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Abstract

In this paper we consider the problem of determining the optimal time to buy an asset in a posi-
tion of an uptrend or downtrend in the financial market and currency market as well as other
markets. Asset price is modeled as a geometric Brownian motion with drift being a two-state
Markov chain. Based on observations of asset prices, investors want to detect the change points of
price trends as accurately as possible, so that they can make the decision to buy. Using filtering
techniques and stochastic analysis, we will develop the optimal boundary at which investors im-
plement their decisions when the posterior probability process reaches a certain threshold.
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1. Introduction

In [1], the authors consider the problem of determining the optimal time to sell a property while price growth
rate is a random variable that takes the value of the given set. Under the assumptions of the problem considered
in [1], growth rate only gets one of the possible values that do not change from this value to other values, which
means that transition probability density is 0; but at a time | do not know the accuracy of price growth rate and
the probability of receiving a certain value of growth rate also changes over time.

The authors in [2] also have much optimal stopping time in mathematical finance, but this is the classical
problem and less common in practice because of its assumptions.

The authors in [3] consider the optimal stopping time problem when the growth rate of price process is not a
random variable but in many cases.
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In [4] the authors consider the problem to find the optimal time to sell when the price growth rate is Markov
chain, however their approach is different from our method in this paper and the results are also different.

In this paper we consider the price process is described by geometric Brownian motion when its drift (price
growth) is the Markov chain with two states 0 and 1 (0: decrease, downtrend; 1: increase, uptrend).

There is a phenomenon known as the momentum of the stock price, which means that the stock price has
increased or is increasing, it will be increased in the future (usually near future), and a stock price has decreased
or is decreasing, it will be decreased in the future. The investment is based on the momentum of price process
that is called the momentum trading or trend following trading. By this way if an investor holding an asset wants
to sell the asset, he will have to wait until a bull appeared and continues to hold such assets to the next price
increase (in momentum) and when momentum is no longer available, i.e. prices going down or just starting
going down, then he decides to sell. Similarly, if a person wants to buy an asset, he will wait for the appearance
of an opportunity of going down in price and wait for prices to go down further (in momentum) until no longer
falling price, then he decides to buy. According to this way of investment, investors are expected to buy the
property at the bottom of market and sell the property at the highest point of the market.

In this paper, we analyze how to select buy and sell optimal strategies for a momentum trading. More
precisely, we seek to maximize the expected profit from a momentum trade.

The method we use to study in this paper is the martingale theory, change of measure and the optimal
stopping time is referred in the literature [2] [5] and [6].

2. Buying Asset Problem

Now we consider the case a,,t >0, is a Markov chain with two states 0 and 1 that
P(a=a,)=7,;P(a=a)=1-7, and only capable of moving from state O to state 1 with transition density as

follows Q = {_0/1 ﬂ(ﬂ >0)

At the time of t>0 we put 7z‘=P{a=ah

]—;X} where {7} s thefilter generated by X.

We now consider the problem: Find F* -stopping time 7,0<z<T such that:

U= inf E[e"X,] 2.1)

0<7<T

According to the theorem 9.1 (view [5]), posterior probability process =, satisfying:

a X, —[ahﬂl +a (1-7, )]

X, _ - _
dz, = A(1-7,)dt+7, ~dw, =A(1-7 )dt+r, (1—7zt)[ah 4 det

o X, o
where
T dX, -[(1-7)a +ma, | Xdt {at -[(1-7)a, +7ztah]} X, dt+ o X,dW,
t o X, - o X,
_ta-{@-m)a rma, ) dt+ W,
o

and (VV,]-'X ) is a Brownian motion and the filter generated by W coincides with filter F* .
Thus the process X, satisfies the equation:

dX,

= E[a[|.7-"tx ]dt-i-GdVVt :[(1—7rt)a, —i—7ztah]dt+0'dVVt

t

Then the process X, and the posterior probability process 7, satisfies the equation:

()



P. Van Khanh

di (a + 7, ( ))dt+0'dW

‘ (22)
drz, =4 (-7 )dt+ 7, (1—7:1)[61“ 4 JdVV[
o

Put @, = 1L . According to Ito formula we have:

2
do, = 1 drz, + ! |:7Zt (1—7zt)(ah 4 ﬂ dt

(-z)  @-m) d

2
A Gt oW+ wPdt = s P, |dt+ oD, AW
C1- I, 1-7, 1-r, 1-7,
Definition process {V\7t} as follows:
dW, = (w7, —o)dt +dW,

And the new measure P” satisfying:

T T T
dP” —exp{—%j(o' wr,) dt+I -0+ o, dW}—EXp{ .[g+wﬂt)2dt+_[(—o-+a)7rt)dV\7[}
0 0

dpP
where wzu.
O- ~
According to Girsanov theorem, W, isa P"-Brownian motion.
We have:
do, = L@mznpt dt+ w®, (dW, (o7, — o) dt) = (1 +(1 + 00) @, ) dt + 0D, dW,
1_ t
1+ 0,
t a)z »
:><Dt:Z{(I)O+/1J.251ds}zt:exp{[lﬂy —7Jt+aNVt}
0
dX,

=[(1-7)a +7rtah]dt+0'(dV\~/[ ~(@r,—o)dt)=(a +0 )dt+odW,
t

2
=X, =X, exp{(aI +%)t+oV\7t}

Consider the following process:

" =exp{%j(a—wﬂt)2 dt—.t[(o-—amt)dvvt}

0 0

_ exp{%j(a—(oﬂt Y dt- [ (o - om ) (oW, ~ (e, —a)dt)} _ exp{—%z‘?(a—wm y dt—_j;(a—a)zrt)dvvt}

0 0

Isa F* -martingale and %=(amt —o)dW, with 7, =1.

s
. . - gla—ag 1
Let U, is process determined by dU, =-AU dt-oU,dW,, we have U, = . Ug =
t 0

Consider the following process:

(1+®,)U, .

., =————, Y, =1. According to Ito formula we have:
(1+ )Y,
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dY, =U, [ (A + (1 +00) @, )dt+ed,dW, |+(1+®,)[-2U,dt - oU,dVWi | - ad,oU,dt
=U,0®,dW - (1+ @, )oU,dW, = (e®, -(1+®,)o)U,dW, = (a)%—aj(l+ @, )U,dW,
+ t

=(wr, - o)Y,dW 3%=(a)ﬂl -o)dW,

t

. 1+ @
From this we have Y, =7Vt (as.), then e X =e"Y X = J;( 0 gla-t-r) (1+@,).
0
Denote X, = x,®, =¢ then E,e "X, =E_pe X =E_.ne"X, =ﬁEP*e<a'*”)f (1+@,)
+
Problem (2.1) is equivalent to the following problem:
F(¢)=inf E.e® " (1+®,) (2.3)

0<z<T

Put Z, =e* " (1+®,) . According to Ito formula we have:
dz, =(a —/1—r)e(a"'l'r)t (1+ CDt)dt+e('3"'“)‘d<I>t
=(a —-A- r)e(awH)l (1+ @, )dt+ gla—a-ni ((l +(A+ow)D, )dt + od,dW, )
[(aI ~2=1)(1+®, ) +(A+(A+00)D, )]dHe(aM—r)taﬂDthg
(3~ r)+(a, ~r)®, Jdt +e* " o,V
o [(a -r)+(a,-r)®, ], it will be positive if

_ e(a, —A-r)t
pla—2-r)t

So, the drift of dU is e~

(a—-r)+(a, -0, >0 @, . , and it will be negative if ®, !

a,—r’ a, -
optimal stopping time is the first time the process hits @, inarea [A o) with some A. Moreover pair (A, F)
satisfy the following free boundary problem:

LF+(a—A-r)F=00<z<A
F(z)=1+z z>A
F'(A)=1

F(O+)<oo

. This suggests to us that the

(2.4)

2.2
where £ is infinitesimal operator EF:%FH(/H(/H@G)Z)F’.

Differential Equation in (2.4) has the general solution as follows:

F(z)=CF(z)+C,F,(z)

0" +200+24 +Zaw+2/1 2 n J,-ﬂ
F(z)=x “ ewZ Whlttakerw(%
(4]

\/4w2/1—4a)2 (a,+a —2r)+ o’ +4(a, -4 +/1)2 22

2 T |

where

2w 0l
—w” +200+224 +20w+21 2
“ ot Whlttaker M (w
(4]
\/40)2/1—40)2 (a,+a,-2r)+o' +4(a,—a + 1) 22
20° " w2

()
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and

oyt (b .
Whittaker M (a,b,z)=e 27’ 2M(b—a+%,1+2b,zj;M(a,b,z) —(b g)) Ita—l 1— t)b Lot

z 1
Whittaker W (a,b,z) =e 2,2y (b—a+%,l+2b,zj a,b,z) I (1+1) brat gt

0

Changing variables and using some analytic transformations we obtain

8(a -4-r) -
(p-1)2 . 3]( 1[ (ﬂ_l)z_s(a|mz/1 r)_%_2g+1J du

zgu 1{2& 20
1+zu)2 ©

z):Te oy
0
1 2 1[2 A qjgim V7 8 714)_] a
and F,( j e’ U “’(‘” ] [‘”{“’ )1] I’”Z ’ (1—zu)%[\/[%&”)'lj2_a( Imj )'g(gw}l]du

Denote
8(A+r
=ﬂ>o B= a+2—>0 y = \/(/3—1)2+(— >|5-1.
Cl) @
We have
1
Fl (Z) _ Je-auu(ﬂ+7—3)/2 (1+ U )(7—ﬂ+1)/2 du and Fz (Z) _ Jeauu(l»’+7—3)/2 (1_ U )(7-ﬁ+1)/2 du
0 0
1
Now we consider the property of the function F, ( je"”u("*y 2 (1- zu) PR gy
0

First, we calculate the derivative of F,(z).

. Ry (z+h)-F,(2)
F(z)=lim .

1

z+h
=lim= je““u(ﬁ”‘?‘)/z(1—(z+h)u)(y_ﬂ+l)/zdu— e
0

u,(Brr-3)/2 (1_ 7u )(7—/3+1)/2 du

oct—n
]

ES
-~ lim- Jh( @32 (1 (24 h)u )" ey (1—ZU)(y7ﬁ+l)/z)du
0
1
T f e P92 (1 2u) "2 g
1
h—»O

St e (am e o) 20

1
_||m1 J'eauu(/?+y—3)/2 (1_ Zu)(y—ﬂﬂ)/z du
1
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1

(r-p+1)/2 y
_|imz+he"‘“u(ﬁ+7—3)/z (1_(Z+h)u)7 —(1—Zu)7 p+1)/2
- h—0 s h
1

y=p5 +1J'eauu(ﬁ'+y—l)/2 (1_ Zu)(yfﬁfl)/z du
2 0

du

8(A+r-
Because 7:\/(ﬂ—1)2+(L2al)>ﬂ—l so F,(z)<0.
(4]

uBr-32qy

According to average integral theorem we have F, ( )= e (1— u")(HM)/2

Ot— N |

. 1 1
where u e(O,—j. Moreover, with small enough z we have zu” <z z7<—= . Then we have:
’ (w)
rpat /2 (p47-1) (per-1)
(1 J_) >¢z 4 —>+400 when z-50+

(12 7 »
F(2)>(1-+2) ! T 3)/2du=ﬂ+y_

because 0<z<1 and —%<O.

We have F/(z)= %Mje"“t(ﬂ*’ V2 (142t)" " dt>0 because r>a so
0

=\/(ﬁ—1)2+W+—Z_a')>ﬂ—1

4]

And then F (z) is increasing function.

Moreover F/(z)= %’M%ﬂ_l [ert P2 (14 2t)7 7 24t <0 because
0

7:\/(ﬂ_1)2+w<\/(ﬂ_1)z+w

(0]

So y<\/(ﬂ—1)2+w=,/(,B—1)2+4ﬁ=/5'+1 and F(z)<0 means that the function F,(z)
[

is increasing and convex function on (0,). Figure 1 shows the graph of function Fl(z), we can check the

increase and convex properties of it. The graph of F, (z) is shown in Figure 2, we can see that it tends to infi-
nite when z as 0+.

But F(0+)<oo,then C,=0 so F(z)=Clj'e“’“u('5”‘3)/2(1+zu)("ﬂ”)/zdu

0

C, Jeu 92 (14 Au)" " du =1+ A
By (2.4) we have { ° )
c,” —f +1 [ermtrr 02 14 Au) Y2 gy =1
0

So A is the solution of equation

2,[8’““u("”’3)/2 (1+ AU)(HM)/2 du=(1+A)(y-B+1)[e " u’"" 2 (14 Au) U dt (2:5)
0 0

()
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Figure 1. Graph of the function F,(z).
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Figure 2. Graph of the function F,(z).

Lemma 2.1. Equation (2.5) has unique solution.
Proof: Equation (2.5) is equivalent to

2J' e*auu(ﬂw—?a)/z (1+ XU )(7*!”1)/2 du —(l+ X)(}/ y +1)J.67“”U(ﬂ+771)/2 (l+ XU )(V*ﬂfl)/z du=0
0 0

Put: f (X) — 2-[ e‘auu(ﬂ+}/_3)/2 (1+ Xu)(}/_ﬂ*'l)/z du _(1+ X)(}’ _ﬁ_'_l).[e—auu(ﬂﬁ/—l)/z (1+ Xu)(}/—ﬂ—l)/z du
0 0

© ©

We have f(0+)= ZI e~y Fr=32qgy ~(y _ﬂ+1)J'efauu(ﬂ+y—l)/2du

0 0
For integrals
Il — zTe—auu(ﬂ+773)/Zdu _ 4 ]ge—audu(ﬂerfl)/Z — 4 |:eauu(ﬂ+y1)/2ro +aT eauu(ﬂ+7l)/2du:|
0 p+r-1y p+y-1 0 0
__ 4 Te'““u‘”*y‘”/zdu
B+r-13
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I 4 1252 |
f (O+) _ 4a (ﬂ_ _7/):|J' —au (B+y- l)/Zd a +(ﬂ ) Ve J‘e—auu(ﬁw—l)/Zdu
L B-1+y B-1+y 0
So: 81 8(A+r-a)
_ a)z a)z Te—auu(/fw—l)/zdu - 8(r -8 ) Te—auu(ﬂ+y—1)/2du <0
B-1+y ; o* (f-1+7)5

f/(x)= 1) [ermoulr012 (1 1 )P gy +1) e"’u (Ber /2 (1 4 xu )2 4y
(x)=(r-B+1)[ y-B

0

~(1+x) 7/_Zﬂ_1(;/—,B+1)Ie"’“u(’”7”)/2 (1+ xu)(y’H)/2 du

0

=-(1+ X)%ﬂ_l(y — p+1) [eut I (1) gy

0

Because

\/(/3 1)’ @ (ﬂ—1)2+4ﬂ=ﬁ+1;7=\/(ﬁ—1)2+—8(/1;r2_a')>ﬁ_1
and

S0 f'(x):—(1+x)7/_’23_1(;/—,6’+1)J'e"”“u(ﬂ*’*l)/2(1+xu)(77/773)/2 du>0,vx>0

0

We will prove lim f (x) =+
Indeed, for large enough x we have 1+xu ~xu and

f(x)= ZJ'oa""“u(”*H)/2 (1+ xu)(”’“l)/2 du—(1+x)(y—B+1) [e™u 72 (14 xu)(‘“ﬂ*l)/2 du

O =8

~ 2X(y—ﬂ+1)/2Te—auu(ﬂ+y—3)/2u(7—/3+1)/2du ~(1+x)(y - B+1) X(,v—/i—l)/ZTe—auu(/m—l)/zu(y—ﬂ—l)/Zdu
0 0

:2X(y—ﬂ+l)/2Te—auu(ﬂ+y—3)/2u(y—/3+1)/2du ( ﬁ+l) (y-p+1)/2 Te—auuy—ldu
0

=(1+B—y) X" PV [eudu > 0
0

Thus,  lim f(x)<0, lim f(x)=+ va f(x) is increasing function so f(x)=0 have unique expe-

rience. So the theorem is proved. O
The graph of f(x) isshown in Figure 3, it is an increase function and I|m f(x)<0, lim f(x)=+o0.

Theorem 2.2. Stopping time 7, =inf {t 20:0, 2 A} is the optimal stopping time for (2.1).

Proof:
According to the general theory of optimal stopping time is the point of making the expression:

(L+a,—A-r)(1+g)=a,—r+(a —r)¢

is positive will be under the continuation area: C = {¢: F (¢) >1+ ¢} .

And stopping time will be optimal if it is the first time that the {(Dt}po hits the stopping regions
D={¢:F(¢)=1+4} or r,=inf{t=0:@0, >A}. O )

In Figure 4, we see a simulation of processes: Asset Price process, process CD(t), threshold probability,
posterior probability process and the optimal stopping time with

8, =-0La, =020=04;r=0051=03.
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Figure 3. Graph of the function f (x).
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Figure 4. A simulation of asset price process, the posterior probability process, process ®(t), the threshold probabili-
ty and the optimal stopping time (the optimal time to buy).

We find that 7" =0.63 and the asset price (discounted) to buy is 1.24 <1.5= X (0). In Figure 5, we simu-
late 4 processes: Asset Price process, process <D(t) , threshold probability posterior probability process and the
optimal stopping time with parameters

3, =-0La, =020=04;r=0051=03.
We find that 7" =0.58 and the asset price (discounted) to buy is 1.27 <1.5= X (0).
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Asset Price process

0.2 | Process Phi(t) .
—— Threshold |
----~ Posterior probability process | |
0 | | | | | | | T T
0 0.1 0.2 0.3 0.4 0.5 T* 0.6 0.7 0.8 0.9 1

Figure 5. A simulation of asset price process, the posterior probability process, process <1>(t) , the threshold probability and
the optimal stopping time (the optimal time to buy).

3. Conclusion

In this paper, we consider the problem of buying an asset when the asset price is modeled by the geometric
Brownian motion which has a change point, where price growth rate is the Markov process with two states that
describes the decreasing and increasing of asset prices process on the market. For buying problem we assume
that the price will be a shift from decreasing to increasing prices and a buying decision is made when the proba-
bility of decreasing state surpassed some certain threshold. We have to simulate the price process with a number
of parameters and conduct numerical solution to the experimental buying threshold. In the next study we will
consider the problem with assumptions that are closer to reality and more constraints.
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