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Abstract 
The effect of rotation on the shape (figure) and gravitational quadrupole of astronomical bodies is 
calculated by using an approximate point core model: A point mass at the center of an ellipsoidal 
homogeneous fluid. Maclaurin’s analytical result for homogenous bodies generalizes to this model 
and leads to very accurate analytical results connecting the three observables: oblateness ( ) , 
gravitational quadrupole ( )J2 , and angular velocity parameter ( )q . The analytical results are 
compared to observational data for the planets and a good agreement is found. Oscillations near 
equilibrium are studied within the model. 

 
Keywords 
Rotation, Angular Velocity, Oblateness, Flattening, Figure of Celestial Body, Gravitational 
Quadrupole, Point Core Model, Moment of Inertia 

 
 

1. Introduction 
The rotation induced oblateness of astronomical bodies is a classical problem in Newtonian and celestial me- 
chanics (for the early history, see Todhunter [1]). It has twice played an important role in the history of science. 
In the early eighteenth century, measurements indicated a prolate shape of the Earth, in strong conflict with the 
Newtonian prediction. This was later shown to be wrong by more careful measurements by Maupertuis, Clairaut, 
and Celsius in northern Sweden in 1736. Then, in 1967, measurements of the solar oblateness were published 
and according to these, it was much larger than the Sun’s surface angular velocity would explain. The confirma- 
tion of general relativity by Mercury’s perihelion precession would then be lost. Also this problem is now gone 
and the modern consensus is that the solar oblateness is too small to affect this classic test of general relativity 
[2]-[4]. 
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The subject of the flattening of rotating astronomical bodies is thus quite mature. The classical theory is due 
mainly to Clairaut, Laplace, and Lyapunov. Also Radau, G. H. Darwin, de Sitter, Chandrasekhar and many oth- 
ers have made important contributions. More recent accounts of the theory can be found in, for example, Jef- 
freys [5], Jardetzky [6], Zharkov et al. [7], Cook [8], Moritz [9] and, partly in Chandrasekhar [10]. Some peda- 
gogical efforts can be found in Murray and Dermott [11], or in Kaula [12]. As is plain from these references, the 
theory is quite involved. Only the unrealistic assumption that the body is homogeneous gives compact analytical 
results. Otherwise a specified radial density distribution is needed and one resorts to cumbersome series (multi- 
pole) expansions, or purely numerical methods, for quantitative results. Here we will present analytical results 
based on the assumption that the body consists of a central point mass surrounded by a homogeneous fluid, the 
so called point core model. By varying the relative mass of the fluid and the central point mass one can interpo- 
late between the extreme limits of Newton’s and Maclaurin’s homogeneous body and the Roche model [13] 
with a dominating small heavy center. The point core model goes back to the work of G. H. Darwin. More re- 
cently, it has been used to study the shape of outer planet moons, see Hubbard and Anderson [14], Dermott and 
Thomas [15]. 

Apart from the basic approximation of a 1) point core, further approximations are made. These are: 2) that the 
shape is determined by energy minimization of gravitational and kinetic energy 3) under the constraint that the 
shape is ellipsoidal and that 4) there is a unique constant angular velocity vector (rigid rotation). These are not 
consistent. Since, according to Hamy’s theorem, see Moritz [9], the exact equilibrium shape is not ellipsoidal, 
but the deviation is quite small for normal values of the relevant parameters. Differential rotation, which is 
common in gaseous bodies, is not treated, nor wobbling of the rotation axis. On the other hand, fixed volume 
(“bulk incompressibility”) need not be assumed; the equilibrium volume problem separates from the shape 
problem. In spite of these approximations, which are standard in the literature, the mathematics can be quite in- 
volved. In this article, I hope to clarify and simplify it as much as possible. 

This article is organized as follows. First we discuss the parameterization of the ellipsoid. Three degrees of 
freedom correspond to the three semi axes of the ellipsoid (a, b, c) but these are transformed to three, possibly 
new, generalized coordinates that describe size (or volume), R, spheroidal, ξ, and triaxial, τ, shape changes, see 
Equation (3). Then we consider the mass distribution and calculate the relevant moments of inertia. After that 
the gravitational quadrupole ( )2J , the external potential energy, hydrostatic equilibrium, centrifugal potential, 
and the rotational parameter (q), are introduced. A simple relation between J2, q, and ellipticity   arising from 
a linear approximation is given in (1.28). The results of this formula are later compared to the more accurate 
non-linear formulas derived here, e.g. (1.61)-(1.62). 

After these preliminaries we calculate the gravitational and rotational energies. The total energy is then mini- 
mized to find the equilibrium value of the flattening. It is pointed out that the shape problem (value of ξ) sepa- 
rates from the volume problem (value of R) when the parameters introduced here are used. We then study the 
shape equilibrium equation and find a very accurate analytical result for the correct oblateness. After that, vari- 
ous comparisons with observational data are made. The oblateness of the Sun is estimated. So far the problem 
has been one of static equilibrium in the appropriate rotating system. In a final section, we study small oscilla- 
tions around the equilibrium. This gives useful insight into the physics of free stellar or planetary oscillations 
and their coupling to rotation. Our approximations are, however, too severe for these results to be of quantitative 
interest. 

The main results are the simple formulas, Equations (1.59)-(1.61), relating the observables, rotation parameter, 
q, gravitational quadrupole, J2, and eccentricity squared, e2. These appear to be, partly, new, and their usefulness 
is demonstrated by comparing with empirical data for the Sun and the rotating planets of the solar system. Varia- 
tional methods have been used before to study similar problems, see for example Abad et al. [16]. Denis et al. 
[17] have pointed out that variational methods generally fail to provide estimates of their accuracy. Therefore 
the agreement of our formulas with empirical data, as demonstrated in Table 1, is important and demonstrates 
that our model catches the essential physics of rotational flattening. 

2. Basic Geometric Quantities 
Assume that x, y, z are rectangular Cartesian coordinates in three-dimensional space of a point with position 
vector 

.x y zx y z= + +r e e e                                   (1.1) 
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Table 1. Values of 3 2q R GMω= , of oblateness,  , and gravitational quadrupole, J2, ellipticity squared, e2, and dimen- 

sionless moment of inertia 2 2I MRκ = . 

Body q    2J  2e  2κ  

Sund 51.15 10−×  66.3 10−×  73.7 10−×  51.3 10−×  0.059  

Eartha 33.45 10−×  33.35 10−×  31.08 10−×  36.69 10−×  0.3307  

Earthb 33.45 10−×  33.35 10−×  31.08 10−×  36.69 10−×  0.323  

Marsa 34.57 10−×  36.48 10−×  31.96 10−×  21.29 10−×  0.366  

Marsb 37.04 10−×  35.24 10−×  32.78 10−×  21.04 10−×  0.375  

Jupitera 28.34 10−×  26.49 10−×  21.47 10−×  11.26 10−×  0.254  

Jupiterb 28.29 10−×  26.51 10−×  21.45 10−×  11.26 10−×  0.233  

Jupiterc 28.56 10−×  26.37 10−×  21.54 10−×  11.27 10−×   

Saturna 11.40 10−×  29.80 10−×  21.63 10−×  11.86 10−×  0.210  

Saturnb 11.41 10−×  29.73 10−×  21.67 10−×  11.85 10−×  0.176  

Saturnc 11.47 10−×  29.44 10−×  21.87 10−×  11.89 10−×   

Uranusa 22.89 10−×  22.29 10−×  33.52 10−×  24.53 10−×  0.225  

Uranusb 23.50 10−×  21.98 10−×  35.55 10−×  23.92 10−×  0.179  

Neptunea 22.56 10−×  21.71 10−×  33.54 10−×  23.39 10−×  0.24  

Neptuneb 22.34 10−×  21.82 10−×  32.80 10−×  23.61 10−×  0.196  

Footnote a: The first row for each planet gives literature [23] data. These are observational except 2κ  which are based on theoretical calculations. 
Footnote b: The second row for each planet gives the corresponding calculated values as given by formulas (1.59)-(1.63) in such a way that for each 
pair of observational q, J2, and, e2 the missing third is calculated. The moment of inertia is calculated from observational q and J2 using formula (1.25), 

2 2
22J eκ = , with ( )2

2,e q J  from formula (1.61). Footnote c: The third row for Jupiter and Saturn gives data calculated in a similar way to that in 
the second row except that the first order formula (1.28) has been used to find the third value from two observational values. Footnote d: For the Sun 
 , J2 and e2 have been calculated from an observation based q-value discussed in the text and a theoretical 2κ  [23], using formulas (1.66), (1.67) 
and 2 2e =   respectively. 

 
An ellipsoid, with semi-axes a, b, c, is the solid defined by 

1 22 2 2

1.x y z
a b c

      + + ≤      
       

                              (1.2) 

If we put 

( ) ( ) ( ) 12 2, ,a R b R c Rξ τ ξ τ ξ τ
−

= + = − = −                         (1.3) 

and define 

( )
1 222 2

2 2 1; ,
( )

x y zE ξ τ
ξ τ ξ τ ξ τ −

     
 ≡ + +     + − −       

r                     (1.4) 

the ellipsoid is the set of points that fulfill 

( ); , ,E Rξ τ ≤r                                    (1.5) 

where R is the geometric mean (or volumetric) radius 3R abc= . The formula for the volume of an ellipsoid 
now gives 

34π 3 4π 3,V abc R= =                                (1.6) 
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and we see that changes of ξ  and τ  do not change the volume, only the shape of the ellipsoid. 
In what follows, we will also consider the special case of spheroids. A spheroid is an ellipsoid with two equal 

semi-axes. We take a b c= ≠ . This means that we take 0τ =  in the formulas above so that 
2, ,a b R c Rξ ξ −= = =                                   (1.7) 

and (1.4) becomes 

( )
1 222 2

2; ,0 .x y zE ξ
ξ ξ ξ −

     
 = + +     
       

r                            (1.8) 

A spheroid is thus defined as the set of points that fulfill 

( ); ,0E Rξ ≤r                                      (1.9) 

Here R is the (geometric) mean radius and ξ  is a parameter that determines the shape in such a way that 
1ξ <  corresponds to a prolate spheroid, 1ξ =  to a sphere, and 1ξ >  to an oblate, or flattened, spheroid. 

More familiar parameters used to define the shape of a spheroid are the ellipticity   and the eccentricity e. 
The ellipticity is defined by 

31 .a c
a

ξ −−
≡ = −                                    (1.10) 

This is sometimes also called the (geometric) oblateness or the flattening (denoted f). Solving this equation, 
and expanding around 0= , we have 

( )2 3
3

1 1 21 .
3 91

Oξ = = + + +
−

  


                             (1.11) 

One notes that   is positive for oblate and negative for prolate spheroids respectively. The eccentricity 
0e ≥  is defined as the usual eccentricity of the ellipse that is the intersection of the spheroid and a plane con- 

taining the z-axis. One finds that 
2 2

2 6
2 1a ce

a
ξ −−

≡ = −                                   (1.12) 

gives the eccentricity of these ellipses in the oblate case. For the prolate case 2 61e ξ= − . 

3. The Mass Distribution 
Consider a non-rotating spherically symmetric body consisting of point particles with masses mi and position vectors 

0 0 0 0  i i x i y i zx y z= + +r e e e .                                 (1.13) 

Assume that rotation induces a deviation of the positions so that the new positions, ( )0
i i=r f r , are given by 

( ) ( ) ( ) ( ) 10 0 2 2 0,i i x i y i z i x i y i zx y z x y zξ τ ξ τ ξ τ ξ τ
−

= + + = + + − + −r e e e e e e .            (1.14) 

This implies that we assume that the elastic displacement field can be parameterized by the shape parameters 
ξ τ,  with non-rotating positions corresponding to ξ τ= 0, = 0 . One notes that points r0 that obeyed 
( )0 ; 1,0E r=r  i.e. were found on a sphere of radius r R< , move to the surface given by 

( ); , .E rξ τ =r                                    (1.15) 

The sphere is thus assumed to deform to an ellipsoid. 
Assume that a body initially is spherically symmetric and has a mass density ( )0 rρ , where r is the ordinary 

distance from the center. It is tempting to assume that a natural deformation of the body when it starts to rotate is 
to a spheroidal shape in such a way that the originally spherical equidensity surfaces, ( )0 constantrρ = , deform 
to similar spheroidal surfaces given by ( ); 0E rξ, =r . Unfortunately this is an approximation for real bodies. 
For a density that increases towards the center, the ellipticity of the equidensity surfaces decrease with r, in a 
manner described by Clairaut’s equation, see [5] [7] [8] [18]. Note, however, that for a constant density, or a 
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constant density with a central point mass, the assumption is not approximate, since any surface is an equidensi- 
ty surface, only the shape of the outer surface matters. 

Thus we now assume such a mass distribution. To be precise we assume that a mass M1 is distributed with 
constant density 

1 1M V≡                                      (1.16) 

inside the surface, ( ); ,E Rξ τ =r , and that the point mass 0M  is at the center, = 0r , of the ellipsoid. The 
density ρ  is thus given by 

( ) ( ) ( )0 3 1 if  ; ,
0 otherwise

 M E Rδ ξ τ+ ≤
= 


r r
r


                        (1.17) 

where 3δ  is the three-dimensional Dirac delta function. 

4. Moments of Inertia and the Quadrupole Tensor 
If we put mi for the masses of the particles, the inertia tensor of the body is given by 

( ) ,i i i i i
i

I m x x x xαβ γ γ αβ α βδ= −∑  where we have put, 1 2 3, ,i i i i i ix x y x z x= = =  and αβδ  is the usual Kronecker 

delta. The inertia tensor for the non-rotating body is diagonal with all diagonal elements equal and given by 

( ) ( ) ( )2 22 0 0 0 .zz i i i
i

I M R I m x yκ  ≡ = = +  ∑                       (1.18) 

Here we have introduced the total mass, 

0 1,i
i

M m M M≡ = +∑                               (1.19) 

as well as the dimensionless radius of gyration κ . The square of this parameter, 2κ , also appears in the litera- 
ture denoted 2I MR  (or 2C Ma , or simply k) and is also called the moment of inertia coefficient. 

We calculate the dimensionless moment of inertia 2κ  for the undeformed ρ  of Equation (1.17). Using 
Equation (1.18) and 2 2 2 2r x y z= + +  we find 

( ) ( )2 2 2 2 2 21
1 130

32 2d 4π d ,
3 54π

R

r R

MI M R x y V r r r M R
R

κ
≤

= = + = =∫ ∫              (1.20) 

where 2d 4π dV r r=  and Equation (1.16) has been used. This is the usual moment of inertia for a solid sphere 
of mass 1M . This implies that 

2 012 2
5 5

M MM
M M

κ
−

= =                                (1.21) 

is the squared (dimensionless) radius of gyration of the undeformed body. Note that 20 2 5κ≤ ≤  since the 
model can go between the limits of a point ( )2 0κ →  and a homogeneous sphere ( )2 2 5 0.4κ = = . 

For the deformed body one gets, using (1.14), 

( ) ( ) ( ) ( )22 2 2 2 2 2 .zz i i i
i

I m x y M R Iκ ξ τ ξ τ= + = + = +∑                    (1.22) 

Izz is often denoted by C. For spheroids ( )0τ =  the other moments of inertia become 

( )6 21 1
2xx yyI I I ξ ξ−= = + . For these one frequently finds the notation A, and B, respectively, in the literature. 

The quadrupole tensor, Dαβ , is given in terms of the inertia tensor by 3 .D I Iαβ γγ αβ αβδ= −  It is identically ze- 
ro for the undeformed body and diagonal for the same axes as the inertia tensor. For the spheroidal ( )τ = 0  
body its components are given by 

( )6 21 1 ,
2xx yyD D D I ξ ξ−≡ = = −                            (1.23) 

And 2 .zzD D= −  Thus zz xxD I I= −  (or D C A= − ) is positive for oblate and negative for prolate shapes. 
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5. Potential and Hydrostatic Equilibrium 
One measure of the oblate shape that is of great interest is the, so called, gravitational quadrupole J2. This di- 
mensionless quantity, gives the deviation of the gravitational potential, φ , outside the body, from the simple 
1 r -dependence of spherically symmetric bodies. The first two terms in the multipole expansion of this potential 
are, see e.g. Stacey [19], 

( )
2 2

2
3cos 1, 1 ,

2
GM ar J

r r
ϑφ ϑ

 − = − −  
   

                       (1.24) 

where ϑ  is the polar angle (colatitude) in spherical coordinates, M the total mass, and a the equatorial radius of 
the body. One can show [19] that J2 of formula (1.24) is given by ( )2

2 .J D Ma=  Use of D given in (1.23), 
and a Rξ= , then gives 

( )6 2 2 2
2 2

1 11 ,
2 2

DJ e
Ma

ξ κ κ−≡ = − =                           (1.25) 

for the quadrupole. Here we have also used a Rξ=  and Equation (1.12). Note that ( )2
2 2J J e=  is indepen- 

dent of R, but directly proportional to the eccentricity squared. 
Assuming the oblateness to be small, and due to hydrostatic equilibrium in the combined gravitational and 

centrifugal force fields, one can derive a formula connecting J2 with the angular velocity and the ellipticity. One 
uses that the shape of the surface is determined by the hydrostatic equilibrium equation 

( ) 0,cp φ φ∇ + ∇ + =                                 (1.26) 
where p is pressure,   mass density, and 

( ) 2 2 21, sin
2c r rφ ϑ ω ϑ= −                               (1.27) 

is the potential of the centrifugal force in a system rotating with angular velocity ω about the z-axis. This means 
that the surface of the body must be an equipotential surface of cφ φ+ . The constancy of ( ) ( ), ,cr rφ ϑ φ ϑ+  on 
the surface of the body can be used to derive the approximate relationship 

2
3 1
2 2

J q= +                                    (1.28) 

[8]. Here we have introduced the ratio q of equatorial centrifugal to gravitational acceleration, 
2 2 3 2 2

2

3 .
4π

R R Rq
g GM GGM R

ω ω ω ω
≡ = = =


                         (1.29) 

Here M V=  is the mean density. Instead of q the notation m occurs in the literature, see Zharkov et al. 
[7], who reserve q for the corresponding quantity with the equatorial radius a replacing the mean radius R (recall 

3 2R a c= ). The advantage of the definition (1.29) is that it makes q independent of flattening. The relationship 
(1.28), is only valid to first order in small quantities, so here the difference does not matter, but we will go to 
higher order below, so take notice. This relationship between the three quantities q (or m),   (or f), and J2, can 
thus be used to test the hypothesis of hydrostatic equilibrium empirically. This will be done below, using more 
exact results. For Jupiter and Saturn these will improve significantly on (1.28). 

6. Rotational and Gravitational Energy 
To study a rotating body, we go to the rotating system, and assume that all particles are affected by the centri- 
fugal and gravitational potential energies. If the system is rotating rigidly about the z-axis with angular velocity 
vector ,zω=ω e  the potential energy of particle i in the centrifugal force field is ( ),i c i im rφ ϑ . The total centri- 
fugal potential energy of the body (system of particles) is 

( )2 2 2 21 1 .
2 2c i i i zz

i
m x y Iω ωΦ = − + = −∑                         (1.30) 

This is the negative of the rotational kinetic energy. Using (1.22) we can write 
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( ) ( ) ( )22 2 2 2 2 21 1
2 2c I M Rξ τ ω κ ξ τ ωΦ = − + = − +                     (1.31) 

for the total potential energy of the particles in the centrifugal potential. 
The gravitational potential from an ellipsoid (1.2), of constant density 1 , at an interior point is [20] 

( ) ( )
2 2 2

1 2 2 20

d, , π 1 ,x y z sx y z G abc
P sa s b s c s

φ
∞ 

= − − − − + + + 
∫                 (1.32) 

where ( ) ( )( )( )2 2 2P s a s b s c s= + + + . Since ( )0 0,0,0M φ  is the interaction energy of the homogeneous el- 

lipsoid with a point particle of mass 0M  at the origin one finds the expression 

( )0 0 1 0

3 d
4

sGM M
P s

∞
Φ = − ∫                               (1.33) 

for this interaction energy. Here 3abc R=  and Equation (1.16) has been used. 
An elementary calculation based on (1.32), see Landau and Lifshitz [21], also shows that the gravitational 

self-energy of the ellipsoid is 

( )
2

1 1 0

3 d .
10

sGM
P s

∞
Φ = − ∫                               (1.34) 

Use of the definitions (1.3) and the substitution 2s R u=  gives 

( ) ( ) ( ) ( )
0 0 22 2 2 2

d 1 d .s u
P s R u u uξ τ ξ τ ξ τ

∞ ∞

−
=

    + + − + − +      

∫ ∫                (1.35) 

If we define 

( )
( ) ( ) ( )

0 22 2 2 2

1 d, ,
2

s

s s s
χ ξ τ

ξ τ ξ τ ξ τ

∞

−
= −

    + + − + − +      

∫                (1.36) 

we find that the total gravitational energy of the mass distribution (1.17) is given by 

( )01 1
1 0

33
, ,

5 2
MGM M

R
χ ξ τ Φ = Φ +Φ = + 

 
                      (1.37) 

where ( )1,0 1χ = − . We define the constant ν , the dimensionless gravitational radius, through 

( )
2

, .GM
R

χ ξ τ
ν

Φ =                                 (1.38) 

Comparing with (1.37) and using 0 1M M M= +  together with the result (1.21), a small calculation reveals 
that the dimensionless gravitational radius, ν , is given by 

( ) ( )2 21 15 8 2 3 .ν κ κ= −                              (1.39) 

It is interesting to note that the gravitational energy of a density (1.17), with fixed mass M and radius R, is 
minimized for 2 1 3κ =  (this is incidentally very close Earth’s value). 

Using the definition (1.36), it is easy to find the Taylor expansion of χ  around 1, 0.ξ τ= =  This gives 

( ) ( )2 24 4, 1 1
5 15

χ ξ τ ξ τ= − + − + +                          (1.40) 

so the sphere really corresponds to a minimum in the gravitational energy. Higher order terms are easily gener- 
ated by computer algebra programs, but we will not need them here. To study the behavior further away from 
the minimum one might use, instead of (1.36), an excellent Padé approximation of the ellipsoidal energy derived by 
Dankova and Rosensteel [22]. Near the spherical minimum, it is almost indistinguishable from the exact expression. 
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For spheroids we define 

( ) ( ),0ψ ξ χ ξ=                                  (1.41) 

to be the dimensionless gravitational potential energy. For 0τ =  the integral in (1.36) can be found in terms of 
elementary functions. Several different alternative expressions exist and they are always different depending 
on whether ξ  is greater or less than unity. However, noting that, arctanh i i arctanz z= , the two expres- 
sions in 

( )
( )

( )

2 6

6

2 6

6

arctanh 1 for 0 1 prolate case
1

arctan 1 for 1 oblate case .
1

ξ ξ
ξ

ξ
ψ ξ

ξ ξ
ξ

ξ

 −
− < ≤
 −= 
 −
− ≤ < ∞

−

                (1.42) 

are equivalent and can be used for all 0 ξ≤ ≤ ∞ . These are really the same real function if only the correct 
branch is chosen when passing through 1ξ = . Series expansion, of either alternative, around 1ξ =  gives 

( ) ( ) ( ) ( ) ( )2 3 4 54 92 291 1 1 1 1 .
5 105 105

Oψ ξ ξ ξ ξ ξ = − + − − − + − + −                (1.43) 

This function, which is shown in Figure 1, has the following properties. The prolate limit, 0ξ → , of an in- 
finite line is zero: ( )

0
lim 0
ξ

ψ ξ
→

= . The oblate limit, ξ → ∞ , an infinite circular disc, is also zero: ( )lim 0
ξ

ψ ξ
→∞

= . 

The sphere ( )1ξ =  corresponds to a minimum of ( )ψ ξ  so that ( )1 1ψ = − , ( )1 0ψ ′ = , and ( )1 8 5ψ ′′ = . 

7. Minimizing the Energy 
The total energy, U, of a static body (star or planet) will, apart from the centrifugal energy, cΦ  of Equation 
(1.31), and gravitational energy, Φ of Equation (1.38), also consist of some volume dependent energy, ( )v RΦ . 
We can then write this total energy it in the form 

( ) ( ) ( ) ( ) ( )
2

2 2 2 21, , , .
2v

GMU R R M R
R

ξ τ χ ξ τ κ ω ξ τ
ν

= Φ + − +                (1.44) 

 

 

Figure 1. The function ( )ψ ξ  of equation Equation (1.42) which gives 
the dimensionless gravitational energy of a homogeneous spheroid with 
a central point mass. The minimum at 1ξ =  corresponds to a sphere. 
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By minimizing this energy, we can find out whether a system tends to be triaxial or spheroidal. For small an- 
gular velocities the spheroidal case is known to be relevant [10] [22]. We thus put 0τ =  here and get 

( ) ( ) ( ) ( )
2

2 2 21, .
2v

GMU R R M R
R

ξ ψ ξ κ ω ξ
ν

= Φ + −                     (1.45) 

Using this we can find out if the body will be prolate or oblate and how this is affected by rotation. Since we 
concentrate on stars and planets surface forces and other neglected shape dependent forces are normally very 
small compared to the gravitational and centrifugal energies. 

The equilibrium equations can be written 

( )
2

2 2 2
2

d
0,

d
vU GM M R

R R R
ψ ξ κ ω ξ

ν
Φ∂

= − − =
∂

                      (1.46) 

( ) ( )
2

2 2 0,U GM M R
R

ψ ξ κ ω ξ
ξ ν

∂ ′= − =
∂

                        (1.47) 

where we have denoted differentiation by ξ  with a prime. If we multiply the first equation by R and the second 
by ξ  and subtract we get, after rearrangement, 

( ) ( )
2

2

d
.

d
v GM

R R
ψ ξ ψ ξ ξ

ν
Φ ′= +                             (1.48) 

This is essentially an equation of hydrostatic equilibrium. Note that it determines the equilibrium R-value with 
no direct reference to the angular velocity ω . The second equation, (1.47) can be written 

( ) ( )
2

2 2 ,GM M R
R

ψ ξ κ ω ξ
ν

′ =                            (1.49) 

and this expresses a balance of the shape dependent part of the gravitational force with the centrifugal force. If 
we put 

3 2
2 2 ,Rk q

GM
ω νκ νκ≡ =                               (1.50) 

this turns into the concise expression 

( ) .kψ ξ ξ′ =                                   (1.51) 

Since ( )1 0ψ ′ =  this will cause a shift of the shape from the spherical equilibrium, at 1ξ = , to 1ξ > , as 
long as 0ω > . Use of (1.39) shows that 

( ) ( )28 15 2 3k q κ= − .                             (1.52) 

The equilibrium ξ  is thus entirely determined by q and the moment of inertia 2κ . 

8. Finding the Position of the Minimum 
To investigate Equation (1.51), we use the second variant for ( )ψ ξ  in Equation (1.42) and get, after some al- 
gebra, 

( ) ( ) ( )
3

6 6 6 621 3 1 arctan 1 3 1 .k ξ ξ ξ ξ
−  = − + − − − −  

                (1.53) 

This looks simpler if we introduce the new variable ( ) 6 1η ξ ξ= − . Use of Equation (1.12) shows that 

6 21 1 ,e eη ξ≡ − = −                              (1.54) 

so that η  can also be regarded as a function of the eccentricity ( )eη . Now we get 

( )2 33 arctan 3 .k η η η η = + −                            (1.55) 
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For the homogeneous case 2 3k q=  and this formula, written in terms of the eccentricity by means of the 

identity, ( )2arctan 1 arcsine e e− = , is equivalent to the celebrated Maclaurin’s formula [10] from 1742. 

Taylor expansion of the Maclaurin function around e = 0 only contains positive even powers of e. The coeffi- 
cient of e6 vanishes so a very good approximation for this function is implied by 

( ) ( )2 3 2 2 84 13 arctan 3 1 .
15 7

e e O eη η η η   + − = + +    
                  (1.56) 

The two term approximation is nearly perfect for all planetary e-values, see Figure 2. Saturn has maximum e = 
0.43 and the absolute error at this value is 2 × 10−5 and the relative error is 4 × 10−4. The relative error even re- 
mains below 1% up to e = 0.75. 

Using this approximation we must solve 
2 24 11

15 7
k e e = + 

 
                                (1.57) 

and solving this for e2 gives 

2 7 151 1 .
2 7

e k
 

= + −  
 

                               (1.58) 

Use of Equation (1.25) gives 2 2
22J eκ = . Insertion of this into (1.52) eliminates 2κ  from 2k qνκ= . 

Some algebra then leads to the equation 

( ) ( )( )2 2 2
2 2, 1 7 3q e J e e J= + −                            (1.59) 

for q. This equation can be solved for J2 or for 2e  to give 

( )2 2
2 2, ,

7
1
3 1

qJ q e e
e

 
= − + 

                            (1.60) 

( )
2

2
2 2 2

1 3 4, 3 7 1 1 ,
2 7 7

e q J J J q
     = + + + −      

                    (1.61) 

 

 
Figure 2. The Maclaurin function ( ) ( )2 33 arctan 3f e η η η η = + −   

with 21e eη = −  compared to the approximations 24 15e  (lower 

curve) and ( )( )2 24 15 1 7e e+  (upper curve). 
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respectively. These results, together with 

( )2 2 2 ,e = − ≈                                   (1.62) 

21 1 ,e= − −                                  (1.63) 

are thus more exact versions of Equation (1.28). Already the approximation 24 15e , to the Maclaurin function, 
gives only a 3% error for Saturn, and simpler formulae, but use of these more exact versions removes all nu- 
merical considerations from the problem. 

9. Theory versus Observational Data 
Table 1 compares modern data with the predictions of Equations (1.59)-(1.63). Observed data for q,  , and J2 
from Lodders and Fegeley [23] are given in the first (horizontal) row of data for each of the major rotating pla- 
nets. In the same line e2 calculated from ( )2 2e = −   is then given. The last value in the row is the dimen- 
sionless moment of inertia 2 2I MRκ =  as given by Lodders and Fegeley [23]. These values are based on cal- 
culation. For original sources the reader may consult The Planetary Scientist’s Companion by Lodders and Fe- 
geley [23]. 

For each pair of the values q, J2, and e2, in the first row, the third value is calculated using (1.59)-(1.61) and 
the results are displayed in the second row of data for each planet in Table 1.   is then found from Equation 
(1.63). For Jupiter and Saturn there is a third row of data in Table 1. This row is analogous to the second row 
except that the data are calculated from observational pairs of data using the first order formula (1.28) so that q 
is given by observational   and J2 according to 22 3q J= − ,   is found directly from (1.28) using the ob- 
servational q and J2, and so on. These rows illustrate the fact that the non-linear formulas of this work are more 
accurate than first order results, in spite of the point core approximation. Even for the Earth the first order for- 
mula gives discrepancies in the third digit. 

Table 1 shows clearly that the observational data and theory are in reasonable agreement for the planets with 
the exception of Mars and Uranus. The perfect agreement for the Earth is probably due to the fact that the ob- 
lateness is determined from the shape of the geoid (the equipotential surface at sea-level). For Mars the disagree- 
ment may depend on the fact that oblateness is determined from geometrical shape rather than from the shape of 
an equipotential surface. Also, of course, the assumption of hydrostatic equilibrium may not be perfect for Mars. 
The problems with the Uranus data, and to some extent those for Neptune, are probably due to observational 
uncertainty. 

10. Oblateness and Moment of Inertia 
Instead of eliminating the moment of inertia (or mass ratio) 2κ  of Equation (1.21) from the equations as done 
above one can retain it and try to use observed data to get information about 2κ . Series expansion of Equation 
(1.55) with η  expressed in terms of appropriate variables gives 

( )
2

3
2 2

3
142 3 2 3

q q O q
κ κ

 = + + − − 
                          (1.64) 

for the flattening, or oblateness, expressed in terms of q and the dimensionless moment of inertia. For a homo- 

geneous body 2 2 5κ =  so ( )2 35 75
4 224

q q O q= + +  and the old Newtonian result, 5
4

q= , is obtained, to 

first order. In the opposite (Roche) limit of dominating central mass ( )2 0κ =  and one finds 

( )2 31 3
2 56

q q O q= + + . 

In a similar way we get from J2 of Equation (1.25) that 

( )
22

2 3
2 2 2

8
212 3 2 3

J q q O qκ κ
κ κ

 = + + − − 
                      (1.65) 

is the dimensionless quadrupole moment of the rotating body. For the homogeneous ( )2 2 5κ =  body this im- 



H. Essén 
 

 
566 

plies ( )2 3
2

1 8
2 525

J q q O q= + + . In the opposite limit of 2 0κ →  one finds that J2 goes to zero. 

Our results (1.64) and (1.65), to first order, are 

( )2
2

1 ,
2 3

qκ
κ

=
−

                                 (1.66) 

( )
2

2
2 2 ,

2 3
J qκκ

κ
=

−
                               (1.67) 

and imply that 2
2J κ=  . These may be compared to similar expressions derived by G. H. Darwin using the 

Radau equation [8] 

( )
( )

2
22

40 ,
16 25 2 3

qκ
κ

=
+ −

                             (1.68) 

( ) ( )
( )

22
2

2 22

64 25 2 3
.

48 75 2 3
J q

κ
κ

κ

− −
=

+ −
                           (1.69) 

These two have the same values at 2 2 5κ = , the homogeneous sphere, and the same derivatives with respect 
to 2κ  at this point, as (1.66) and (1.67) respectively. The simple expressions (1.66) and (1.67), derived here, 
however, also have natural limits for 2 0κ = , in contrast to e.g. (1.69), which becomes negative for 2 2 15.κ <  

We now use Equation (1.25) i.e. 2 2
22J eκ =  and Equation (1.61) for ( )2

2,e q J  to calculate 2κ  in terms 
of the observed q and J2. The last entry in the second row for each planet of Table 1 gives 2κ , 

( ) ( )2 2
2 2 2, 2 , ,q J J e q Jκ =                             (1.70) 

as calculated from observational, first row, q and J2. Since q and J2 are easier to measure accurately than flat- 
tening this should give more reliable values than using the observed ellipticity directly. In this way, one obtains 
information about the radial mass distribution in the interior of the planet from purely external data. The result- 
ing 2κ -values are given last in the second line for each planet in Table 1. The data obtained in this way are 
compared with published and tabulated 2κ -values for the planets (Lodders and Fegley [23]). For Earth and 
Mars the agreement is reassuring. For the outer planets there is naturally a lot of uncertainty but at least the in- 
creasing trend from a minimum at Saturn is a common feature. 

One problem with the outer planets is that the angular velocity is not constant. For a recent study of Saturn’s 
rotation, see Anderson and Schubert [24]. Also for the Sun, it is hard to decide what angular velocity, ω , 
should be used to find q. Since these bodies have differential rotation some average must be used. There is a 
well-defined theoretical average angular velocity (Essén [25]) but it is not directly observable. Once an average 
angular velocity has been selected for the Sun, one can use the present theory and a theoretical 2κ -value (0.059) 
to estimate the solar oblateness and J2. The definition of average angular velocity in [25] indicates that an angu- 
lar velocity near the radius of gyration 0.24R Rκ ≈  should be appropriate. The further assumption that angular 
velocity is constant on coaxial cylinder surfaces (Kippenhahn and Weigert [13], Ulrich and Hawkins [26]) indi- 
cates that an angular velocity near the poles of the Sun rather than equatorial angular velocity is relevant. 

A handbook value [23] for the polar angular velocity of the Sun is 6 12.1 10 rad sω − −= × . Use of this gives the 
q-value (1.15 × 10−5) in Table 1. The precise numbers are not important here. What is important is that, because 
of the small 2κ , an angular velocity near the pole rather than an equatorial angular velocity is used. Otherwise 
the flattening will be exaggerated. Use of 51.15 10q −= ×  and 2 0.059κ =  from Lodders and Fegley [23], to- 
gether with formulas (1.66) and (1.67), gives the results in the top row of Table 1, that is, 6~ 6.3 10−× , and

7
2 ~ 3.7 10J −× . These values are, at least, of the same order of magnitude as the currently best motivated values 

[3] [4] [26]-[28] which are roughly 6~ 9 10−×  and 7
2 ~ 2 10J −× . 

11. Small Oscillations near Equilibrium 
We now wish to study the small amplitude motions of a gravitating rotating nearly spherical body. We wish to 
know how the radius R is affected by the rotation so we take R to denote the constant non-rotating equilibrium 
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radius and let Rλ  be the variable radius. λ  is thus a dimensionless variable which is equal to unity at the 
undeformed geometry. We parameterize the positions of the particles of the system as follows 

( ) ( ) ( ) ( ) 12 2, , .i i x i y i zR x y zλ ξ τ λ ξ τ ξ τ ξ τ
−∗ ∗ ∗ = + + − + −  

r e e e                (1.71) 

The , ,i i ix y z∗ ∗ ∗  are then the non-rotating equilibrium dimensionless position coordinates of the particles. 
Equilibrium corresponds to 1λ ξ= = , 0τ = , see Section 2. λ  is a dilatation (or radial pulsation) degree of 
freedom, while 1ξ ≠  corresponds to spheroidal deformations and 0τ ≠  to triaxial deformations. 

The velocities of the particles are 

( ) ( ) ( ) ( )

( ) ( ) ( )( )

12 2

22 2

, , , , ,

2 .

i i x i y i z

i x i y i z

R x y z

R x y z

λ ξ τ λ ξ τ λ ξ τ ξ τ ξ τ

λ ξ τ ξ τ ξξ ττ ξ τ

−∗ ∗ ∗

−∗ ∗ ∗

 = + + − + −  
 + + + − − − −  

  



  

  

v e e e

e e e
         (1.72) 

An elementary computation shows that the kinetic energy, 21
2 i i

i
T m= ∑ v , becomes 

( ) 2 2 2
2 3 3

2 2
2 2 2 2 2

4 4 4

1 1 1, , , , , 2 1 2 1
2 2

2 21 1 4

IT λ ξ τ λ ξ τ ξ τ λ λξ λξ λτ λτ
δ δ δ

ξ τ ξτλ ξ λ τ λ ξτ
δ δ δ

     = + + + − + +          
   

+ + + + −    
    

     

 

 

 

          (1.73) 

Here 2 2δ ξ τ≡ −  and 2 2 2 22 i i
i

I R m x MR κ∗= =∑ . 

The potential energy is given in Equation (1.44). To get an explicit potential energy we must find some ex- 
pression for the volume dependent (pressure) energy ( )v RλΦ . As a model for this part of the energy we take 
the simple expression 

2

1

1 1
1v n

GM
n Rν λ +Φ =
+

                                (1.74) 

where we must take 0n >  if the corresponding force is to balance gravity and prevent collapse. Putting these 
together we thus find the total potential energy 

( ) ( ) ( )
2 2

2 2 2 2 2 2
1

1 1 1 1, , , ,
1 2n

GM GMU MR
n R R

λ ξ τ χ ξ τ κ ω λ ξ τ
ν ν λλ += + − +

+
            (1.75) 

If we use the definition of k in Equation (1.50), we find the expression 

( )
( )

( ) ( )
2

2 2 2
1

1 1 1, , , ,
21 n

GMU k
R n

λ ξ τ χ ξ τ λ ξ τ
ν λλ +

 
= + − +  + 

                (1.76) 

for the potential energy of the system. 
Combining T of Equation (1.74) with U to the Lagrangian ( ), , , , ,L T Uλ ξ τ λ ξ τ = − 

 , we can get the dynam- 
ics of this three degree of freedom system exactly by finding and solving the Euler-Lagrange equations of the 
system. Here we will instead assume small oscillations and make a normal mode analysis. We first Taylor ex- 
pand U to quadratic terms around 1, 0,λ ξ τ= = =  and then solve for the zeroes of the first derivatives of this 
quadratic to get the position of the minimum. The result is 

( )
( ) ( )0

8 5
1 1 ,

8 5 3
k k k

n k n k k n
λ

+
= + ≈ +

− − +
                        (1.77) 

( )
( ) ( )0

5 51 1 ,
8 5 3 8

k n k
k

n k n k k
ξ

+
= + ≈ +

− − +
                       (1.78) 

0 0.τ =                                     (1.79) 
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We now introduce new variables, ,ρ σ  through 

0 0, ;ρ λ λ σ ξ ξ= − = −                              (1.80) 

then, of course, ,ρ λ σ ξ= = 

  . In the kinetic energy, we replace , , ,λ ξ τ  in the coefficients with the equili- 
brium positions 0 0 0, ,λ ξ τ  and expand to first order in k. In the potential energy, we make the same replacement 
in the quadratic Taylor expansion, expand to first order in k and throw away constant terms. The result is that 

( ) ( )
2 2

2 2 2 2 2 23 15 23 3
2 2 2

MR k kT
n

κ ρ σ τ ρσ σ σ τ = + + + − + +  
                    (1.81) 

and that 

( )
2

2 2 2 2 2 28 15 153 4 .
2 15 8 8
GM n kU

R
ρ σ τ ρ ρσ σ τ

ν
 = + + − + + +  

              (1.82) 

Only the degrees of freedom ρ  and σ  are coupled and only when 0k > . For 0k = , the spheroidal σ - 
mode and the triaxial τ -mode are degenerate (have the same frequency). The value 4 5n =  is special since for 
that value all three modes have the same frequency. 

For the ρ -mode pressure is restoring force in the contracting phase of the motion and gravity in the expand- 
ing phase. For the other two modes, σ , τ , gravity alone acts to restore the spherical minimum. If we put 

( )2 2
0 3 2 3

8 2 3
15

GM GM
R R

κ
νκ

Ω ≡ = −                           (1.83) 

Equation (1.50) shows that 
2

2
0

8
15

k ω
=

Ω
, and Equation (1.57), with 2 2e ≈  , that 8

15
k =  . For 4 5n >  we 

then get the approximate eigen frequencies 

2 2 2
0

5 2 ,
4 3
n

ρω ω= Ω −                                (1.84) 

2 2 2
0

161 ,
15nσω ω = Ω + − 

 
                             (1.85) 

2 2 2
0

161 ,
15nτω ω = Ω − + 

 
                             (1.86) 

to first order in k. From this one easily finds the following first order results 

0

2π 2 41 ,
155

T
nnρ

 = + Ω  
                             (1.87) 

0

2π 1 161 1 ,
2 15

T
nσ

  = − −  Ω   
                            (1.88) 

0

2π 1 161 1 ,
2 15

T
nτ

  = + +  Ω   
                            (1.89) 

for the corresponding periods. 
The free radial oscillation mode for the Earth is known [29] to have  min20 1228 .4 s5Tρ == . This means 

that one can calculate n and find it to be n = 13.19 for the Earth. Since the equilibrium radius of the rotating 
Earth is 0Rλ  Equation (1.78), and a small calculation, now shows that Earth’s mean radius is 863 m larger due 
to rotation compared to the non-rotating case. The fairly large n also shows that the g mode periods are essen- 
tially independent of n. For the Earth one finds that the τ -mode has period 83. min22Tτ = . Due to the rota- 
tional splitting, which is given by 

02π ,T T Tτ σ∆ = − = Ω                             (1.90) 

The σ -mode is 17 seconds shorter. The longest observed free oscillation period of the Earth has period 53.8 
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min (see Udias [29]). The main explanation for the discrepancy is probably that the model neglects elastic forces. 
Though not quantitatively reliable from this point of view, the model has the advantages of showing in a simple 
way how rotational splitting of the modes arises and the order of magnitude of such splittings. 

12. Conclusion 
The basic non-linearity of the problem of rotational flattening of a gravitationally bound body is illustrated by 
the fact that even the simplest conceivable model leads to a cubic equation [30]. Here some apparently new re- 
sults relating to the classic theory of the figure of rotating bodies have been presented. The basic model, a point 
mass at the center of a homogeneous fluid, is characterized by their mass ratio, and interpolates between the lim- 
its of an ellipsoidal homogeneous fluid and a body dominated by a small central mass concentration. It allows 
simple analytic treatment but is still flexible enough to correctly describe the essential hydrostatics of real rotat- 
ing planets as well as stars. Such models are always useful, especially when one wishes to analyze, compare, 
and understand large numbers of observational data. In spite of the simplicity, there is no perturbation order to 
which the results are valid. The nonlinearity of the basic equations can be retained. To be more precise, Equation 
(1.56) shows that the formulas are valid to seventh order in the eccentricity (within the basic model with its sim- 
plified mass distribution). As demonstrated by the numerical experiments on Jupiter and Saturn data, this is es- 
sential. In fact, Table 1 indicates that the geometric oblateness of the surface equipotential surface of Mars and 
Uranus determined from observed q and J2 values using (1.61) probably are more reliable than current observa- 
tional data. Finally the dynamics of the model reveals the essentials of the coupling and rotational splitting of the 
most basic free oscillations of a planet without recourse to expansion in spherical harmonics. 
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