
Journal of Software Engineering and Applications, 2014, 7, 360-370
Published Online May 2014 in SciRes. http://www.scirp.org/journal/jsea
http://dx.doi.org/10.4236/jsea.2014.75033

How to cite this paper: Fatolahi, A. and Somé, S.S. (2014) Assessing a Model-Driven Web-Application Engineering Approach.
Journal of Software Engineering and Applications, 7, 360-370. http://dx.doi.org/10.4236/jsea.2014.75033

Assessing a Model-Driven Web-Application
Engineering Approach
Ali Fatolahi, Stéphane S. Somé
School of Electrical Engineering and Computer Science, University of Ottawa, Ottawa, Canada
Email: ssome@eecs.uottawa.ca

Received 18 March 2014; revised 15 April 2014; accepted 23 April 2014

Copyright © 2014 by authors and Scientific Research Publishing Inc.
This work is licensed under the Creative Commons Attribution International License (CC BY).
http://creativecommons.org/licenses/by/4.0/

Abstract
Model-Driven Engineering (MDE) by reframing software development as the transformation of
high-level models, promises lots of gains to Software Engineering in terms of productivity, quality
and reusability. Although a number of empirical studies have established the reality of these gains,
there are still lots of reluctances toward the adoption of MDE in practice. This resistance can be
explained by several technological and social factors among which a natural scepticism toward
novel approaches. In this paper we attempt to provide arguments to help alleviate this scepticism
by conducting an assessment of a MDE approach. Our goal is to show that although this MDE is
novel, it retains similarities with the conventional Software Engineering approach while automat-
ing aspects of it.

Keywords
Model-Driven Engineering (MDE), Software Process Assessment, Web-Engineering

1. Introduction
Model-Driven Engineering (MDE) is a paradigm for software development at the core of which abstract models
are used to describe software and systematically transformed to more concrete models up to executable code.
MDE raises the abstraction level of languages needed to develop software. It shields software developers from
the complexities of underlying implementation platforms [1]. MDE approaches offer several potential benefits
to Software Engineering including improved productivity, portability, maintainability and interoperability [2].
However, there are still some resistances in organizations for the wide adoption of MDE as illustrated by sur-
veys such as [3] in which only about 13% of respondents reported that they always use modelling, or [4] in
which 35 out of 50 professional software engineers in 50 companies reported no use of the Unified Modelling
Language (UML). The adoption of MDE is hindered by several factors including social and technical issues [5].

http://www.scirp.org/journal/jsea
http://dx.doi.org/10.4236/jsea.2014.75033
http://dx.doi.org/10.4236/jsea.2014.75033
http://www.scirp.org/
mailto:ssome@eecs.uottawa.ca
http://creativecommons.org/licenses/by/4.0/

A. Fatolahi, S. S. Somé

361

As put by France and Rumpe [1], the realization of the MDE vision is a wicked problem that requires tackling a
variety of interrelated social and technical problems.

The slow rate of adoption of MDE is partly due to the scepticism of software developers and managers toward
new approaches. Practitioners tend to adapt to their favourite approaches and resist to new “revolutionary” ways
of developing software [6]. It is therefore important that newly proposed approaches provide arguments of effi-
ciency and non-disturbance in order to improve their chance of adoption.

We developed a Model-Driven Engineering approach for Web-applications called MODEWIS (Model-Driven
Development of Web Information Systems) [7]. This MDE approach adopts the OMG’s Model Driven Archi-
tecture (MDA) [8] principles where a distinction is made between three conventional levels of abstraction: the
Computation Independent Model (CIM) level, the Platform Independent Model (PIM) level, and the Platform
Specific Model (PSM) level. We further distinguish two levels within the PSM: an Abstract-Platform Specific
Model (APSM) [9] level and a Specific-Platform Specific Model (SPSM). The APSM is concerned with models
specified with respect to common features of different web platforms with no reference to specific implementa-
tion platforms, while the Specific-Platform Specific Model (SPSM) integrates these implementation details. The
distinction between APSM and SPSM allows the reuse of generic transformations PIM-to-APSM regardless of
the implementation platform as well as model portability. Our objective in this paper is to present an assessment
of MODEWIS in regard to 1) closeness to “classical” software engineering (familiarity), 2) capacity to “mimic”
human design decisions (correctness of design inferences) and 3) gain in productivity. We believe that showing
that a MDE remains close to traditional software engineering—known to practitioners, and that the transforma-
tions embedded are not a complete departure from the manual design decisions in those approaches could alle-
viate the natural scepticism of practitioners. Showing that there is a potential gain in productivity would provide
additional clues to the benefits of the approach.

The rest of this paper is organized as follows. Section 2 contains a discussion on the related work. In Section
3, we present a summary of MODEWIS. In Section 4, we compare MODEWIS to the conventional Software
Engineering activities. The design inference capabilities of MODEWIS are assessed in Section 5, and the pro-
ductivity of the approach in terms of automatically created model elements versus provided elements, is dis-
cussed in Section 6. Finally, Section 7 concludes this paper.

2. Related Work
Different studies have been conducted on the evaluation of Model-Driven Engineering. Most of these have ex-
amined empirically the degree of adoption of MDE in industries, as well as attempted to identify the advantages
and limitations of MDE in practice. In [10], Mohagheghi and Dehlen present a review of 25 papers on such em-
pirical studies published between 2000 and 2007. This work has found that the practice of MDE is mainly fo-
cused on code generation but did not find enough evidence about the productivity benefit of MDE for large pro-
jects. Mohagheghi and Dehlen call for further studies in that respect. Hutchinson et al. [11] reports on a survey
of 250 professionals about the state of MDE in industry. A large number of these surveyed professionals found
MDE advantageous in terms of productivity, maintainability and portability. However reported drawbacks in-
clude the need to learn new approaches and the cost of specialized tools. A survey of 155 Italian software practi-
tioners on MDE presented in [3] concludes that modelling, particularly for code generation, is a well-established
practice among the surveyed practitioners. Benefits of MDE were found to include support in design definition,
improved documentation, easier maintenance and quality; while the main drawback is the effort involved in cre-
ating models. Other reviews on MDE adoption include [12], a case study that found that contextual forces
dominate cognitive issues in using MDE, and [13] that reports on an experiment where code generation from
models is compared to manual coding. Another group of related publications concern evaluations of the UML
(e.g. [4] [14] [15]).

Unlike the related work described here, our work focuses on a particular MDE approach. We attempt to assess
particular aspects of this approach in order to provide arguments in favour of its adoption. Further studies will be
needed to evaluate the effectiveness of the approach in its practical use.

3. A Model-Driven Web-Engineering Approach (MODEWIS)
Figure 1 shows an overview of the MODEWIS approach. The approach is based on the MDA distinction be-
tween CIM, PIM, and PSM. We further distinguish two levels of abstraction within the PSM: an Abstract-Plat-

A. Fatolahi, S. S. Somé

362

 Figure 1. Overview of MODEWIS approach.

form Specific Model (APSM) and a Specific-Platform Specific Model (SPSM). Despite their variety, web tech-
nologies share many characteristics. These characteristics address web-application structure, navigation paths,
logic control mechanisms, data access techniques, user interface (UI) components and the principle of separation
of concerns. The APSM encompasses the common web technology characteristics, while the SPSM provides the
specificity of concrete implementation platforms.

Figure 2 shows a high-level conceptual view of the APSM. The complete meta-model is described in [16].
The APSM is based on established web architectural patterns such as the Model-View Controller (MVC) pat-

tern [17]. Elements of packages State Machines, Communications and Use Cases are mostly inherited from the
UML specification [18]. The package Domain contains metaclasses required to define data entities, data com-
posites and their attributes. The package Service contains metaclasses required to build data-access operations;
these are dependent upon Domain package to perform operations. The Controllers package includes classes
needed to manage both the change of status and the required low-level operations.

The APSM is platform-specific in the sense that it describes features specific to the web platform; it is also
abstract [19] since it does not contain details of specific web platforms but only their shared features. SPSMs
pertain to concrete web implementation platforms. We developed specific platforms corresponding to widely
used technologies such as AndroMDA [20], WebRatio [21], Google Web Toolkit (GWT) [22] and Microsoft.
Net [23]. A detailed description of these SPSMs is provided in [16].

The PIM is a subset of the APSM related to actors, use cases, state machines, presentation states and UI
components such as Submit Buttons, Text and Images. Figure 3 shows the elements of the APSM used as
meta-model for the PIM. We developed a Domain Specific Language (DSL) for the specification of instances of
the PIM. This DSL provides a visual notation for the specification of web-applications using state machine
symbols from UML standard, as well as custom symbols for the description of user interface and data operations.
A description of the DSL is provided in [16] and Figure 4 shows a sample PIM.

Each use case is modelled as a UML state machine with presentations and data actions associated to states.
The involved actor in Figure 4 is Member. The use case involves only one state called View Bill. The UI pre-
sented in that state is enclosed within a group titled View Bill—to indicate the UI prototype of state View Bill.
The presentation involves one data operation. In this operation, an instance of the entity Bill is retrieved to
populate the UI components Name, Address, Tel and Description enclosed in a group named Bill. The operation
uses the value found in a page variable selected Bill to filter the results of the query from the entity Bill. The
page variable selected Bill is assumed to have been set in a previously executed use case.

Model transformation is central to a Model-Driven Development approach. The OMG [8] defines a transfor-
mation as an execution of a mapping. A mapping is a specification describing how to transform a PIM to PSM.

A. Fatolahi, S. S. Somé

363

 Figure 2. High-Level Package view of the APSM.

Figure 3. Part of the APSM meta-model used as PIM meta-model.

Our PIM-to-APSM transformations belong to the category of refining mappings according to Mellor et al. [24].
Refining mappings are defined between two sets of models both defined based on the same meta-model. The
mapping refines a source model by adding more details to it. Figure 5 presents a summary of the information
used from the PIM as well as those created at the APSM level in a typical PIM-to-APSM mapping. Data objects

A. Fatolahi, S. S. Somé

364

 Figure 4. Sample PIM for use case view bill.

 Figure 5. PIM-to-APSM mappings at a glance.

and navigation through data objects are created based on data associations found within the UI model. The con-
tents and the structure of web pages are determined by the contents of the presentation states and transition
flows. Transitions and states from the input model are also used to create events and operations used for gener-
ating the behavior and controllers of the application. The behavior and controllers are used in turn to build the
data access services in combination with data associations from presentation states.

The transformations discussed above have been implemented as QVT relations [25]. The details of which can
be found in [16]. As an example, the PIM modelled in Figure 4 would result in the instance of APSM described
in Figure 6. The generated APSM has an additional state (Run State 1) to handle the logic required to populate
the billing details. From this state, a transition invokes operation populate Bill Panel in the controller class View
Bill Controller which, in turn, calls load Some service operation from the service class Bill Service.

A. Fatolahi, S. S. Somé

365

 Figure 6. The APSM of the use case view bill.

The software development process put forward by MODEWIS approach consists on the following activities:

1) PreConditions: Requirements are elicited but not necessarily modelled. Use cases are realized and are op-
tionally documented as textual descriptions. Data and usability requirements are considered so the developer can
decide which data is used in every use case step as well as what is presented in every presentation step.

2) PIMing: A PIM serves as the input to the process and is composed of use case state machines and UI pro-
totypes. This step is mainly manual and involves using MODEWIS DSL notation.

3) APSMing: The PIM is mapped to an APSM using the PIM_APSM set of QVT relations.
4) SPSMing: The resultant APSM is mapped to one of the specific platform.
5) Coding: Code is generated using code generators from the SPSMs.
6) PostConditions: The generated code might need to be manually edited to account for specific aspects of the

target platform.

4. Assessment against Conventional Software Engineering
We compare MODEWIS approach with the conventional software engineering approach. Our goal is to show
that a MDE such as MODEWIS retains some similarity with the conventional approach (with which most prac-
titioners are familiar), while providing automation to several activities. According to [26], a conventional soft-
ware engineering process consists of the following activities:
• Requirements/Specification, which consists in gathering requirements, understanding the domain, differenti-
ating whats from hows and enlisting things the User would expect the software system to do.
• Design, where design choices such as selected technologies and comprising subsystems are made in order to
ensure the satisfaction of requirements.
• Modelling, this is about visually specifying the designed system and requirements using modelling languages.
Use case modelling, domain modelling and structural modelling are examples of modelling activity.
• Programming, this is the act of writing the actual code that implements the application functionality.
• Quality Assurance (QA), this activity includes the validation of the implemented software application to
check that it satisfies its requirements. Typical QA activities are testing and reviews.
• Deployment, this process consists in releasing the application to the customer, installing required components
and giving required instructions for using it.
• Management, which relates the managerial aspects of the software development including cost estimation,

A. Fatolahi, S. S. Somé

366

task planning and resource assignation.
In Table 1, we compare the activities in MODEWIS with the conventional software engineering activities.
Requirements are out of the scope of MODEWIS and is considered a prerequisite. More specifically, func-

tional requirements, usability expectations and domain data must be determined before the process starts. The
specification of functional requirements is partly covered by the manual specification of state machines as part
of the PIM.

Design affects our approach especially in terms of the architecture as well as the selection and setting up of
the specific platform(s). APSMing corresponds in part to the high-level design (architecture) activity in the con-
ventional approach as the PIM-to-APSM mappings integrate well established architectural patterns. The APSM-
to-SPSM mappings consist in low level refinements to specific platforms (frameworks, databases...). The spe-
cific platform may or may not be among the four examples that we have implemented so far. If the specific
platform is not available, the specific platform and its related APSM-to-SPSM transformations need to be de-
fined based on the user’s selection of implementation technologies. The up-front effort needed to develop these
APSM-to-SPSM transformations is non-negligible; however they are re-used for any subsequent project involv-
ing the same platform.

Modelling with MODEWIS consists in defining the PIM that serve as the input to our approach. The rest of
the modelling is performed in the context of automated transformations that create the APSM and relevant
SPSMs. In conventional approaches the transformations PIM-to-APSM-to-SPSM correspond to the manual de-
sign refinements steps. In Section 6, we provide an assessment of the degree of modelling effort automation
achieved through the PIM-to-APSM transformations.

Programming is supported in MODEWIS by the automated generation of the executable application code us-
ing code generators. This involves all data processing operations and many other logical operations performed
for checking the validity of the input and perform web-specific tasks such as sending emails and comparing in-
put values. Some manual coding may be required for complex business logic, look-and-feel as well as to im-
prove performance.

Quality Assurance (QA) is performed against the models and transformations. In a conventional software en-
gineering process, the focus of quality assurance is mostly on the quality of code. MDE approaches focus on
models and transformations. QA is shifted to ensuring the PIM correctly captures the requirements and that
transformations themselves are sound. MODEWIS uses a review approach based on proof-reading of the mod-
els.

5. Assessment of Design Inference
One of the prevailing tasks in software design is the refinement of abstract representations closer to the problem
space, as more concrete models closer to the implementation. An effective model-driven approach must provide
some automation to such refinement tasks by encompassing the capability to infer more detailed elements from
abstract models. In order to assess this aspect of MODEWIS approach, we compare the operation refine-

Table 1. MDWE steps vs. conventional software engineering activities.

Conventional
Activities

 MDWE Steps

Pre PIMing APSMing SPSMing Code Generation Post

Requirements/
Specification

Use case modelling
as state machines

Design Architectural
Patterns

Specific Platform
definition

Modelling
UI Prototyping and
Use Case modelling
using state machines

Automatically
Done

Automatically
Done

Programming Automatically
Done

Manual coding
as required

Quality
Assurance

Proof-reading
Transformation

Results

Proof-reading
Transformation

Results

A. Fatolahi, S. S. Somé

367

ment capability with contracts modelling in Larman’s approach [27]. In this approach, operations identified
from use case descriptions are refined as contracts. These contracts provide a basis for creating sequence dia-
grams in subsequent steps of the development process. Our comparison is based on the NextGen POS System
which is used as a main example in [27]. The NextGen POS System aims to assist cashiers in a department store.
The main scenario of the use case Process Sale is presented in Listing 1.

In Larman’s approach, software designers identify a set of system operations from the scenario and based on a
domain model, specify contracts for each of these operations. An operation contract includes different sections,
the most essential of which is the operation’s postconditions stating the operation effects in term of changes to
the domain objects, attributes and associations.

Table 2 shows the system operations and the postconditions contracts that Larman’s approach suggests for
use case Process Sale. These postconditions assume the prior development of a domain model with the classes
and associations referred to. Figure 7 shows the main scenario of use case Process Sale in our PIM DSL. We
also assume a prior development of the system’s domain model with classes corresponding to the data entities
referred to in the PIM. Table 2 shows the operations derived from the transformation of the PIM to an APSM.
These operations are created for the controller of the use case Process Sale. Corresponding operations are gen-
erated for all system operations. Although some of Larman’s system operations are fulfilled by several opera-
tions in MODEWIS approach. All the operations post conditions as specified by Larman’s are fulfilled as fol-
low:
• makeNewSale: loggedRegister is considered an attribute of the data variable newSale. Hence, newSale is as-

sociated with loggedRegister. This satisfies postconditions 11, 12 and partly 13. The rest of the attributes of
newSale are set in the context of other operations and use cases.

 Listing 1. Main Scenario of use case process sale.

Table 2. Larman’s contract vs. MODEWIS generated controller operations.

Larman’s approach MODEWIS
Operation Contract Postconditions Controller Operations

1—makeNewSale
11—A Sale instance s was created

12—s was associated with a Register
13—Attributes of s were initialized

setNewSale(newSale, loggedRegister)

2—enterItem

21—A SalesLineItem instance sli was created
22—sli was associated with the current sale

23—sli.quantity became quantity
24—sli was associated with a ProductDescription

based on itemID match

populateItemsTable(id, newItem)
setNewItem(newItem)

addToItemsTable(newItem)
updateNewSale(newItem, newSale)

3—endSale 31—Sale.isComplete became true
setIsComplete(newSale, “true”)

updateSale(newSale, isComplete, newPayment, items,
subtotal, tax, balance)

4—makePayment

41—A Payment instance p was created
42—p.amountTendered became amount

43—p was associated with the current Sale
44—The current Sale was associated with the Store

handlePayment(newSale, items)

A. Fatolahi, S. S. Somé

368

 Figure 7. The PIM of use case process sale.

• enterItem: Operations populateItemsTable and setNewItem handle postconditions 21 and 22. The operation

populateItemsTable also satisfies the postcondition 24 because it loads data based on the input id from the
data table item. Also having table columns description and price associates these attributes with id.

• endSale: This is handled by two operations: setIsComplete and UpdateSale. Note that the operation update-
Sale accepts the values of all components although the values of subtotal, tax and balance exist in the vari-
able newPayment as well. Currently we have no mechanism to detect and remove this type of dependency.

• makePayment: The operation, handlePayment accepts the parameters newSale and items. Since handling
payment is considered a separate use case, the output that is newPayment is inserted in the final presentation
unit Present Receipt. The operation updateSale, which runs at the beginning of loading this state, confirms
that newPayment should also be assigned as an attribute association with newSale.

6. Productivity Assessment
We quantify the degree of modelling effort provided by MODEWIS approach by considering the number of
model elements automatically generated in models. In MODEWIS, software is first modelled as a PIM in which
elements are automatically added to form an APSM. We can estimate the degree of automation by considering
the ratio of automatically added elements versus the provided input elements. In a manual approach, developers

A. Fatolahi, S. S. Somé

369

Table 3. Degree of automation results for dilmaj and AMS case studies.

Case Study
Degree of Automation results

Number of PIM Elements Number of APSM Elements APSM vs PIM
Dilmaj 588 1509 61%a
AMS 858 3646 76%

a61% of the APSM are automatically added elements to the PIM.

Table 4. Proportion of generated code for the AMS case study.

APSM vs. PIM AndroMDA vs. APSM GWT vs. APSM WebRatio vs. APSM .Net vs. APSM
76% 33.33% 36.78% 46.77% 59.78%

would have manually added these elements as part of model refinement.

We evaluated the degree of automation of modelling effort obtained from our approach by examining two
case studies: Dilmaj [28] a Web 2.0, collaborative, multilingual project about languages and language develop-
ment supported by a group of developers, and Account Management System (AMS) [29], a commercial project
foreseen by a waste/water management company to replace an existing non-web system. Table 3 shows the
percentage of added elements in the APSM versus those of the PIM for the case studies Dilmaj and AMS.

The MODEWIS approach automatically generates SPSMs from APSM and subsequently, code from the
SPSMs. Table 4 shows the proportion of additional model elements generated with respect to the APSM for the
AMS case study in each of the SPSM platforms: Andro MDA, GWT, Web Ratio and .Net.

7. Conclusion
The adoption of MDE approaches is still lagging despite their many promises. In this paper we presented an as-
sessment of MODEWIS a MDE approach for web-applications development. We compared the MODEWIS
process with the conventional Software Engineering process. This showed that MODEWIS is not “revolutionary”
but rather “evolutionary” as the MDE process still aligns with the conventional process. We also looked at the
automated design inferences compared to manual design decisions and the value added by automated transforma-
tions to models. This assessment is a first attempt at presenting arguments in order to alleviate practitioners’ scep-
ticism toward a MDE approach such as MODEWIS. The conducted case studies offer some other insights into the
value of Model-Driven Development that would need further evaluation. For instance, the Dilmaj development
team had estimated that the amount of time required to manually develop a working prototype of the system was
about three months. Using MODEWIS, we were able to develop a working prototype in one week. However, al-
though the resulting application is completely functional, optimizations to data queries as well as the appearance
of the UI were considered by developers as changes required to be done to the automatically generated applica-
tion in order to complete the system. As future work we plan to conduct an evaluation in order to assess the global
productivity gain of MODEWIS in regard to these needs for changes to generated code.

References
[1] France, R. and Rumpe, B. (2007) Model-Driven Development of Complex Software: A Research Roadmap. Future of

Software Engineering (FOSE ‘07), 37-54.
[2] Kleppe, A.G., Warmer J.B. and Bast, W. (2003) MDA Explained: The Model Driven Architecture: Practice and Prom-

ise. Addison-Wesley Longman Publishing Co., Inc.
[3] Torchiano, M., Tomassetti, F., Ricca, F., Tiso, A. and Reggio G. (2013) Relevance, Benefits, and Problems of Soft-

ware Modelling and Model Driven Techniques—A Survey in the Italian Industry. Journal of Systems and Software, 86,
2110-2126. http://dx.doi.org/10.1016/j.jss.2013.03.084

[4] Petre, M. (2013) UML in practice. Proceedings of the 2013 International Conference on Software Engineering (ICSE
‘13), San Francisco, 18-26 May 2013, 722-731. http://dx.doi.org/10.1109/ICSE.2013.6606618

[5] Selic, B. (2012) What Will It Take? A View on Adoption of Model-Based Methods in Practice. Software and System
Modeling, 11, 513-526. http://dx.doi.org/10.1007/s10270-012-0261-0

[6] Selic B. (2006) Model-Driven Development: Its Essence and Opportunities. 9th IEEE International Symposium on
Object-Oriented Real-Time Distributed Computing (ISORC 2006), Gyeongju, 24-26 April 2006, 313-319.

http://dx.doi.org/10.1016/j.jss.2013.03.084
http://dx.doi.org/10.1109/ICSE.2013.6606618
http://dx.doi.org/10.1007/s10270-012-0261-0

A. Fatolahi, S. S. Somé

370

http://dx.doi.org/10.1109/ISORC.2006.54
[7] Fatolahi, A., Somé S.S. and Lethbridge, T.C. (2011) Model-Driven Web Development for Multiple Platforms. Journal

of Web Engineering, 10, 109-152.
[8] Object Management Group (OMG), MDA® Specifications. http://www.omg.org/mda/specs.htm
[9] Fatolahi, A., Somé S.S. and Lethbridge, T.C. (2012) A Meta-Model for Model-Driven Web Development. Interna-

tional Journal of Software and Informatics, Special Issue on Software Modeling, 6, 125-162.
[10] Mohagheghi, P. and Dehlen, V. (2008) Where Is the Proof?—A Review of Experiences from Applying MDE in Indus-

try. Lecture Notes in Computer Science, 5095, 432-443.
[11] Hutchinson, J., Whittle, J., Rouncefield, M. and Kristofferson, S. (2011) Empirical Assessment of MDE in Industry.

Proceedings 33rd International Conference on Software Engineering (ICSE’11), Honolulu, 21-28 May 2011, 471-480.
[12] Kuhn, A., Thompson, A. and Murphy, G. (2012) An Exploratory Study of Forces and Frictions Affecting Large-Scale

Model-Driven Development. Lecture Notes in Computer Science, 7590, 352-367.
[13] Papotti, P.E., do Prado, A.F., Lopes de Souza, W., Cirilo, C.E. and Pires, L.F. (2013) A Quantitative Analysis of Mo-

del-Driven Code Generation through Software Experimentation. Lecture Notes in Computer Science, 7908, 321-337.
[14] Arisholm, E., Briand, L.C., Hove, S.E. and Labiche, Y. (2006) The Impact of UML Documentation on Software Main-

tenance: An Experimental Evaluation. IEEE Transactions on Software Engineering, 32, 365-381.
http://dx.doi.org/10.1109/TSE.2006.59

[15] Briand, L., Labiche, Y. and Madrazo-Rivera, R. (2011) An Experimental Evaluation of the Impact of System Sequence
Diagrams and System Operation Contracts on the Quality of the Domain Model. Proceedings International Symposium
on Empirical Software Engineering and Measurement (ESEM 2011), Banff, 22-23 September 2011, 157-166.
http://dx.doi.org/10.1109/ESEM.2011.24

[16] Fatolahi, A. (2012) An Abstract Meta-model for Model Driven Development of Web Applications Targeting Multiple
Platforms. Ph.D. Dissertation, University of Ottawa, Ottawa. www.ruor.uottawa.ca/en/handle/10393/23262

[17] Reenskaug, T. (1979) MODELS—VIEWS—CONTROLLERS. Technical Note, Xerox PARC.
http://heim.ifi.uio.no/~trygver/mvc/index.html

[18] Object Management Group (OMG) (2013) Unified Modeling Language (OMG UML).
http://www.omg.org/spec/UML/2.5/Beta2/PDF/

[19] Almeida, P.J., Dijkman, R., van Sinderen, M. and Pires, L.F. (2004) On the Notion of Abstract Platform in MDA De-
velopment. Proceedings of the 8th IEEE International Enterprise Distributed Object Computing Conference (EDOC
2004), Monterey, 20-24 September 2004, 253-263.

[20] AndroMDA. http://www.andromda.org
[21] WebRatio. http://www.webratio.com
[22] Google Web Toolkit, Google Code. http://code.google.com/webtoolkit/
[23] Microsoft. Net Framework. http://www.microsoft.com/net/
[24] Mellor, S.J., Scott, K., UHL, A. and Weise, D. (2004) MDA Distilled: Principles of Model-Driven Architecture. Addi-

son-Wesley, Boston.
[25] Object Management Group (OMG) (2008) MOF QVT Specification. http://www.omg.org/spec/QVT/1.0/PDF/
[26] Lethbridge, T.C. and Laganière R. (2001) Object-Oriented Software Engineering: Practical Software Development

Using UML and Java. McGraw-Hill.
[27] Larman, C. (2005) Applying UML and Patterns: An Introduction to Object-Oriented Analysis and Design and Iterative

Development, Prentice Hall PTR.
[28] Dilmaj. http://sokhangozaar.appspot.com/?locale=en_US#
[29] AMS_APSM. http://www.site.uottawa.ca/~afato092/AMS_APSM_Ali_Fatolahi.zip

http://dx.doi.org/10.1109/ISORC.2006.54
http://www.omg.org/mda/specs.htm
http://dx.doi.org/10.1109/TSE.2006.59
http://dx.doi.org/10.1109/ESEM.2011.24
http://www.ruor.uottawa.ca/en/handle/10393/23262
http://heim.ifi.uio.no/%7Etrygver/mvc/index.html
http://www.omg.org/spec/UML/2.5/Beta2/PDF/
http://www.andromda.org/
http://www.webratio.com/
http://code.google.com/webtoolkit/
http://www.microsoft.com/net/
http://www.omg.org/spec/QVT/1.0/PDF/
http://sokhangozaar.appspot.com/?locale=en_US
http://www.site.uottawa.ca/%7Eafato092/AMS_APSM_Ali_Fatolahi.zip

	Assessing a Model-Driven Web-Application Engineering Approach
	Abstract
	Keywords
	1. Introduction
	2. Related Work
	3. A Model-Driven Web-Engineering Approach (MODEWIS)
	4. Assessment against Conventional Software Engineering
	5. Assessment of Design Inference
	6. Productivity Assessment
	7. Conclusion
	References

