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Abstract 
Independent Component Analysis (ICA) was often used to separate movement related indepen-
dent components (MRICs) from Electroencephalogram (EEG) data. However, to obtain robust spa-
tial filters, complex characteristic features, which were manually selected in most cases, have been 
commonly used. This study proposed a new simple algorithm to extract MRICs automatically, 
which just utilized the spatial distribution pattern of ICs. The main goal of this study was to show 
the relationship between spatial filters performance and designing samples. The EEG data which 
contain mixed brain states (preparing, motor imagery and rest) were used to design spatial filters. 
Meanwhile, the single class data was also used to calculate spatial filters to assess whether the 
MRICs extracted on different class motor imagery spatial filters are similar. Furthermore, the spa-
tial filters constructed on one subject’s EEG data were applied to extract the others’ MRICs. Finally, 
the different spatial filters were then applied to single-trial EEG to extract MRICs, and Support 
Vector Machine (SVM) classifiers were used to discriminate left hand、right-hand and foot imagery 
movements of BCI Competition IV Dataset 2a, which recorded four motor imagery data of nine 
subjects. The results suggested that any segment of finite motor imagery EEG samples could be 
used to design ICA spatial filters, and the extracted MRICs are consistent if the position of elec-
trodes are the same, which confirmed the robustness and practicality of ICA used in the motor 
imagery Brain Computer Interfaces (MI-BCI) systems. 
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1. Introduction 
Brain-Computer Interfaces (BCI) translate brain signals into control signals that allow the user to communicate 
with the outside world without using muscles or peripheral nerves [1]. In recent years, ICA has been successful-
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ly used to identify brain related signals and artifacts from Electroencephalography (EEG) data in BCI system [2] 
[3]. In this paper, the chosen ICA algorithm was Infomax [4]. Here, a new algorithm was proposed to extract 
movement related independent components (MRICs) automatically, which were used to classify the different 
brain states corresponding to different motor imagery activities. 

Meanwhile, we studied the influences of different design samples on ICA spatial filters performance. On one 
hand, lots of trials, including motor imagery state or rest state [5], were commonly used to optimize ICA spatial 
filters. In theory, more trials would provide more information that can help improve the classification accuracy. 
However, using more trials would increase the burdens of data acquisition and computation. In this study, dif-
ferent time segments of small number of trials, which contain all different brain states during the experiments, 
were used to design ICA spatial filters. On the other hand, ICA is an unsupervised algorithm [6], so there is no 
previous knowledge about the class labels of the motor imagery data. In this paper, the single class data was 
used to design spatial filters to assess whether the MRICs extracted by the ICA spatial filters constructed on dif-
ferent single class motor imagery data were similar. Furthermore, the state-to-state method [5] and the ses-
sion-to-session method [7] have been proposed. In this study, a subject-to-subject method, which applied spatial 
filters constructed on one subject’s motor imagery EEG data to extract the others’ MRICs, was proposed. The 
method was investigated by cross validation among nine subjects. In addition, Support Vector Machine (SVM) 
[8] classifiers were used to discriminate left hand, right hand and foot imagery movements. The main goal of 
this study is to assess whether different EEG segments would influence the performance of ICA spatial filters, 
and confirm the practicality of ICA used in MI-BCI system for its robustness. 

2. Experimental Paradigm and Dataset 
The performances of the algorithms were evaluated on BCI Competition IV Dataset 2a. The datasets were rec-
orded from nine healthy subjects. For each subject, two sessions on different days were recorded. During each 
session, the subjects were asked to perform 288 trials of four different motor imagery tasks, namely left hand, 
right hand, foot and tongue motor imagery (72 trials per class). Each trial began with an acoustic cue “beep” (at t 
= 0 s), and along with a fixation cross appeared on the black screen. After two seconds (at t = 2 s), an arrow cue, 
which pointed either to the left, right, down or up, appeared for 1.25 s on the screen. The subjects were then in-
structed to image the corresponding imaginary movement between 3 s and 6s. After 6 s (at t = 6 s), the screen 
was black again, allowing the subjects to relax. The timing scheme is shown in Figure 1 right. 

Twenty-two EEG electrodes (with left mastoid serving as reference and right mastoid as ground) were used to 
record cortical potential. The configuration of electrodes distribution is shown in Figure 1 left. The data was 
sampled at 250 Hz and bandpass-filtered between 0.5 Hz and 100 Hz. An additional 50 Hz notch filter was 
enabled to suppress line noise. 

In this paper, three of the four classes motor imagery data (left hand, right hand and foot) were selected to 
evaluate our algorithms. In order to assess the robustness to artifacts and outliers of ICA, no treatments (dis-
carded or artifact correction) were performed. The raw EEG data was only bandpass-filtered between 8 Hz and 
35 Hz, which covering mu and beta rhythms bands. 
 

  
Figure 1. Layout of EEG electrodes (left) and Timing scheme of paradigm (right) for BCI Competition 2008 Datasets 2a. 
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3. Methods 
3.1. ICA Algorithm 
ICA is a Blind Source Separation (BSS) algorithm. Assume that there is an N-dimensional unknown vector of 
hidden independent sources SN = [s1,…,sN]T. The measured multi-channel EEG signals XN = [x1,…,xN]T can be 
considered as the following liner mixture of sources. 

N N=X AS                                          (1) 

where A is an unknown mixture matrix. The goal of ICA is to obtain hidden sources with the unmixing matrix 
W by following matrix transformation. 

N NU = WX                                         (2) 

where unmixed signals UN are the estimate of SN. Each row of W is a spatial filter for estimating ICs and each 
column of A (equals W−1) is a spatial pattern, which consists of electrode weights of ICs [5]. The same goal of 
different ICA algorithms is to make the estimated sources ui (I = 1,2,...N) statistically independent. In this paper, 
instead of using the standard Infomax code, the computer code of ICA algorithm was written in our own. The 
independence criterion of information maximization and natural gradient optimization algorithm were used. The 
final iterative optimization formula of matrix W is as follows. 
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where E[ ] is statistical average. K is the switch matrix corresponding to sources’ different probabilistic models. 
Here, the ICA algorithm uses the diagonal elements kii to switch between super- and sub-Gaussian model [9]. 

3.2. Identifying Independent Components 
Usually, complex characteristic features have been used to identify MRICs [10]. In this paper, just the spatial 
distribution information of sources was used to recognize the independent components. From the spatial pattern, 
we can conclude that the distribution of sources should be consistent with the position of electrodes, which 
means that the source si should have the highest influence on the nearest measured electrode signal xi. So we 
search the maximum values of every column of absolute value matrix (|A|). If the row number of the maximum 
value was consistent with the row number of the measured electrode signal xi, then the corresponding column 
number j of the maximum value was recorded, and the spatial filter for extracting sources si was wj. 

In this paper, ten MRICs (IC3, IC5, IC8, IC9, IC10, IC11, IC12, IC15, IC16, IC17), which have biggest 
weights on the nearest measured electrode signal x3, x5, x8, x9, x10, x11, x12, x15, x16, x17 respectively, were ex-
tracted from twenty-two channel EEG signals, because they represent brain activities from sensorimotor cortex 
areas. If the ten sources do not exist simultaneously with our method, it means the filter design fails. Figure 2 
shows spatial projections of selected ten motor ICs for one subject S3. 

3.3. Feature Selection and Classification 
For one single trial data xi, the selected ten spatial filters wj(j = 1,2,…,10) were used to extract MRICs by equa-
tion (4). 

i j is w x=                                           (4) 

The normalized variance fi of each source was used as features of classifier. 
10

1
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=
∑= .                                  (5) 

Support Vector Machine (SVM) classifier with a Gaussian kernel was used to estimate the classification ac-
curacy for each trial, and a 5-fold cross-validation was performed to avoid overfitting. Within each trial, the 
same time segment (3.5 - 5.5 s), which was the motor imagery periods, was used to train and test the classifier. 
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Figure 2. Topographic maps of subject S3 (BCI Competition IV Dataset 2a). The selected ten comonents (from left to right) 
are: IC3, IC5, IC8, IC9, IC10, IC11, IC12, IC15, IC16, IC17. 

4. Results 
4.1. ICA Filter Design Based on Different Time Segment Data 
This section shows the relationship between ICA filter performance and training samples. The 0 - Tw time seg-
ment of one trial was selected, and ICA spatial filters were optimized on a 5Tw (5 × Tw seconds) time segment. 
The value of Tw was 1 s, 2 s, 3 s, 4 s, 5 s, 6 s, 7 s respectively, which gradually contains all brain states through-
out the experiment (preparing state, motor imagery state and rest state). For each subject, the five trials were se-
lected randomly, and a 10 × 22 spatial filter was designed to extract MRICs. Finally, the normalized variances of 
ten MRICs were used as features of SVM classifier for 5-fold cross-validation. The procedure was repeated 30 
times, the mean classification accuracies were calculated for each subject (see Table 1), p.s., the trials of filter 
design failure were not included in. 

As shown, the average accuracies of nine subjects obtained on different time segments were very similar. The 
maximum is 66.33% in 0 - 5 s, and the minimum is 65.11% in 0 - 1 s. Meanwhile, with the length of time seg-
ment increased, the average classification accuracy increased slightly in the front of 5 s. It may be because that 
data of longer duration provides more information to optimize ICA spatial filters. From all the seven different 
time segments results, we can conclude that any time segment EEG data can be used to design ICA spatial filters, 
even the non-motor-imagery data (0 - 1 s and 0 - 2 s) or mixed-state data(0 - 7 s), which demonstrated that the 
performance of ICA algorithm is not related closely to the train samples. 

4.2. ICA Filter Design Based on Different Single Class Data 
Usually the mixed class data was used to calculate ICA spatial filters. However in the Section 4.1, we have 
proved that even the non-labeled data (preparing state and rest state) can be used to design ICA spatial filters. In 
this section, this view was further proved by comparing the effect of different single class data on the perfor-
mances of ICA spatial filters. For each subject, ICA spatial filters were designed only on single class EEG data, 
i.e., used left hand motor imagery data (5 trials selected randomly from 72 trials of left hand motor imagery data) 
to design spatial filters, then the filters were used to extract MRICs from all the 216 trials (72 trials × 3 class), 
etc. Without loss of generality, 0 - 7 s continuous time segment was used to design ICA spatial filters, then a 
5-fold cross-validation was performed by SVM classifier. The above procedure was repeated 30 times, and the 
average accuracies of all nine subjects were shown in Figure 3. As shown, for each subject, the average classi-
fication accuracies under the four cases were similar. For the same subject, the biggest difference of classifica-
tion accuracies under four conditions was less than 4.5%. And under the same single class condition, the biggest 
difference of average classification accuracies of all nine subjects was only less than 1%. We thus can conclude 
that the performance of ICA spatial filters is not related closely to the class labels of train samples, and any class 
of motor imagery data could be used to design ICA spatial filters. 
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Table 1. Mean classification accuracies of 9 subjects in 0 - Tw segments. 

Time 
Subject 

 S1 S2 S3 S4 S5 S6 S7 S8 S9 Mean Std 

0 - 1 s 80.21 71.88 85.53 54.36 54.40 48.70 76.78 61.81 52.33 65.11 13.70 

0 - 2 s 81.71 71.97 86.35 54.06 53.18 47.58 78.99 59.92 53.35 65.23 14.59 

0 - 3 s 79.26 71.59 86.26 52.75 54.48 50.18 81.46 61.22 51.39 65.40 14.35 

0 - 4 s 81.03 71.94 88.28 53.11 51.22 50.72 80.01 62.11 55.14 65.95 14.60 

0 - 5 s 80.82 71.26 86.17 54.09 52.27 51.30 83.66 63.12 54.32 66.33 14.39 

0 - 6 s 80.08 72.26 86.56 55.98 53.43 49.56 80.65 62.24 54.63 66.15 13.90 

0 - 7 s 81.40 72.17 88.70 56.64 52.18 50.30 80.49 61.09 53.47 66.27 14.60 

 

 
Figure 3. Average classification accuracies of nine subjects. The data 
for designing ICA spatial filters was left-hand, right-hand, foot and 
mixed-class motor imagery data respectively. 

4.3. Subject to Subject Transfer 
In this section, the subject-to-subject transfer was implemented on nine subjects. i.e., the ICA spatial filters, 
which were calculated on one subject’s 35-second (5 trials × 7 seconds) motor imagery EEG data, were used to 
extract the MRICs of all nine subjects. After that, the normalized variance features of the ten MRICs were ap-
plied to SVM classifier for training and testing. The procedure was also repeated 30 times. The average cross 
validation classification accuracies between subjects were compared in Table 2. 

One obvious conclusion that can be seen in Table 2 is that the highest accuracy is S3 (86.96%) while the 
lowest accuracy is S5 (46.96%). However, even when using the subject S5’s data to design ICA spatial filters, 
the average accuracy was still the highest (67.64%). While the overall performance of ICA spatial filters de-
signed on subjects S6 and S9 were slightly inferior, the average accuracies were just 62.23% and 61.15% re-
spectively. All the results suggested that the ICA spatial filters constructed on one subject’s motor imagery data 
also can be used to extract correct MRICs for other subjects, which reflected the similarity of brain structures. 

5. Discussion and Conclusion 
This study proposed a new simple algorithm to extract MRICs automatically, which just used the spatial pattern 
of ICs. The homemade ICA code based on Infomax theory was used to optimize spatial filters, and the perfor-
mance of filters, constructed on different training data, was compared. The experiment results showed that any 
time segment and any class of EEG data can be used to design ICA spatial filters. This phenomenon suggested 
that the performance of ICA spatial filters have not much relationship with the brain state, which is convenient 
for practical application of ICA-BCI system. In addition, we fully believe that ICA algorithm has a strong ability 
to acquire similarity information of brain structures. Thus, if the positions of EEG electrodes are the same, ICA  
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Table 2. Average classification accuracies of subject-to-subject transfer between nine subjects. 

Test 
Subject for ICA filers design 

S1 S2 S3 S4 S5 S6 S7 S8 S9 Mean 

S1 81.40 82.39 81.96 80.95 83.05 77.02 80.58 81.21 71.01 79.95 

S2 72.48 72.17 68.08 67.47 72.18 66.68 66.04 71.98 66.11 69.24 

S3 86.91 87.59 88.70 88.52 92.10 85.47 86.45 86.24 80.66 86.96 

S4 55.46 52.65 55.95 56.64 53.80 50.31 53.38 55.67 50.11 53.77 

S5 49.87 49.84 46.08 47.71 52.18 44.41 45.63 44.94 41.99 46.96 

S6 50.26 49.57 48.38 49.43 54.24 50.30 54.87 47.33 51.50 50.65 

S7 82.25 83.28 81.60 79.68 81.52 70.18 80.49 79.91 73.68 79.03 

S8 63.73 62.98 70.82 67.64 62.73 61.80 61.61 61.09 61.82 63.80 

S9 54.70 54.86 52.12 58.31 56.98 53.92 54.59 53.92 53.47 54.76 

Mean 66.34 66.15 65.63 66.26 67.64 62.23 64.85 64.70 61.15 64.99 

Std 14.71 15.47 15.89 14.48 14.99 13.75 14.48 15.51 12.75 2.08 

 
spatial filters constructed on the different individual data sets should be consistent to some extent, which can be 
seen from the results of the subject-to-subject transfer. In summary, this study fully proved the robustness and 
practicality of ICA used in the MI-BCI systems. 
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