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Abstract 
The replacement problem can be modeled as a finite, irreducible, homogeneous Markov Chain. In 
our proposal, we modeled the problem using a Markov decision process and then, the instance is 
optimized using linear programming. Our goal is to analyze the sensitivity and robustness of the 
optimal solution across the perturbation of the optimal basis ( )∗B  obtained from the simplex 

algorithm. The perturbation ( )B  can be approximated by a given matrix H  such that 


∗= +B kB H . Some algebraic relations between the optimal solution and the perturbed instance 
are obtained and discussed. 
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1. Introduction 
Machine replacement problem has been studied by a lot of researchers and is also an important topic in opera-
tions research, industrial engineering and management sciences. Items which are under constant usage, need re-
placement at an appropriate time as the efficiency of the operating system using such items suffer a lot.  

In the real-world, the equipment replacement problem involves the selection of two or more machines of one 
or more types from a set of several possible alternative machines with different capacities and cost of purchase 
and operation. When the problem involves a single machine, it is common to find two well-defined forms to do 
so: the quantity-based replacement, and the time-based replacement. In the quantity-based replacement model, a 
machine is replaced when an accumulated product of size q is produced. In this model, one has to determine the 
optimal production size q. While in a time-based replacement model, a machine is replaced in every period of 
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T  with a profit maximizing. When the problem involves two or more machines it is named the parallel ma-
chine replacement problem [1], and the time-based replacement model consists of finding a minimum cost re-
placement policy for a finite population of economically interdependent machines.  

A replacement policy is a specification of “keep” or “replace” actions, one for each period. Two simple ex-
amples are the policy of replacing the equipment every time period and the policy of keeping the first machine 
until the end of a period N. An optimal policy is a policy that achieves the smallest total net cost of ownership 
over the entire planning horizon and it has the property that whatever the initial state and initial decision are, the 
remaining decisions must constitute an optimal policy with regard to the state resulting from the first decision. 
In practice, the replacement problem can be easily addressed using dynamic programming and Markov decision 
processes.  

The dynamic programming uses the following idea: The system is observed over a finite or infinite horizon 
split up into periods or stages. At each stage the system is observed and a decision or action concerning the sys-
tem has to be made. The decision influences (deterministically or stochastically) the state to be observed at the 
next stage, and depending on the state and the decision made, an immediate reward is gained. The expected total  
reward ( )1j jU t +  from the present stage and the one of the following states is expressed by the functional equa-
tion. Optimal decisions depending on stage and state are determined backwards step by step as those maximiz-
ing the right hand side of the functional equation ( ) { } ( ) ( )1 1 1,max , 2,3, ,j j j j j jd K Ru t U t u t j T+ + −=

 = + =    [2], 

where ( )1j ju t +  is the expected total reward in stage 1t + , this reward depends on the action (keep or replace) 

in the last stage of operation, 1jt + , ( )1j jU t +  is the functional in stage 1jt + , T  is the total number of stages, 

K  and R  are the actions associated with the equipment Keep and Replace, d  is the set of actions ,K R .  
The Markov Decision process concept has been stated by Howard [3] combining the dynamic programming 

technique with the mathematical notion of a Markov Chain. The concept has been used to develop the solution 
of infinite stage problems such as in Sernik and Marcus [4], Kristensen [5], Sethi et al. [6], and Childress and 
Durango-Cohen [1]. The policy iteration method was created as an alternative to the stepwise backward contrac-
tion methods. The policy iteration was a result of the application of the Markov chain environment and it was an 
important contribution to the development of optimization techniques [5].  

In the other hand, a Markov decision process is a discrete time stochastic control process. At each time step, 
the process is in state s  and the decision maker may choose any action a that is available in state s. The pro- 
cess responds at the next time step moving into a new state s′ , and giving the decision maker a corresponding 
reward ( ),aR s s′ . The probability that the process chooses s′  as its new state is influenced by the chosen ac-
tion. Specifically, it is given by the state transition function ( ),aP s s′ . Thus, the next state s′  depends on the 
current state s  and the decision maker’s action a . But given s  and a , it is conditionally independent of all 
previous states and actions; in other words, the state transitions of an MDP possess the Markov property. 

Finally, it is important to note that linear programming was early identified as an optimization technique to be 
applied to Markov decision process as described by, for instance [5] and [7]. In this document, we consider a 
stochastic machine replacement model. The system consists of a single machine; it is assumed that this machine 
operates continuously and efficiently over N periods. In each period, the quality of the machine deteriorates due 
to its use, and therefore, it can be in any of the N stages, denoted 1,2, , N . We modeled the replacement problem 
using a Markov decision process and then, the instance is optimized using linear programming. Our goal is to 
analyze the sensitivity and robustness of the optimal solution across the perturbation of the optimal basis. Spe-
cifically, the methodology used is to model the replacement problem through a Markov decision process, op-
timize the instance obtained using linear programming, analyzing the sensitivity and robustness of the solution 
obtained by the perturbation of the optimal basis from the simplex algorithm, and finally, obtain algebraic rela-
tions between the initial optimal solution and the perturbed solution.  

In this work, we assume that for each new machine it state can become worse or may stay unchanged, and 
that the transition probabilities ijp  are known, where ijp  are defined as 

{ }next state will be current state is 0, ifP j i j i= <
 

also be assumed that the state of the machine is known at the start of each period, and we must choose one of the 
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following two options: 1) Let the machine operate one more period in the state it currently is, 2) Replace the 
machine by a new one, where every new machine for replacement is assumed to be identical.  

The importance of this study is that the result of the objective function of the replacement problem depends 
on the probabilities of the transition matrices, which is why by perturbing these matrices, it is unknown if the 
solution and the decisions associated with the replacement problem will change. Few authors in the literature 
have studied the sensitivity of the replacement problem by perturbing the transition matrices (see for example [8] 
and [9]). Studying such problems is important not only to solve this particular model, but to assess if the objec-
tive function to solve is still convex. 

The original contributions of this work are the perturbation of the optimal basis obtained with the simplex al-
gorithm. It was concluded that by perturbing this optimal basis directly affects the transition matrices associated 
with the replacement problem, and it found a region of feasibility for perturbation, in which, the objective func-
tion and the decisions will not change. 

The rest of the paper is organized as follows. The next section presents the literature review for determining 
the optimal replacement policy. Also we present the problem formulation to the replacement problem with dis-
crete-time Markov decision process and using the equivalent linear programming. Section Properties of the per- 
turbed optimal basis associated with the replacement problem shows some algebraic relations between the op-
timal basis and the perturbed instance. The following section presents numerical results for a specific example. 
Finally our conclusions and future research directions are given. 

2. Literature Review 
There are several theoretical models for determining the optimal replacement policy. The basic model considers 
maintenance cost and resale value, which have their standard behavior as per the same cost during earlier period 
and also partly having an exponential grown pattern as per passage of time. Similarly the scrap value for the 
item under usage can be considered to have a similar type of recurrent behavior.  

In relation to stochastic models the available literature on discrete time maintenance models predominantly 
treats an equipment deterioration process as a Markov chain. Sernik and Marcus [4] obtained the optimal policy 
and its associated cost for the two-dimensional Markov replacement problem with partial observations. They 
demonstrated that in the infinite horizon, the optimal discounted cost function is piecewise linear, and also pro-
vide formulas for computing the cost and the policy. In [6], the authors assume that the deterioration of the ma-
chine is not a discrete process but it can be modeled as a continuous time Markov process, therefore, the only 
way to improve the quality is by replacing the machine by one new. They derive some stability conditions of the 
system under a simple class of real-time scheduling/replacement policy.  

Some models are approached to evaluate the inspection intervals for a phased deterioration monitored com-
plex components in a system with severe down time costs using a Markov model, see for example [10].  

In [11] the problem is approached from the perspective of the reliability engineering developing replacement 
strategies based on predictive maintenance. Moreover, in [1] the authors formulated a stochastic version of the 
parallel machine replacement problem. They analyzed the structure of optimal policies under general classes of 
replacement cost functions. 

Another important approach that has received the problem is the geometric programming [12]. In its proposal, 
the author discusses the application of this technique to solving replacement problem with an infinite horizon 
and under certain circumstances he obtains a closed-form solution to the optimization problem.  

A treatment to the problem when there are budget constraints can be found in [13]. In their work, the authors 
propose a dual heuristic for dealing with large, realistically sized problems through the initial relaxation of 
budget constraints. 

Compared with simulation techniques, some authors [14] proposed a technique based on obtaining the first 
two moments of the discounted cost distribution, and then, they approximate the underlying distribution function 
by three theoretical distributions using Monte Carlo simulation.  

The most important pioneers in applying dynamic programming models replacement problems are: Bellman 
[15], White [16], Davidson [17], Walker [18] and Bertsekas [19] Recently the Markov decision process has been 
applied successfully to the animal replacement problem as a productive unit, see for example [20]-[22]. 

Although the modeling and optimization of the replacement problem using Markov decision processes is a 
topic widely known [23]. However, there is a significant amount about the theory of stochastic perturbation ma-
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trices [24]-[27]. In literature there are hardly results concerning the perturbation and robustness of the optimal 
solution of a replacement problem modeled via a Markov decision process and optimized using linear program-
ming. In this paper we are interested in addressing this issue with a stochastic perspective. 

3. Problem Formulation 
We start by defining a discrete-time Markov decision process with a finite state space Z  with states 

1 2, , , Zz z z  where, in each stage 1,2, ,s =   the analyst should made a decision d  between ξ  possible. 
Denote by ( )z n z=  and ( ) id n d=  the state and the decision made in stage n  respectively, then, the system 
moves at the next stage 1n +  in to the next state j  with a known probability given by  

( ) ( )1 ,k
zj n kp P z n j z n z d d = + = = =  . When the transition occurs, it is followed by the reward k

zjr  and the 

payoff is given by 1
Zk k k

z zj zjj p rψ
=

= ∑  at the state z  after the decision kd  is made.  

For every policy ( )1 2, , , Zk k kϑ  , the corresponding Markov chain is ergodic, then the steady state probabil-

ities of this chain are given by ( )lim , 1,2, ,z np P Z n z i Zϑ
→∞= = =   

 and the problem is to find a policy ϑ  

for which the expected payoff 
1

Z k
z zz pϑ ϑψ

=
Ω = ∑  is maximum. In this system, the time interval between two  

transitions is called a stage. An optimal policy is defined as a policy that maximizes (or minimizes) some prede-
fined objective function. The optimization technique (i.e. the method to obtain an optimal policy) depends on the 
form of the objective function and it can result in different alternative objective function. The choice of criterion 
depends on whether the planning horizon is finite or infinite (Kristensen, 1996).  

In our proposal we consider a single machine and regular times intervals whether it should be kept for an ad-
ditional period or it should be replaced by a new. By the above, the state space is defined by  

( ) ( ){ }1 2Keep , ReplaceZ z z= , and having observed the state, action should be taken concerning the machine  

about to keep it for at least an additional stage or to replace it at the end of the stage. The economic returns from 
the system will depend on its evolution and whether the machine is kept or replaced, in this proposal this is 
represented by a reward depending on state and action specified in advance. If the action replace is taken, we 
assume that the replacement takes place at the end of the stage at a known cost, the planning horizon is unknown 
and it is regarded infinite, also, all the stages are of equal length . 

The optimal criterion used in this document is the maximization of the expected average reward per unit of  
time given by ( ) 1

Z
i izh rϑ ϑϑ π

=
= ∑ , where i

ϑπ  is the limiting state probability under the policy ϑ , and the op- 
timization technique used is the linear programming. Thus, we may maximize the problem (1) using the equiva-
lent linear programming given by [28]. 

( )

1 1

1 1

1 1 1

Maximize    

Subject to   1

0 0

       for  , 1, 2, ,   and  1, 2, , .

Z
zk zkz k

Z
zkz k

Z
jk zk zj zkk z k

R r x

x

x x p k x

z j Z k

ξ

ξ

ξ ξ

ξ

= =

= =

= = =

=

= 

− = ≥


= = 

∑ ∑
∑ ∑

∑ ∑ ∑
 

                      (1) 

where zkx  is the steady-state unconditional probability that the system is in state z , and the decision k  is 
made; similarly zkr  is the reward obtained when the system is in state z , and the decision k  is made. In this 
sense, k  is optimal in state z  if and only if, the optimal solution of (1) satisfy the unconditional probabilities 

zkx  that the system visit the state z , when making the decision k  are strictly positive. Note that, the optimal 
value of the objective function is equal to the average rewards per stage under an optimal policy. The optimal  
value of 

1 zkk xξ
=∑  is equal to the limiting state probability iπ  under an optimal policy.  

Model (1) contains ( )2ξ +  functional constrains and ( )1k ξ +  decision variables. In [9] is showed that the 
problem (1) has a degenerate basic feasible solution. In the remainder of this document, we are interested in the 
optimal basis associated with the solution of the problem (1) when it is solved via the Simplex Method.  
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4. Properties of the Perturbed Optimal Basis Associated with the Replacement  
Problem 

In the LP model (1), the number of basic solutions ρ  is less than or equal to the number of combinations 
( ),C n m  and m nB ×  (submatrix of A ) is a feasible basis of the LP model B S∈  that satisfies  
{ }1: 0i iS B A B b−= ∈ ≥ . 

Let B S∗ ∈  the optimal basis associated to problem (2), and B  the perturbed matrix of B∗  defined by 
B kB H∗= +  where 1k =  and H  is a matrix with the same order than B∗ . The optimal solution is  

( ) 1
x B b

−∗ ∗=  and any perturbed solution is ( ) 1
x B b

−
= 

 . From these assumptions we state and prove the next 
propositions and theorems. 

Proposition 4.1: Let ( )*dx x x− = −  , 

( ) 1* 1dx B B b
− − − = −  

  

( ) 1* * 1tf f c B B b
− − = − −  


  

where ( )* * Minf f x= ← . 
Proof 4.1: By the definition of *B kB H= + , 

1 * 1[ ] .x B b kB H b− −= = +

                                  (3) 

So,  

( ) ( ) 1 1* * * * 1 1( ) ( ) .dx x x B b kB H b B B b
− − − −   − = − = − + = −   



                    (4) 

Similarly, 

( ) ( ) ( ) ( ) ( )1 1* * * * * .t t tf x f x dx c x dx f c dx f c B B b
− − = + = + = + = − −  



                (5) 

Proposition 4.2: The matrix H  is defined by:  

[ ]
11 12 1

21 22 2
1 2 3

1 2

n

n
n

m m mn

h h h
h h h

h H H H H

h h h

 
 
 = =
 
 
 





   



                       (6) 

where ijh  are the entries of H  that could be perturbed.  
The columns of the optimal basis *B  and the perturbed basis B  must sum 1. 

*1 1

1 1
j

j

B

B

× =

× =

                                        (7) 

Proof: The proof is trivial. The optimal basis B∗  is composed by the transition probability matrix P , con-
sidering the properties of the Markov chain we have  

0
, 0,1, ,

Z

j z zj
z

p j Zπ π
=

= ∀ =∑                                 (8) 

where lim n
j n zjpπ →∞= , the Equation (8) is defined by tPπ π= , then, for zjP p=  is fullfilled that 

1zjz S p
∈

=∑ . This property is valid also for B  . 
Theorem 4.3: The euclidean norm is used to establish perturbation bounds between the optimal basis B∗  and 

the perturbed basis B , such that 

( ) 1* * 1

2 2
x x B B

− −− ≤ −                                   (9) 

Proof: 
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( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )1 1 1 11 1 1 1* * * * *
22 2 2 22

x x B b B b b B B b B B B B
− − − −− − − − − = − = − ≤ ⋅ − = −  

   

    (10) 

because 2 1b =  . 
Proposition 4.4:  

( ) 1 * *x B B x−=                                        (11) 

Proof: From the LP model (2), 

( ) 1* *x B b
−

= ,                                       (12) 

( ) 1
x B b

−
= 

 ,                                        (13) 

premultiplying the Equation (12) times *B ,  

( ) 1* * * * * *, soB x B B b B x b
−

= =                                (14) 

similarly, premultiplying the Equation (13) B , 

( ) 1
,Bx B B b so Bx b

−
= =   

                                    (15) 

equalizing (14) and (15)  
* *Bx B x=

                                         (16) 
isolating x  results the Equation (11) . 

Theorem 4.5: A feasible solution satisfies that 1 0, 1, 2, ,iD i n≥ =   where ( ) 1*D B H
−

= + . 

Proof: Let *B kB H= +  and 0x B b= ⋅ ≥

 , then, for 1k = . 

( )

11 12 1 11

1 21 22 2 21

1 2 3 1

01
00

00

m

m

m m m mn m

D D D D
D D D D

x B H b D b

D D D D D

−

≥    
     ≥    = + ⋅ = ⋅ = ⋅ =
    
     ≥    







    

                  (17) 

5. Numerical Example 
Consider the following transition probabilities matrices d

zjp  in [5], which represented a Markovian decision 
process with { },d K R= , KeepK =  and ReplaceR = : 

0.6 0.3 0.1 1 3 1 3 1 3
0.2 0.6 0.2 , 1 3 1 3 1 3
0.1 0.3 0.6 1 3 1 3 1 3

K R
   
   = =   
      

                          (18) 

In order to maximize the objective function the cost coefficients are shown in Table 1. 
The corresponding LP problem is: 

( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )
( ) ( )

11 12 21 22 31 32

11 12 21 22 31 32

11 12 21 22 31 32

11 12 21 22 31 32

11

Maximize  10,000 9,000 12,000 11,0000 14,000 13,0000
Subject to    1

2 3 2 3 1 5 1 3 1 10 1 3 0

3 10 1 3 2 5 2 3 3 10 1 3 0

1 10 1 3

R x x x x x x
x x x x x x

x x x x x x

x x x x x x

x x

= + + + + +

+ + + + + =

+ − − − − =

− − + + − − =

− − ( ) ( ) ( ) ( )12 21 22 31 321 5 1 3 2 5 2 3 0
0, , .ij

x x x x
x i j







− − + − =

≥ ∀ 

        (19) 

 
The optimal inverse basis ( ) 1*B

−
 of the LP problem associated to this solution is: 
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Table 1. Cost coefficients.                                                                                 

d
zjr ∗  D = 1 (Keep) D = 1 (Replace) 

1z =  10,000 9,000 

2z =  12,000 11,000 

3z =  14,000 13,000 

 

( ) 1*

3 16 0 9 8 21 16
0 1 1 1

7 16 0 11 8 1 16
3 8 0 1 4 11 8

B
−

− − 
 
 =
 −
 

− 

                            (20) 

The optimal solution and the basic variables of the inverse basis are (presented in order): 
( ) ( )12 2 21 31, , , 0.1875,0,0.4375,0.375BX x a x x= = . The optimal objective function is 12,187.50. The basis *B  

that will be perturbed is formed by the columns ( )12 2 21 31, , ,x a x x  

*

1 0 1 1
2 3 1 1 5 1 10
1 3 0 2 5 3 10
1 3 0 1 5 2 5

B

 
 − − =
 − −
 
− − 

                             (21) 

Note that *B  satisfies the Proposition 4.2 that corresponds with the Equation (7), this property must be 
conserved for B . 

Suppose that we are interested to perturb 12x  This decision variable has associated the transition probability 
( )11 2 1 3p = . Simplifying the restriction of the state 1 in the LP model (19), the value for this variable is 
( ) ( )12 12 121 3 2 3x x x− = . Continuing with the process, the restrictions of the states 2 and 3 are respectively: 

( ) ( )12 12 12 12 13 12
1 12 , 2
3 3

x p x x p x− = − = −                         (22) 

Because the restrictions of the LP model (1) the probability is affected by a minus sign. In *B , the variable 
12x  is associated with the vector ( )1,2 3, 1 3, 1 3 t− − , and the positions that could be perturbed are 
( )2 3, 1 3, 1 3− − , considering the Equation (7). Note that the first element of the vector does not have any per-
turbation, because it corresponds to the first restriction of the LP model (1). 

Suppose also, that the column vector ( )1,2 3, 1 3, 1 3 t− −  of the matrix *B  that corresponds to the variable 
12x  will be perturbed in the second position, from 2 3  to 2 3+∈ . The perturbed vector is 

2 1 11, , ,
3 3 2 3 2

∈ ∈ +∈ − − − − 
 

                               (23) 

So, the H  matrix is: 

11 12 13 14

21 22 23 24

31 32 33 34

41 42 43 44

0 0 0 0
0 0 0

2 0 0 0
2 0 0 0

h h h h
h h h h

H
h h h h
h h h h

   
   ∈   = =
   −∈
   

−∈  

                        (24) 

therefore the perturbed matrix is : 

( )
( ) ( )
( ) ( )

*

1 0 1 1
2 3 1 1 5 1 10

1 3 2 0 2 5 3 10
1 3 2 0 1 5 2 5

B

 
 +∈ − − =  − − ∈ −
  − − ∈ − 

                          (25) 
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Every value of ( ) ( )1 11 21 31 41, , , 0, , 2, 2t tH h h h h= = ∈ −∈ −∈  is associated with the decision (replace) and the 
state 1z =  (the variable associated with this column vector is 12zkx x= ), because of this, any perturbation in 

1H  will affect the R  matrix in the first column 
The R  matrix is now 

( ) ( ) ( ) ( ) ( )1 3 1 3 2 1 3 2
1 3 1 3 1 3
1 3 1 3 1 3

R
−∈ + ∈ + ∈ 

 =  
  

                       (26) 

The K  matrix has no changes. 
Considering the Equation (17) of the Theorem 4.5, x  is obtained 

( )

( )

[ ]
[ ]
[ ]
[ ]

1

1 0 1 1 1
2 3 1 1 5 1 10 0
1 3 2 0 2 5 3 10 0
1 3 2 0 1 5 2 5 0

1 0
10 8 15 13 20

0 0
7 / 30 7 20 .

0
8 15 13 20

1/ 5 3 10
0

8 15 13 20

x B H b−= + ⋅

   
   +∈ − −   = ⋅
   − −∈ −
   
− −∈ −   
 ≥ + ∈   
 =
 

+ ∈=  
≥ + ∈ 

 + ∈
 ≥

+ ∈  



               (28) 

 

Solving the inequality associated with the first element 1 0
8 1310

15 20

≥
 + ∈ 
 

, an interval ( )32 39,− ∞  is ob-

tained. The second element fulfills with the equality. The third element have an inequality 

7 7
30 20 0
8 13

15 20

+ ∈
≥

+ ∈
 the 

solution is ( ) [ ),32 39 2 3,−∞ − ∞ . In the inequality, 

1 3
15 10 0
8 13

15 20

+ ∈
≥

+ ∈
 the solution interval is ( )2 3,− ∞ . The  

intersection of the intervals is ( )2 3,− ∞ , considering that the probabilities are between 0 and 1, the extent to 
perturb ∈  in this particular case are ( ]2 3,1−  to conserve the feasibility of the perturb solution x . Consi-
dering this perturbation interval we calculate the numerical comparative of the Proposition 4.1 1 (Table 2 and 
Ta- ble 3), Proposition 4.1 2 (Table 4 and Table 5), Theorem 4.3 (Table 6 and Table 7), and Proposition 4.4 
(Table 8 and Table 9).  

6. Conclusions and Future Work 
In this document, we considered a stochastic machine replacement problem with a single machine that operates 
continuously and efficiently over N  periods. We were interested in the matrix perturbation procedure from a 
probabilistic point of view. A perturbation in a Markov chain can be referred as a slight change in the entries of 
the corresponding transition stochastic matrix. We perturbed the optimal basis *B , but this kind of perturbation 
also changes the transition stochastic matrices. 
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Table 2. Numerical comparative of Equation (4), Proposition 4.1 (1), Ascending perturbation in ∈ .                     

∈  ax  *x x−  ( ) ( ) 11* bB B b
−− −  

  

0.01 (0.1852, 0, 0.4387, 0.3760) (0.0023, 0, −0.0012, −0.0010) 

0.02 (0.1830, 0, 0.4399, 0.3770) (0.0045, 0, −0.0024, −0.0021) 

0.03 (0.1808, 0, 0.4410, 0.3780) (0.0066, 0, −0.0036, −0.0031) 

0.04 (0.1787, 0, 0.4421, 0.3790) (0.0087, 0, −0.0047, −0.0040) 

0.05 (0.1763, 0, 0.4432, 0.3799) (0.0108, 0, −0.0058, −0.0050) 

0.06 (0.1747, 0, 0.4443, 0.3809) (0.0128, 0, −0.0069, −0.0059) 

0.07 (0.1727, 0, 0.4454, 0.3818) (0.0147, 0, −0.0079, −0.0068) 

0.08 (0.1708, 0, 0.4464, 0.3826) (0.0167, 0, −0.0090, −0.0077) 

0.09 (0.1689, 0, 0.4474, 0.3835) (0.0185, 0, −0.0100, −0.0086) 

0.10 (0.1671, 0, 0.4484, 0.3844) (0.0204, 0, −0.0110, −0.0094) 

0.20 (0.1508, 0, 0.4573, 0.3920) (0.0367, 0, −0.0198, −0.0170) 

0.30 (0.1373, 0, 0.4645, 0.3982) (0.0502, 0, −0.0270, −0.0232) 

0.40 (0.1261, 0, 0.4706, 0.4034) (0.0614, 0, −0.0331, −0.0284) 

0.50 (0.1165, 0, 0.4706, 0.4034) (0.0710, 0, −0.0382, −0.0328) 

0.60 (0.1083, 0, 0.4706, 0.4034) (0.0792, 0, −0.0426, −0.0366) 

0.70 (0.1012, 0, 0.4873, 0.4148) (0.0863, 0, −0.0465, −0.0398) 

0.80 (0.0949, 0, 0.4840, 0.4177) (0.0926, 0, −0.0498, −0.0427) 

0.90 (0.0849, 0, 0.4903, 0.4203) (0.0981, 0, −0.0528, −0.0453) 

1 (0.0844, 0, 0.4930, 0.4225) (0.1030, 0, −0.0555, −0.0475) 
aThis value is obtained directly from the LP model. bThis value is obtained doing the matrix operations. 
 
Table 3. Numerical comparative of Equation (4), Proposition 4.1 (1), Descending perturbation in ∈ .                     

∈  ax  
*x x−  ( ) ( ) 11* bB B b

−− −  
  

−0.01 (0.1898, 0, 0.4362, 0.3739) (−0.0023, 0, 0.0012, 0.0011) 

−0.02 (0.1921, 0, 0.4349, 0.3728) (−0.0047, 0, 0.0025, 0.0022) 

−0.03 (0.1946, 0, 0.4336, 0.3717) (−0.0071, 0, 0.0038, 0.0033) 

−0.04 (0.1971, 0, 0.4323, 0.3705) (−0.0096, 0, 0.0052, 0.0040) 

−0.05 (0.1996, 0, 0.4309, 0.3693) (−0.0122, 0, 0.0066, 0.0056) 

−0.06 (0.2022, 0, 0.4295, 0.3681) (−0.0148, 0, 0.0080, 0.0059) 

−0.07 (0.2049, 0, 0.4280, 0.3669) (−0.0175, 0, 0.0094, 0.0081) 

−0.08 (0.2077, 0, 0.4265, 0.3656) (−0.0203, 0, 0.0109, 0.0093) 

−0.09 (0.2106, 0, 0.4250, 0.3643) (−0.0231, 0, 0.0124, 0.0107) 

−0.10 (0.2135, 0, 0.4234, 0.3629) (−0.0260, 0, 0.0140, 0.0120) 

−0.20 (0.2979, 0, 0.4049, 0.3471) (−0.0604, 0, 0.0325, 0.0279) 

−0.30 (0.2955, 0, 0.3793, 0.3251) (−0.1081, 0, 0.0582, 0.0499) 

−0.40 (0.3658, 0, 0.3414, 0.2926) (−0.1784, 0, 0.0960, 0.0823) 

−0.50 (0.4800, 0, 0.2800, 0.2400) (−0.2925, 0, 0.1575, 0.1350) 

−0.60 (0.6976, 0, 0.1627, 0.1395) (−0.5102, 0, 0.2747, 0.2355) 
aThis value is obtained directly from the LP model. bThis value is obtained doing the matrix operations. 
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Table 4. Numerical comparative of Equation (4), Proposition 4.1 (2), Ascending perturbation in ∈ .                      

∈  ax  ( )af x ( ) ( ) 11* *t bf c B B b
−− − −  

  

0.01 (0.1852, 0, 0.4387, 0.3760) 12196.4 

0.02 (0.1830, 0, 0.4399, 0.3770) 12,205.0 

0.03 (0.1808, 0, 0.4410, 0.3780) 12,213.4 

0.04 (0.1787, 0, 0.4421, 0.3790) 12,221.7 

0.05 (0.1763, 0, 0.4432, 0.3799) 12,299.7 

0.06 (0.1747, 0, 0.4443, 0.3809) 12,237.6 

0.07 (0.1727, 0, 0.4454, 0.3818) 12,245.3 

0.08 (0.1708, 0, 0.4464, 0.3826) 12,252.8 

0.09 (0.1689, 0, 0.4474, 0.3835) 12,260.2 

0.10 (0.1671, 0, 0.4484, 0.3844) 12,267.4 

0.20 (0.1508, 0, 0.4573, 0.3920) 12231.7 

0.30 (0.1373, 0, 0.4645, 0.3982) 12,384.4 

0.40 (0.1261, 0, 0.4706, 0.4034) 12,429.0 

0.50 (0.1165, 0, 0.4706, 0.4034) 12,466.0 

0.60 (0.1083, 0, 0.4706, 0.4034) 12,498.0 

0.70 (0.1012, 0, 0.4873, 0.4148) 12,526.0 

0.80 (0.0949, 0, 0.4840, 0.4177) 12,551.0 

0.90 (0.0849, 0, 0.4903, 0.4203) 12,572.0 

1 (0.0844, 0, 0.4930, 0.4225) 12,592.0 
aThis value is obtained directly from the LP model. bThis value is obtained doing the matrix operations. 
 
Table 5. Numerical comparative of Equation (4), Proposition 4.1 (2), Descending perturbation in ∈ .                     

∈  ax  
*x x−  ( ) ( ) 11* *t bf c B B b

−− − −  
  

−0.01 (0.1898, 0, 0.4362, 0.3739) 12,178.4 

−0.02 (0.1921, 0, 0.4349, 0.3728) 12,169.1 

−0.03 (0.1946, 0, 0.4336, 0.3717) 12,159.6 

−0.04 (0.1971, 0, 0.4323, 0.3705) 12,149.8 

−0.05 (0.1996, 0, 0.4309, 0.3693) 12,139.8 

−0.06 (0.2022, 0, 0.4295, 0.3681) 12,139.8 

−0.07 (0.2049, 0, 0.4280, 0.3669) 12,118.5 

−0.08 (0.2077, 0, 0.4265, 0.3656) 12,108.0 

−0.09 (0.2106, 0, 0.4250, 0.3643) 12,096.9 

−0.10 (0.2135, 0, 0.4234, 0.3629) 12,085.4 

−0.20 (0.2979, 0, 0.4049, 0.3471) 11,950.4 

−0.30 (0.2955, 0, 0.3793, 0.3251) 11,763.5 

−0.40 (0.3658, 0, 0.3414, 0.2926) 11,487.8 

−0.50 (0.4800, 0, 0.2800, 0.2400) 11.040.0 

−0.60 (0.6976, 0, 0.1627, 0.1395) 10,180.0 
aThis value is obtained directly from the LP model. bThis value is obtained doing the matrix operations. 
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Table 6. Numerical comparative of Equation (9), Theorem 4.3, Ascending perturbation in ∈ .                            

∈  *

2
x x−   ( ) ( ) 11*

2
B B

−−
−   

0.01 0.0028 0.0257 

0.02 0.0055 0.0507 

0.03 0.0081 0.0752 

0.04 0.0107 0.0991 

0.05 0.0132 0.1224 

0.06 0.0157 0.1453 

0.07 0.0181 0.1676 

0.08 0.0204 0.1894 

0.09 0.0227 0.2107 

0.10 0.0250 0.2316 

0.20 0.0450 0.4178 

0.30 0.0615 0.5707 

0.40 0.0753 0.6986 

0.50 0.0870 0.8071 

0.60 0.0971 0.9004 

0.70 0.1058 0.9814 

0.80 0.1135 1.0524 

0.90 0.1202 1.1151 

1 0.1263 1.1709 

 
Table 7. Numerical comparative of Equation (9), Theorem 4.3, Descending perturbation in ∈ .                           

∈  *

2
x x−   ( ) ( ) 11*

2
B B

−−
−   

−0.01 0.0028 0.0263 

−0.02 0.0057 0.0533 

−0.03 0.0081 0.0752 

−0.04 0.0118 0.1092 

−0.05 0.0149 0.1383 

−0.06 0.0181 0.1682 

−0.07 0.0214 0.1988 

−0.08 0.0248 0.2303 

−0.09 0.0283 0.2626 

−0.10 0.0319 0.2959 

−0.20 0.0741 0.6871 

−0.30 0.1325 1.2286 

−0.40 0.2187 2.0277 

−0.50 0.3586 3.3254 

−0.60 0.6254 5.8002 
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Table 8. Numerical comparative of Equation (11), Proposition 4.4, Ascending perturbation in ∈ .                        

∈  ax  ( ) 1 * *bB B x
−

  

0.01 (0.1852, 0, 0.4387, 0.3760) (0.1852, 0, 0.4387, 0.3760) 

0.02 (0.1830, 0, 0.4399, 0.3770) (0.1830, 0, 0.4399, 0.3770) 

0.03 (0.1808, 0, 0.4410, 0.3780) (0.1808, 0, 0.4410, 0.3780) 

0.04 (0.1787, 0, 0.4421, 0.3790) (0.1787, 0, 0.4421, 0.3790) 

0.05 (0.1763, 0, 0.4432, 0.3799) (0.1763, 0, 0.4432, 0.3799) 

0.06 (0.1747, 0, 0.4443, 0.3809) (0.1747, 0, 0.4443, 0.3809) 

0.07 (0.1727, 0, 0.4454, 0.3818) (0.1727, 0, 0.4454, 0.3818) 

0.08 (0.1708, 0, 0.4464, 0.3826) (0.1708, 0, 0.4464, 0.3826) 

0.09 (0.1689, 0, 0.4474, 0.3835) (0.1689, 0, 0.4474, 0.3835) 

0.10 (0.1671, 0, 0.4484, 0.3844) (0.1671, 0, 0.4484, 0.3844) 

0.20 (0.1508, 0, 0.4573, 0.3920) (0.1508, 0, 0.4573, 0.3920) 

0.30 (0.1373, 0, 0.4645, 0.3982) (0.1373, 0, 0.4645, 0.3982) 

0.40 (0.1261, 0, 0.4706, 0.4034) (0.1261, 0, 0.4706, 0.4034) 

0.50 (0.1165, 0, 0.4706, 0.4034) (0.1165, 0, 0.4706, 0.4034) 

0.60 (0.1083, 0, 0.4706, 0.4034) (0.1083, 0, 0.4706, 0.4034) 

0.70 (0.1012, 0, 0.4873, 0.4148) (0.1012, 0, 0.4840, 0.4148) 

0.80 (0.0949, 0, 0.4840, 0.4177) (0.0949, 0, 0.4840, 0.4177) 

0.90 (0.0849, 0, 0.4903, 0.4203) (0.0849, 0, 0.4903, 0.4203) 

1 (0.0844, 0, 0.4930, 0.4225) (0.0844, 0, 0.4930, 0.4225) 
aThis value is obtained directly from the LP model. bThis value is obtained doing the matrix operations. 
 
Table 9. Numerical comparative of Equation (11), Proposition 4.4, Descending perturbation in ∈ .                        

∈  ax  ( ) 1 * *bB B x
−

  

−0.01 (0.1898, 0, 0.4362, 0.3739) (0.1898, 0, 0.4362, 0.3739) 

−0.02 (0.1921, 0, 0.4349, 0.3728) (0.1921, 0, 0.4349, 0.3728) 

−0.03 (0.1946, 0, 0.4336, 0.3717) (0.1946, 0, 0.4336, 0.3717) 

−0.04 (0.1971, 0, 0.4323, 0.3705) (0.1971, 0, 0.4323, 0.3705) 

−0.05 (0.1996, 0, 0.4309, 0.3693) (0.1996, 0, 0.4309, 0.3693) 

−0.06 (0.2022, 0, 0.4295, 0.3681) (0.2022, 0, 0.4295, 0.3681) 

−0.07 (0.2049, 0, 0.4280, 0.3669) (0.2049, 0, 0.4280, 0.3669) 

−0.08 (0.2077, 0, 0.4265, 0.3656) (0.2077, 0, 0.4265, 0.3656) 

−0.09 (0.2106, 0, 0.4250, 0.3643) (0.2106, 0, 0.4250, 0.3643) 

−0.10 (0.2135, 0, 0.4234, 0.3629) (0.2135, 0, 0.4234, 0.3629) 

−0.20 (0.2979, 0, 0.4049, 0.3471) (0.2979, 0, 0.4049, 0.3471) 

−0.30 (0.2955, 0, 0.3793, 0.3251) (0.2955, 0, 0.3793, 0.3251) 

−0.40 (0.3658, 0, 0.3414, 0.2926) (0.3658, 0, 0.3414, 0.2926) 

−0.50 (0.4800, 0, 0.2800, 0.2400) (0.4800, 0, 0.2800, 0.2400) 

−0.60 (0.6976, 0, 0.1627, 0.1395) (0.6976, 0, 0.1627, 0.1395) 
aThis value is obtained directly from the LP model. bThis value is obtained doing the matrix operations. 



E. S. H. Gress et al. 
 

 
58 

A region of feasibility is found, if the optimal basis *B  is perturbed considering this region of feasibility, the 
optimal solution *x  and the objective function *f  change but the decisions of the replacement problem do 
not change. Some theorems and propositions are obtained to analyze the effects of the perturbation of the optim-
al basis *B , a numerical example is included to support them. The algebraic relations obtained, also were 
proved numerically when the perturbation of the optimal basis is done in several elements of the matrix at once. 

Future work could consider other perturbations over the optimal basis *B  (in this document the perturbation 
used is *B kB H= + ) and perturb the entries of the matrix as random variables. 
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