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Abstract 
The automorphism group of a flag-transitive 6–(v, k, 2) design is a 3-homogeneous permutation 
group. Therefore, using the classification theorem of 3–homogeneous permutation groups, the 
classification of flag-transitive 6-(v, k,2) designs can be discussed. In this paper, by analyzing the 
combination quantity relation of 6–(v, k, 2) design and the characteristics of 3-homogeneous 
permutation groups, it is proved that: there are no 6–(v, k, 2) designs D admitting a flag transitive 
group G ≤ Aut (D) of automorphisms. 
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1. Introduction 
For positive integers t k v≤ ≤  and λ , we define a ( ), ,t v k λ−  design to be a finite incidence structure 

( ), ,D X I= Β , where X  denotes a set of points, X v=  and Β  a set of blocks, bΒ = , with the properties 
that each block B∈Β  is incident with k points, and each t-subset of X  is incident with λ  blocks. A flag of 
D  is an incident point-block pair, that is x X∈  and B∈Β  such that ( ),x B I∈ . We consider automor-
phisms of D  as pairs of permutations on X and B which preserve incidence, and call a group ( )AutG D≤  of 
automorphisms of D  flag-transitive (respectively block-transitive, point t-transitive, point t-homogeneous), if 
G acts transitively on the flags (respectively transitively on the blocks, t-transitively on the points, t-homoge- 
neous on the points) of D . It is a different problem in Combinatorial Maths how to construct a design with 
given parameters. In this paper, we shall take use of the automorphism groups of designs to find some new de-
signs. 

In recent years, the classification of flag-transitive Steiner 2-designs has been completed by W. M. Kantor 
(See [1]), F. Buekenhout, A. De-landtsheer, J. Doyen, P. B. Kleidman, M. W. Liebeck, J. Sax (See [2]); for flag- 
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transitive Steiner t-designs ( )2 6t< ≤ , Michael Huber has done the classification (See [3]-[7]). But only a few 
people have discussed the case of flag-transitive t-designs where 3t >  and 1λ > .  

In this paper, we may study a kind of flag-transitive designs with 2λ = . We may consider this problem by 
making use of the classification of the finite 3-homogeneous permutation groups to study flag-transitive ( )6 , , 2v k−  
designs. Our main result is:  

Theorem: There are no non-trivial ( )6 , , 2v k−  designs D  admitting a flag transitive group ( )AutG D≤  
of automorphisms.  

2. Preliminary Results 
Lemma 2.1. (Huber M [4]) Let ( ), ,D X B I=  be a t − design with 3t ≥  .If ( )AutG D≤  acts flag-tran- 

sitively on D , then G also acts point 2-transitively on D . 
Lemma 2.2. (Cameron and Praeger [8]). Let ( ), ,D X B I=  be a ( ), ,t v k λ−  design with 2λ ≥ . Then the 

following holds: 
(1) If ( )AutG D≤  acts block-transitively on D , then G  also acts point 2t   -homogeneously on D ; 
(2) If ( )AutG D≤  acts flag-transitively on D , then G  also acts point ( )1 2t +   -homogeneously on 

D . 
Lemma 2.3. (Huber M [9]) Let ( ), ,D X B I=  be a ( ), ,t v k λ−  design. If ( )AutG D≤  acts flag-transi- 

tively on D , then , for any x X∈  , the division property xr G  holds. 
Lemma 2.4. Let ( ), ,D X B I=  be a ( ), ,t v k λ−  design. Then the following holds: 
(1) bk vr= ; 

(2) 
v k

b
t t
λ

   
=   

   
; 

(3) For 1 ,s t≤ <  a ( ), ,t v k λ−  design is also an ( ) , , ss v k λ−  design, where s

v s
t s
k s
t s

λ λ

− 
 − =

− 
 − 

. 
(4) In particular, if t = 6, then  

( )( )( )( )( ) ( )( )( )( )( )1 2 3 4 5 1 2 3 4 5 .r k k k k k v v v v vλ− − − − − = − − − − −  

Lemma 2.5. (Beth T [10]) If ( ), ,D X B I=  is a non-trivial ( ), ,t v k λ−  design, then v k t> +  
Lemma 2.6. (Wei J L [11]) If ( ), ,D X B I=  is a ( ), ,t v k λ−  design, then 

( ) ( )( )1 1 2 , 2.v t k t k t tλ − + ≥ − + − + >  

In this case, when 6t = , we deduce from Lemma 2.6 the following upper bound for the positive integer k . 
Corollary 2.7. Let ( ), ,D X B I=  be a non-trivial ( )6 , , 2v k−  design, then  

39 92
4 2

k v
 

≤ − + 
 

. 

Proof: By Lemma 2.6, when 6, 2t λ= = , we have ( ) ( )( )2 5 5 4v k k− ≥ − − , then 

39 92
4 2

k v
 

≤ − + 
 

. 

Remark 2.8. Let ( ), ,D X B I=  be a non-trivial ( ), ,t v k λ−  design with 6t ≥ . If ( )AutG D≤  acts flag- 
transitively on D , then by Lemma 2.2 (1), G  acts point 3-homogeneously and in particular point 2-transi- 
tively on D . Applying Lemma 2.4 (2) yields the equation 

( )
1

1 xy

B

v
v v Gt

b
k G
t

λ
 
  − = =
 
 
 

 

where x  and y  are two distinct points in X  and 1B  is a block in Β . If 1,x B∈  then  
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( )
1

2 2
2 1

4 4
xy

xB

Gv k
k

G
− −   

= −   
   

. 

Corollary 2.9 Let ( ), ,D X B I=  be a ( ), ,t v k λ−  design, then 

0 mod .
v s k s
t s t s

λ
−  −    

≡     − −    
 

For each positive integers, s t≤ . 
Let G be a finite 3-homogeneous permutation group on a set X with 4X ≥ . Then G  is either of  
(A) Affine Type: 
G  contains a regular normal subgroup T  which is elementary Abelian of order 2dv = .If we identify G  

with a group of affine transformations 

x xε µ+  

Of ( ), 2V V d= , where 0Gε ∈  and Vµ ∈ , then particularly one of the following occurs: 
(1) ( ) ( ) ( )1,8 ,  1,8  or 1,32 ;G AGL A L A L≅ Γ Γ  
(2) ( ), 2 , 2G SL d d≅ ≥ ; 
(3) 4

7 , 2G A v≅ = ; 
or 
(B) Almost Simple Type: G  contains a simple normal subgroup N , and ( )AutN G D≤ ≤ . In particular, 

one of the following holds, where N  and v X=  are given as follows: 
(1) , 5 ;vA v ≥  
(2) ( )2, , 1, 3;PLS q v q q= + >  
(3)  , 11,12,22,23,24;vM v =  
(4) 11, 12M v = . 

3. Proof of the Main Theorem 
Let ( ), ,D X B I=  be a non-trivial ( )6 , , 2v k−  design, ( )AutG D≤  acts flag-transitively on D , by lemma 
2.2, G  is a finite 3-homogeneous permutation group. For D  is a non-trivial ( )6 , , 2v k−  design, then 

6.k >  We will prove by contradiction that ( )AutG D≤  cannot act flag-transitively on any non-trivial 
( )6 , , 2v k−  design. 

3.1. Groups of Automorphisms of Affine Type 
Case (1): ( ) ( ) ( )1,8 ,  1,8  or 1,32 ;G AGL A L A L≅ Γ Γ  
If 8v = , then Lemma 2.5 yields 2k v t< − = , a contradiction to 6k > . For 32v = , Corollary 2.7 implies 

12k ≤ . Thus 7,8,9,10,11,12.k =  By Lemma 2.4 we have  

( )( )( )( )( )1 2 3 4 5 2 31 30 29 28 27r k k k k k− − − − − = × × × × ×  

for each values of k , we have  

31 29 27 31 29 3 31 29 9,31 29 7 9,31 29 18, ,31 29 3, ,
4 2 11

r × × × × × ×
= × × × × × × ×  

but r  is a positive integer, thus 31 29 7 9,31 29 18,31 29 3.r = × × × × × × ×  On the other hand, we have  
( )5 1 5 31xG v= − = × , those are contradicting to Lemma 2.3. 

Case (2): ( ), 2 ,  2G SL d d≅ ≥ . 
Here 2 6.dv k= > >  For 3d = , we have 8v = , already ruled out in Case (1). So we may assume that 

3d > . Any six distinct points being non-coplanar in ( ), 2AG d , they generate an affine subspace of dimension 
at least 3. Let ε  be the 3-dimensional vector subspace spanned by the first three basis vectors 1 2 3, ,e e e  of the 
vector space ( ), 2V V d= . Then the point-wise stabilizer of ε  in ( ), 2SL d  (and therefore also in G ) acts 
point-transitively on \V ε . Let 1B  and B′  be the two blocks which are incident with the 6-subset  
{ }1 2 3 1 2 2 30, , , , ,e e e e e e e+ + , If the block 1B B′  contains some point α  of \V ε , then 1B B′  contains all 
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points of \V ε , and so 2 12 8 2 8dk v− ≥ − = − , this yields 1 12 2 2 1d dk − −> + > + , a contradiction to Lemma 
2.6. Hence 1B ε⊆  and 8k ≤ . On the other hand, for D  is a flag-transitive 6-design admitting ( )AutG D≤ ,  

we deduce from [[12], prop.3.6 (b)] the necessary condition that 2 3d −  must divide 
4
k 
 
 

, and hence it follows  

for each respective value of k  that 3d = , contradicting our assumption. 
Case (3): 4

7 , 2G A v≅ =  
For 42v = , we have 9k ≤ , by Corollary 2.7. By Lemma 2.4 and Lemma 2.3, we have 7,8,9k ≠ . 

3.2. Groups of Automorphisms of Almost Simple Type 
Case (1): , 5vA v ≥  
Since D  is non-trivial with 6 k > , we may assume that 8v ≥ . Then vA  is 6-transitive on X , and hence 

G  is k -transitive, this yields D  containing all of the k -subset of X . So D  is a trivial design, a contra-
diction. 

Case (2): ( )2, ,  1, 3;ePLS q v q q p= + = >  
Here ( )2, , 1, 3eN PLS q v q q p= = + = ≥ and 3p > , so ( ) ( )Aut 2, ,N P L q= Γ ( ) 11 qG q q a

d
−

= +  with 
( )2, 1d q= −  and a de . We may again assume that 1 8v q= + ≥ . 

We will first assume that N G= . Then, by Remark 2.8, we obtain  

( )( )( ) ( ) ( )( )( )( )( )4 2 3 4 2, 1 2 3 4 5 .xBq q q PSL q k k k k k− − − = − − − − −                 (1) 

In view of Lemma 2.6, we have  

( ) ( )( )2 4 4 5q k k− ≥ − −                                     (2) 

It follows from Equation (1) that  

( )( ) ( ) ( )( )( )2 2 3 2, 1 2 3xBq q PSL q k k k− − ≤ − − −                         (3) 

If we assume that 21k ≥ , then obviously 

( )( )( ) ( )( ) 2
2 1 2 3 4 5k k k k k− − − < − −    

and hence 

( )( ) ( ) ( )22 3 2, 2 4xBq q PSL q q− − < −  

In view of inequality (2), clearly, this is only possible when ( )2, 1 xBPSL q = . In particular, q  has not to be 
even. But then the right-hand side of Equation (1) is always divisible by 16 but never the left-hand side, a con-
tradiction. If 21k < , then the few remaining possibilities for  k  can easily be ruled out by hand using Equa-
tion (1), Inequality (2), and Corollary 2.9. 

Now, let us assume that ( )AutN G N< ≤ . We recall that 7eq p= ≥ , and will distinguish in the following 
the case 3, 2,  and 3.p p p> = =  

First, let 3p > . We define ( )( )* 2, :G G PSL q ατ=   with ( )( ) { }e
vSym GF p Sατ ∈ ∞ ≅  of order e   

induced by the Frobenius automorphism ( ) ( ): ,e e pGF p GF p x xα →  . Then, by Dedekind’s law, we can 
write  

( ) ( )* *2, :G PSL q G ατ=   

Defining ( ) ( )2, 2, :P L q PSL q ατΣ = , it can easily be calculated that ( )0,1,2,P L q ατ∞
Σ = , and ατ  has 

precisely 1p +  distinct fixed points (cf. e.g., [[13] Ch. 6.4, Lemma 2]). As 3p > , we have therefore that 
*

1

* *
0B FG G Gα ατ τ≤ ≤   for a flag ( ) ( ){ }10, , 0,F B B′=  fixed with ατ  by the definition of ( )6 , , 2v k−  

designs. On the other hand, every element of *G ατ  either fixes block 1B , or commute block 1B  with  
block B′ , thus the index 

*

1

*
0 : 2BG Gα ατ τ  ≤   . Clearly ( ) ( )*2, 1.PSL q G ατ =   

Hence, we have 
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( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

* *

1 11

1

* * *
1 0 00

2,
10

0, : 2, : 2,

2, : 2, 0, . 

G
B BB

PSL q
B

B G G PSL q G PSL q G

c PSL q PSL q c B

α ατ τ  = ≤    

 = = 

   

 

where 1 or 2c = . Thus, if we assume that ( )* AutG D≤  acts already flag-transitively on D , then we obtain  

( ) ( ) ( )* 2,
1 10, 0, .G PSL qbk B c B= ≤  Then either ( ) ( )2,

10, ,PSL qbk B=  and ( )2,PSL q  acts on D  flag-transi- 

tively, that is the case when N G= ; or ( ) ( )2,
12 0, ,PSL qbk B=  and ( )2,PSL q  has exactly two orbits of equal  

length on the sets of flags. Then, proceeding similarly to the case N G=  for each orbit on the set of the flags, 
we have that  

( )( )( ) ( ) ( )( )( )( )( )
102 2 3 4 2, 1 2 3 4 5Bq q q PSL q k k k k k− − − = − − − − −                  (4) 

Using again 

( ) ( )( )2 4 4 5q k k− ≥ − −                                     (5) 

We obtain 

( )( ) ( ) ( )( )( )
102 2 3 2, 1 2 3Bq q PSL q k k k− − ≤ − − −                          (6) 

If we assume that 21k ≥ , then again  

( )( )( ) ( )( ) 2
1 2 3 2 4 5k k k k k− − − ≤ − −                                (7) 

and thus  

( )( ) ( ) ( )
1

2
04 2 3 2, 4Bq q PSL q q− − ≤ −  

but this is impossible. The few remaining possibilities for 21k <  can again easily be ruled out by hand. 
Now, let 2,p =  then, clearly ( ) ( )2, 2,N PSL q PGL q= = , and we have ( ) ( )Aut 2,N P L q= Σ . If we as-

sume that ατ  is the subgroup of ( )
102, BP L qΣ  for a flag ( )10, B ∈Β , then we have ( )* 2,G G P L q= = Σ  

and as clearly ( )2, 1PSL q ατ = , we can apply Equation ( )* . Thus, ( )2,PSL q  must also be flagtransitive, 
which has already been considered. Therefore, we assume that ατ  is not the subgroup of ( )

102, BP L qΣ . Let  

2s >  be a prime divisor of e ατ= . As the normal subgroup ( )( )0,1,: 2,
s

H P L q ατ∞
= Σ ≤  of index s   

has precisely 1sp +  distinct fix points, we have 
10BG H G≤  for a flag ( ) ( ){ }10, , 0,F B B′=  fixed with 

ατ  by the definition of ( )6 , , 2v k−  designs. It can then be deduced that ue s=  for some .u N∈  Since if 
we assume for ( )2,G P L q= Σ  that there exists a further prime divisor 2s >  of e  with s s≠ , then  

( )( )0,1,: 2, sH P L q ατ∞
= Σ ≤  and H  are both subgroups of ( )

102, BP L qΣ  by the flag-transitivity of 

( )2,P L qΣ , and hence ( )
102, BP L qατ ≤ Σ , a contradiction. Furthermore, as ατ  is not the subgroup of  

( )
102, BP L qΣ . We may, by applying Dedekind’s law, assume that  

( ) ( )
1 0 1

0 2, :
BBG PSL q G H=   

Thus, by Remark 2.8, we obtain  

( )( )( ) ( ) ( )( )( )( )( )
102 3 4 2, 1 2 3 4 5Bq q q PSL q G H k k k k k k G ατ− − − = − − − − −   

More precisely: 
(A) if ( ) ( )2, :G PSL q G H=  , 

( )( )( ) ( ) ( )( )( )( )( )
102 3 4 2, 1 2 3 4 5Bq q q PSL q k k k k k k− − − = − − − − −  

(B) if ( )2,G P L q= Σ , 
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( )( )( ) ( ) ( )( )( )( )( )
102 3 4 2, 1 2 3 4 5Bq q q PSL q k k k k k k s− − − = − − − − −  

As far as condition (A) is concerned, we may argue exactly as in the earlier case N G= . Thus, only condi-
tion (B) remains. If e  is a power of 2, then Remark 2.8 gives  

( )( )( ) ( )( )( )( )( )
102 3 4 1 2 3 4 5  Bq q q G k k k k k k a− − − = − − − − −  

with a e . In particular, a  must divide 
10BG , and we may proceed similarly as in the case N G= , yielding 

a contradiction.  
The case 3p =  may be treated as the case 2p = . 
Case (3): , 11,12,22,23,24 vM v =  
By Corollary 2.7, we get 7k =  for 11v =  or 12, and 7k =  or 8 for 22,23v =  or 24, and the very small 

number of cases for k  can easily be eliminated by hand using Corollary 2.9 and Remark 2.8. 
Case (4): 11, 12M v =  
As in case (3), for 12v = , we have 7k =  in view of Corollary 2.7, a contradiction since no 6-(12, 7, 2) de-

sign can exist by Corollary 2.9. This completes the proof of the Main Theorem. 
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