; ,i
i

i

N
N

N
n w n w n= = ∑r r r                   (1.14) 

the result in (1.13) is immediately generalizable to the expression,  

( ) ,iN
v vE n E n   =   r                   (1.15) 

meaning that the ground state energy of the ensemble density is the ensemble of the ground state energies 
associated with individual densities. This expression is both intuitively obvious and exact. 

The fractionally normalized density, ( )n r , is characteristic of an open system, one that is allowed to interact 
with a reservoir (or its environment) and can exchange particles with it. The Hohenberg and Kohn theorems, on 
the other hand, are formulated for the ground states of isolated systems characterized by a fixed number of 
particles. 

As an explicit example, consider ( )Nn r  and ( )1Nn + r  to be associated with the lowest in energy of N  
and 1N +  non-interacting systems of particles under the same potential, ( )v r . The densities then take the 
form of (1.3) in terms of single-particle eigenstates of ( )v r , with the N  orbitals for the N-partickle system 
coinciding with the N  lowest in energy orbitals of the ( )1N + -particle system. From the expression in (1.3), 
the expression in (1.4) follows. But the two systems are separate and distinct blocking the formation of a single 
system, described by a pure state in either the space of the N  or 1N +  particles, that gives rise to an averaged 
density with non-integral normalization. 

The expression in (1.15) is the central result of this paper to whose analysis we now proceed. 
From (1.13), a special case of (1.15), the variation of the ensemble energy with respect to α  takes the form,  

[ ] [ ]1 .v v
E E N E N
α
∂

= + −
∂

       (1.16) 

The last expression replaces that in (1.6). It signifies that the energy can be taken to vary linearly with respect 
to occupation of a many-particle state, rather than the occupation of single-particle orbitals. It is consistent with 
the classical character of the ensemble density that describes the results of measuring the energy of systems with 
varying numbers of particles. It shows that the energy vs particle number curve varies linearly between N  and 

1N +  with a derivative discontinuity at all integer N . Indeed, given that N -particle interacting quantum 
systems are described in terms of N -particle states, not single-particle orbitals, the expression in Janak’s 
theorem is devoid of manifest meaning. Because no state bridges the Hilbert spaces of N  and 1N +  particles, 
the suggestion upon which the proof of Janak’s theorem is based, that a single implementation of the 
Kohn-Sham formalism can yield the set of orbitals forming a fractionally charged density, is equally without 
foundation. 

The expression in (1.16) is also consistent with the definition of the ionization potential of an atom as the 
difference in the ground state energies of the atom and the ion. Formally, the difference in orbital energies carry 
no information about ionization potentials contrary to the implications of Janak’s theorem. The expression in 
(1.16) also indicates that the expectation values of the external potential, the kinetic energy and the interparticle 
potential are ensemble averages of the values for the individual many-particle states, thus free of unphysical 
features of fractions of electrons interacting with fractions of electrons. Specifically, in the case of (1.4), we 
have,  

[ ] 2 2 1
1 2 .N NU n w U n w U n +   = +                         (1.17) 
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Also, the correct quantum expression for the Coulomb energy is given in terms of the pair densities of the 
states in Γ̂ , 

[ ] 2 2 1
Q 1 Q 2 Q ,N NU n w U n w U n +   = +                               (1.18) 

where for a state with N  particles, the Coulomb energy is given in terms of the pair density,  

( )1 2
Q 1 2

1 2

,
d d .

N
N n

U n  =  −∫
r r

r r
r r

                    (1.19) 

No quantum mechanically correct expressions for the Coulomb energy can be constructed on the basis of pure 
states describing physical systems in either of the Hilbert spaces of N  or 1N +  particles and leading to a 
fractionally normalized density, ( )n r . 

Furthermore, the formalism provides no connection between the excited states of a system of N -particles, all 
of which are associated with densities normalized to N , and the ground state of ( )1N + -particle systems, with 
densities normalized to 1N + . There exists no transition state, which is a pure state and connects the excited 
states of a system of N  particles to the ground state of a system of ( )1N +  particles. Slater’s transition state 
and Janak’s theorem depend on considerations of parameter spaces defined by the occupation numbers, in , that 
effectively mix Hilbert spaces corresponding to different numbers of particles. As such they have no standing as 
pure states in the quantum realm of either system: Hilbert spaces are not fuzzy. 

Finally, the formal expressions in (1.15) and (1.16) are a result of quantum considerations and independent of 
the method used to calculate ground state energies (which affects accuracy and the magnitude of the difference 
in energy but not fundamental relations), or of the functional form of the curve describing the variation of the 
energy with particle number. 

As suggested above, although Janak’s proof is not valid, it does not preclude the possibility that the theorem 
itself, i.e., Equation (1.6), may still hold under certain conditions. Physical systems can be identified whose 
energetics satisfy (approximately, to be sure, the expression in (1.6)). Within the context of Fermi-Liquid theory 
[12]-[16] (and references therein), in the limit of strictly infinite number of particles and elevated temperatures, 
the energy of a small number of quasi-excitations relative to the ground state is given by the superposition, 
(suppressing spin),  

( )2
0 ,pE E n O nδ δ− = +∑ p

p
              (1.20) 

where p
E
n
δ
δ

=
p

  is the single-quasiparticle energy that, for rotationally invariant systems depends only on  

p = p , although 2 2p p m≠ , and np  (the temperature-dependent occupation number) denotes the Fermi 
distribution function at p . 

3. Summary 
To summarize: At 0T =  and a finite number of electrons, the rate of change of the energies of ensembles of 
systems with varying number of particles is to be determined with respect to occupation probabilities of 
many-particle states rather than the probabilities of single-particle orbitals. The ramifications of this result to 
further developments in density functional theory are currently under consideration. 
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