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Abstract 
Ontologies are widely used in modeling the real world for the purpose of information sharing and 
reasoning. Traditional ontologies contain only concepts and relations that describe asserted facts 
about the world. Modeling in a dynamic world requires taking into consideration the uncertainty 
that may arise in the domain. In this paper, the concept of soft sets initiated by Molodtsov and the 
concept of rough sets introduced by Pawlack are used to define a way of instantiating ontologies of 
vague domains. We define ontological algebraic operations and their properties while taking into 
consideration the uncertain nature of domains. We show that, by doing so, intra ontological oper-
ations and their properties are preserved and formalized as operations in a vague set of objects 
and can be proved algebraically. 

 
Keywords 
Ontologies, Description Logics, Soft Sets, Rough Sets, Uncertainty 

 
 

1. Introduction 
An ontology is used to model an area of knowledge by clearly defining semantically the concepts in the given 
domain and the relationships among them without any ambiguity in such a way that it can be understood by hu-
mans and computers. For this to be effective, all the knowledge of the domain must be captured and represented 
in a crisp logic. Traditional ontologies contain only concepts and relations that describe asserted facts about the 
world. In many cases, it is preferable to store a piece of information even imprecise and uncertain rather than to 
interpret its contents in a restrictive manner, which will lead to storing of erroneous pieces of information [1]. 
Uncertainties, which could be caused by information incompleteness, randomness, limitations of measuring in-
struments, etc., are pervasive in many complicated problems in economics, engineering, environment, social 
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science, medical science etc., that involve data which are not always crisp [2]. If ontology modeling should re-
flect the real world, then uncertainty is one of the characteristics of the world that must be handled. The lack of 
traditional ontologies formalisms to support the representation of uncertainties and imprecision limits them for 
handling incomplete or partial knowledge about an application domain. Modeling uncertainty in ontologies as 
well as some proposed methods of reasoning with uncertainty has recently started emerging. Most of these me-
thods rely on mathematical techniques of uncertainty such as the probabilistic approach, the fuzzy logic ap-
proach and the Dempster-Shafer theory [1] [3] [4]. Despite modeling of ontology with uncertainty, it must still 
obey certain operations considered as algebraic by nature such as satisfiability, concepts intersection, etc. 

This paper uses the soft set concept defined by Molodtsov and the concept of rough set initiated by Pawlack 
to provide a formalization of the basic operations of ontologies while taking into consideration the vagueness in 
data representation.  

The rest of the paper is organized as follows: Section 2 reviews the concept of description logics as ontologies 
languages as well as the concepts of soft set and rough set. In Section 3, a way of representing uncertainty is de-
fined. Ontological algebraic operations and their properties are defined in Section 4. Section 5 presents some re-
lated works and finally, and Section 6 concludes the work. 

2. Preliminaries 
In this section, we present the basic notions of description logics (DLs) [5] as ontology language and also pre- 
sent the concepts of soft set [6] and the theory of rough set [7] [8] as some of the mathematical tools for han-
dling uncertainty in data. 

2.1. Description Logic 
Because of their inference capability and their computational simplicity, DLs are used to provide a logical for-
malization for ontologies and the Semantic Web. DLs are family of knowledge representation formalisms which 
can be used to represent the terminological knowledge of an application domain in a structured and formally 
well-understood way. Well understood means that there is no ambiguity in interpreting their meaning by both 
humans and computer systems. They are characterized by the use of various constructors to build complex con-
cepts from simpler ones, an emphasis on the decidability of key reasoning tasks, and by the provision of sound, 
complete and (empirically) tractable reasoning services [9]. Inference capability of DLs makes it possible to use 
logical deduction to infer additional information from the facts stated explicitly in an ontology [10]. DLs are 
made up of the following components:  
 Instances, which denote singular entities in our domain of interest, for example, the set of instance can be de-

fined as I = {Peter, Mary, Amina, Tunde, Musa, Halima, John}.  
 Concepts, which are collections or kinds of things, for example, the set of concepts can be defined as C = 

{Person, Man, Woman, Parent, GrandMother, Father, Mother, MotherWithManyChildren, Wife, MotherWi-
thoutDaughter }. 

 Attributes, which describe the aspects, properties, features, characteristics, or parameters that objects can 
have. For example, the set of attributes can be defined as A = {Female, Male, Tall, Beautiful, Far, volumin-
ous}. 

 Relations, which describe the ways in which concepts and individuals can be related to one another. For ex-
ample, the set of Relations can be defined as R = {MotherOf, FatherOf, HusbandOf, HasChild, HasHusband}. 

It is customary to separate them into three groups: assertional (ABox) axioms, terminological (TBox) axioms 
and relational (RBox) axioms. 
 ABox axioms capture knowledge about named individuals. 

For example, Father (peter) is a concept asserting that peter is an instance of the concept Father. hasChild 
(peter, amina) is a role assertions which asserts that peter is the parent of amina. 
 TBox axioms describe relationships between concepts. For example, the general concept inclusion such as 

Mother ⊑ Parent which defines Mother as subsumed by the concept Parent. Figure 1 defined in [5] shows a 
sample TBox describing the family relationship. 

 RBox axioms refer to properties of roles.  
It captures interdependencies between the roles of the considered knowledge base. For example the role in-

clusion motherOf ⊑ parentOf.  
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                   Figure 1. TBox of family domain.                                    
 

An interpretation I = (∆I, .I) consists of a set ∆I called the domain of I, and an interpretation function .I that 
maps each atomic concept A to a set AI ⊆ ∆I, every role R to a binary relation RI , subset of ∆I × ∆I and each in-
dividual name a to an element I Ia ∈∆ . For example an interpretation of the concept Father may be {musa, pe-
ter}. Which means that, musa and peter satisfy all the properties of the concept Father as defined in the TBox of 
Figure 1.  

An ontology is said to be satisfiable if an interpretation exists that satisfy all its axioms. When an ontology is 
not satisfied in any interpretation, it is said to be unsatisfiable or inconsistent. 

There exist several DLs and they are classified based on the types of constructors and axioms that they allow, 
which are often a subset of the constructors in SROIQ. The description logic ALC is the fragment of SROIQ 
that allows no RBox axioms and only ⊓, ⊔, ¬, ∃ and ∀ as its concept constructors. The extension of ALC to in-
clude transitively closed primitive roles is traditionally denoted by the letter S. This basic DL is extended in sev-
eral ways. Some other letters used in DL names hint a particular constructor, such as inverse roles I, nominals O 
(i.e., concepts having exactly one instance), qualified number restrictions Q, and role hierarchies H. So, for ex-
ample, the DL named SHIQ is obtained from S by allowing additionally the role hierarchies, inverse roles and 
qualified number restrictions. The letter R most commonly refers to the presence of role inclusions, local reflex-
ivity, self, and the universal role U, as well as the additional role characteristics of transitivity, symmetry, 
asymmetry, role disjointedness, reflexivity, and irreflexivity [10]. 

Although DLs have a range of applications, OWL is one of its main applications. OWL is based on Descrip-
tion Logics but also features additional types of extra-logical information such as ontology versioning informa-
tion and annotations [11]. The main building blocks of OWL are indeed very similar to those of DLs, with the 
main difference that concepts are called classes and roles are called properties [10]. Large parts of OWL DL can 
indeed be considered as a syntactic variant of SROIQ. In many cases, it is indeed enough to translate an operator 
symbol of SROIQ into the corresponding operator name in OWL. For example, A ⊓ B is written in OWL as 
Object Intersection Of (AB). A ≡ B is written in OWL as Equivalent Classes (AB). 

2.2. Soft Set 
Let U refers to an initial universe, E is a set of parameters, P(U) is the power set of U. [6] defined soft set in the 
following way: A pair (F, E) is called a soft set (over U) if and only if F is a mapping of E into the set of all 
subsets of the set U. 

( ):F E P U→  
In other words, the soft set is a parameterized family of subsets of the set U. Every set ( )F ε , Eε ∈ , from 

this family may be considered as the set of ε -elements of the soft set (F, E), or as the set of ε -approximate 
elements of the soft set.  

Example 1: Consider the commonly quoted example [2] [6] [12] of a soft set (F, E) which describes the “at-
tractiveness of houses” that one is considering to purchase. 

Suppose that there are six houses in the universe U, denoted by { }2 6, , ,lU h Eh h= ∈

 and the set of para-
meters E = {“expensive”, “beautiful”, “wooden”, “cheap”, “in the green surroundings”}.  

Consider the mapping F which is “houses (.)” where dot (.) is to be filled up by a parameter belonging to E. 
For instance, F(expensive) means “houses (expensive)” whose functional-value is the set { h U∈ , h is expen-
sive house} = {h2, h4}. 
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Suppose we have F(expensive) = {h2, h4}, F(beautiful) = {h1, h3}, F(wooden) = {h3, h4, h5}, F(cheap) = {h1, 
h3, h5}, F(In the green surroundings) = {h1}. We can see that the soft set (F, E) is a parameterized family F(e), 
e E∈  of subsets of the set U and (F, E) can be viewed as consisting of a collection of approximations: (F, E) = 
{expensive = {h2, h4}, beautiful = {h1,h3}, wooden = {h3, h4, h5}, cheap = {h1, h3, h5}, in the green surroundings 
= {h1}}. 

2.3. Rough Set  
Suppose we are given a set of objects U called the universe and an indiscernibility relation R U U⊆ ×  repre- 
senting our lack of knowledge about elements of U. Assume that R is an equivalence relation. Let X be a subset 
of U. We want to characterize the set X with respect to R.  
 R-lower approximation of X is defined by  

( ) ( ) ( ){ }* :
x U

R x R x R x X
∈

= ⊆


 
In other words, the lower approximation of a set X with respect to R is the set of all objects, which can be for 

certain classified as X with respect to R (are certainly X with respect to R). 
 R-upper approximation of X is defined by  

( ) ( ) ( ){ }* :
x U

R x R x R x X
∈

= ≠ ∅



 
In other words, the upper approximation of a set X with respect to R is the set of all objects which can be pos-

sibly classified as X with respect to R (are possibly X in view of R). 
 R-boundary region of X is defined by 

( ) ( ) ( )*
*RRN X R X R X= −  

In other words, the boundary region of a set X with respect to R is the set of all objects, which cannot be clas-
sified neither as X nor as not-X with respect to R. 

A Set is rough (imprecise) if it has nonempty boundary region; otherwise the set is crisp (precise). 

3. Ontology Approximation under Uncertainty 
In this section, we provide a formal definition of ontology, then relate it to a soft set and show how the member-
ship of its concepts can be approximated. In this approximation technique, no change is made on the structure and 
the conceptualization of the ontology itself, rather, the sets of vague attributes and relations are introduced to han-
dle the uncertainty. This conservation of the structure and the conceptualization is useful in the sense that, pre-
viously defined ontologies can be extended to handle uncertainty with minimal changes. 

Definition 1. An ontology system is a 6-tuple O = (D, C, R, A, I, Σ) where iD c C≅ ∈


 is the domain of 
discourse of the ontology, { }1 2 3, ,, , mC c c c c= 

 is a non-empty finite set of concepts of domain D, 
{ }1 2 3, ,, , nR r r r r= 

 is a finite set of relation or role, { }1 2 3, ,, , kA a a a a= 

 is a finite set of attributes, 
{ }1 2 3, ,, , pI i i i i=   is a finite set of instances and Σ is the chosen ontology language. 

Given an ontology O, an interpretation function .I that maps an atomic concept A C∈  to a set AI ⊆ ∆I can be 
equated to an A-approximation of the concept A C∈  to the set of instance I, where the concept A stands as the 
parameter of approximation and the set of individuals I stands as the universe of approximation. Consequently, if 
O is an ontology of the domain of discourse D, where   and ⊥  (top and bottom concepts respectively) belong 
to C and P(I) is the power set of its instances I, and if F is a mapping from C to the power set of I then, the pair (F, 
C) is a soft set over I, and is represented as ( ):F C P I→ .  

In other words, if there exists an interpretation that satisfies a concept ic C∈ , then ( )iF c ≠ ∅   
Example 1: By using the TBox defined in Figure 1, the set of instance I and the set of concepts C defined in 

section 2.2., we could define F(Father) = {musa, peter}; F(Woman) = {mary, amina, halima}; F(Mother) = 
{mary} where their approximation is based on their definition in the Tbox. 

Uncertainty is normally introduced during the conceptualization either from an imprecise attribute or an impre-
cise relationship. 

An attribute or a relationship is said to be rough or imprecise if its approximation over the set of instance I has 
a nonempty boundary region; otherwise the attribute or a relationship is crisp (precise).  
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A concept is said to be vague or contains uncertainty if its definition contains rough attributes or rough rela-
tionships. 

Definition 2: Given an ontology O = (D, C, R, A, I, Σ), we define the set of roles c vR R R=   and the set of 
attributes c vA A A=   where cR  and vR  represent the set of crisp and the set of vague relations respectively 
such that i cr R∈  ⇒ ir  is a crisp relation and i vr R∈  ⇒ ir  is a vague relation. similarly, cA  and vA  
represent the set of crisp and the set of vague attributes respectively such that i ca A∈  ⇒ ia  is a crisp attribute 
and i va A∈  ⇒ ia  is a vague attribute .  

An ontology is said to be of a crisp domain if vR ≠ ∅  and vA ≠ ∅ , otherwise, it is an ontology of a vague 
domain. 

Example 2: The definition of the concepts MotherWithoutDaughter≡Mother⊓∀hasChild.¬Woman contains 
neither a vague attribute nor a vague relation and consequently MotherWithoutDaughter is a crisp concept. Simi-
larly, all concepts defined in Figure 1 are crisp making the defined ontology to be that of a crisp domain, thus, 

vR ≠ ∅  and vA ≠ ∅ . 
Example 3: Assume a DL representation of the following statement adopted from [11] “A happy cat owner 

owns a cat and all beings he cares for are healthy” as follow: 
HappyCatOwner ⊑ ∃ owns.Cat ⊓ ∀careFor.Healthy 
The definition of the concept Happy Cat Owner contains a crisp attribute owns and a crisp concept Cat. How-

ever, the role careFor and the attribute Healthy are vague since one cannot quantify them with a true or false 
membership especially when it comes to the boundary region. They can be classified as follow: Healthy vA∈ , 
owns cR∈ , and careFor vR∈ . This makes the concepts Happy Cat Owner vague.  

The instantiation of these vague definitions are approximated as absolute or relative instance of the object being 
approximated depending whether they belong to the lower or boundary region by introducing the notion of abso-
lute and relative membership.  

4. Ontologies Operations 
In this section, we assume O = (D, C, R, A, I, Σ) is an otology of the domain of discourse D, where (  and ⊥ ) 
belong to C and the following properties hold in C: 

,
,

c C c
c C c

∀ ∈ ⊆
∀ ∈ ⊇⊥


 

Definition 3: Membership. 
An individual i, is said to be an absolute instance of ,c C∈  if and only if ( )*i f c∈ . Where ( )*f c  is the 

lower approximation of c. Similarly, if i is an absolute instance of ontology O, then ( )*i f∈  .  
An individual i is said to be a relative instance of ,c C∈  if and only if ( ) ( )( )*

*i f c f c∈ − . Where ( )*f c  
and ( )*f c  are the upper and the lower approximations of c respectively. In other words, an individual i is said 
to be a relative instance of ,c C∈  if it belongs to the boundary region of c. Similarly, if i is a relative instance 
of ontology O, then ( ) ( )( )*

*i f f∈ −  . 
Definition 4: Satisfiability. 
The domain of an ontology O = (D, C, R, A, I, Σ) is said to be satisfiable if ( )*f ≠ ∅ . If ( )*f = ∅  and 
( )*f ≠ ∅ , then the domain is relatively satisfiable. 

Similarly, a concept c C∈  is satisfiable if ( )*f c ≠ ∅ . if ( )*f c = ∅  and ( )*f c ≠ ∅ , then c is relatively 
satisfiable. 

If all concepts are satisfiable then the ontology is satisfiable. 
For a crisp ontology, ( ) ( )*

*f f I= =  . 
Definition 5: Subset. 
Let ( ), , , ΣC R Aδ  be a concept definition function, which generates the concept’s definition ic C∈  using 

the sets of relations R, the sets of attributes A, based on a chosen DL language Σ . 
An ontology O' = (D, C', R', A', I', Σ) is said to be a subset of ontology O, that is ( ) ( ), ,G C F C′ ⊆  where F 

and G are approximation functions, denoted by O O′ ⊆  iff 

( )( ) ( ) ( )
( ) ( )

* *

* *

, , , ,Σ  such that, i
i

i
i

i i

g c f c
c C c C R A

g c f c
δ

 ′ ⊆′ ′∀ ∈ ∃ ∈ 
′ ⊆
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In other words, an ontology O' is a subset of ontology O if and only if for any concept in C' of ontology O', 
there is a possibility of having or defining a concept in O such that the upper and the lower approximation of the 
concept in C' is within the upper and the lower approximation of the concept defined in O respectively. 

If the domains of the two ontologies are different, that is D ≠ D', we can evaluate the subset operation through 
the approximation of their top concepts.  

( ) ( )
( ) ( )

* *

* *

iff
f f

O O
f f

′ ⊆
′ ⊆

′ ⊆





 

   
Similarly, for two concepts of the same ontology, 1 2,c c C∈  we said that 1c  is a subset of 2c  denoted by 

1 2c c⊆  iff 

( ) ( )
( ) ( )

* *
1 2

* 1 * 2

f c f c

f c f c

 ⊆


⊆  
Definition 6: Equality. 
Two ontologies O = (D, C, R, A, I, Σ) and O' = (D, C', R', A', I', Σ) over the same domain D are said to be 

equal, that is ( ) ( ), ,G C F C′ =  where F and G are approximation functions denoted by O O′ =  if and only if: 
C C′= , and 

( ) ( )
( ) ( )

* *

* *

, such that, i
i

i

i
i

i

f c f c
c C c C

f c f c

 ′ =′ ′∀ ∈ ∃ ∈ 
′ =  

where |C| and |C'| denote the cardinality of C and C' respectively. 
Similarly, for two concepts of the same ontology, 1 2,c c C∈  we said that 1c  is equal to 2c  denoted by 

1 2c c=  iff 
( ) ( )
( ) ( )

* *
1 2

* 1 * 2

f c f c

f c f c

 =


=  
Definition 7: Similarity. 
Two ontologies O = (D, C, R, A, I, Σ) and O' = (D, C', R', A', I', Σ) over the same domain D are said to be 

similar that is ( ) ( ), ,G C F C′ ≅ , denoted by O O′ ≅  if and only if the following conditions hold : 

(i) ( ) ( )* *f f′ =   

(ii) ( )( )
( ) ( )( )
( ) ( )( )

* *

* *

, , , Σ
, , , ,Σ  such that,

, , , Σ
i

i
i

i
i i

f c f c C R A
c C c C R A

f c f c C R A

δ
δ

δ

 ′ ⊆ ∈′ ′∀ ∈ ∃ ∈ 
′ ⊆ ∈

 

(iii) ( )( )
( ) ( )( )
( ) ( )( )

* *

* *

, , ,Σ
, , , ,Σ  such that,

, , ,Σ
i i

i i
i i

f c f c C R A
c C c C R A

f c f c C R A

δ
δ

δ

 ′ ′ ′ ′⊆ ∈′ ′ ′ ′∀ ∈ ∃ ∈ 
′ ′ ′ ′⊆ ∈

 

In other words, O O′ ≅  if O' is a subset of O and O is a subset of O'. 
Definition 8: Complement. 
Let { }1 2 , ,, mC c c c= 

 be a set of concepts’ definition of an ontology O, the NOT of C, denoted by 
{ }1 2, , , mC c c c¬ = ¬ ¬ ¬

 is the mapping from ( )C P I¬ →  and is approximated as: 

( ) ( )
( ) ( )

* *

* *

i i

i i

f c I f c

f c I f c

 ¬ = −


¬ = −  
It follows from the definition that, 

C C¬¬ =  
( )C B C B¬ = ¬ ¬   
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( )C B C B¬ = ¬ ¬   
The complement of an ontology O denoted by Oc is the set ( ),F C¬ , defined by the mapping ( ).C P I¬ →  

It can be approximated by using the mapping of the NOT of its top concepts as 

( ) ( )
( ) ( )

* *

* *

f I f

f I f

 ¬ = −


¬ = −

 

   
Proposition 2: The complement of an ontology is not necessarily a satisfiable ontology. 
Proof: 
Assume Oc is satisfiable. This implies that, ( )*f ¬ ≠ ∅ . By the definition of concepts’ hierarchy, 

,c C c∀ ∈ ⊆ . Since { }1 2, , , mC c c c¬ = ¬ ¬ ¬

 then ,c C c∀ ∈¬ ⊆ ¬ . Since Oc is assumed to be satisfia-
ble, the soft set ( ),F C¬ , is not empty. That is ( )*,c C f c∀ ∈¬ ≠ ∅ . At the same time, ( )*,c C f c∀ ∈ ≠ ∅ . 
By definition of the set (F, C), F is the mapping from C to ( )P I  where I is the set of instances of C. If 

( )*,c C f c∀ ∈¬ ≠ ∅ , this contradicts the fact that I is defined to be a set of instance of C.  
Thus, Oc is not necessary satisfiable.     
Definition 9: Union. 
The union of two ontologies O1 = (D, C1, R1, A1, I1, Σ) and O2 = (D, C2, R2, A2, I2, Σ) over the same domain of 

discourse D is the ontology O3 = (D, C3, R3, A3, I3, Σ) where; 

( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )

3 1 2 2 1 1 2

3 1 2 2 1 1 2

3 1 2 2 1 1 2

3 1 2

– –

– –

C C C C C C C

R R R R R R R

A A A A A A A
I I I

= − −

=

=

=

  

  

  



 

Such that ( ) ( )1 3, ,F C H C⊆  and ( ) ( )2 3, ,G C H C⊆  where F, G and H are approximation functions. 
If 3 1 2O O O=   then 

( )( ) ( ) ( )
( ) ( )

( )( ) ( ) ( )
( ) ( )

* *

1 1 1
* *

3

* *

2 2 2
* *

, , , Σ ,

,                                or

, , ,Σ ,

i

i

i

i

i

i
i

i

i

i

i

f c f c
c C R A

f c f c

c C

f c f c
c C R A

f c f c

δ

δ

  ′ ⊆∃ ∈ 
′ ⊆ 


′∀ ∈ 

  ′ ⊆∃ ∈  ′ ⊆

 

Definition 10: Intersection. 
The intersection of two ontologies O1 = (D, C1, R1, A1, I1, Σ) and O2 = (D, C2, R2, A2, I2, Σ) over the same 

domain of discourse D is the ontology O3 = (D, C3, R3, A3, I3, Σ) where; 

3 1 2C C C= 

 

3 1 2R R R= 

 

3 1 2A A A= 

 

3 1 2I I I= 

 

Such that ( ) ( )3 1, ,H C F C⊆  and ( ) ( )3 2, ,H C G C⊆  where F, G and H are approximation functions. 
If 3 1 2O O O=   then 

( )( ) ( ) ( )
( ) ( )

( )( ) ( ) ( )
( ) ( )

* *

1 1 1
* *

3

* *

2 2 2
* *

, , , Σ ,

,                              and

, , ,Σ ,

i

i

i

i

i

i
i

i

i

i

i

f c f c
c C R A

f c f c

c C

f c f c
c C R A

f c f c

δ

δ

  ′ ⊆∃ ∈ 
′ ⊆ 


′∀ ∈ 

  ′ ⊆ ∃ ∈  ′ ⊆
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Proposition 3: 
From the definitions of union and intersection, the following results are obvious in the context of ontologies: 

1) 1 1 1O O O=  
2) 1 1 1O O O=  
3) 1O ∅ =∅  
4) 1 1O O∅ =  

Proposition 4: 
1) ( )1 2 1 2

c c cO O O O=   
2) ( )1 2 1 2

c c cO O O O=   
Proof 
1) Assume that 3 1 2O O O=  . O3 is thus the soft set, (H, C3). By the definition of union, O3 is defined such that,  

( ) ( ) ( )3 1 2 2 1 1 2C C C C C C C= − −  

, 

( ) ( ) ( )3 1 2 2 1 1 2– –R R R R R R R=   

, 

( ) ( ) ( )3 1 2 2 1 1 2– –A A A A A A A=    , 

3 1 2I I I=   

By the definition of the complement, (H, C3)c is the soft set ( )3,H C¬  and can be defined by the mapping
( )3 3C P I¬ → , where 
( ) ( ) ( )3 1 2 2 1 1 2C C C C C C C= −¬ ¬ ¬ ¬ ¬ ¬ ¬−  

. (by the definition of complement) 

defined such that 
( ) ( )
( ) ( )

* *
3

3
* 3 *

, i i
i

i i

f c I f c
c C

f c I f c

 ¬ = −∀ ∈ 
¬ = −

 

Now, let consider 1
cO  and 2

cO . 
O1 is the soft set (F, C1) and O2 is the soft set (G, C2) defined by the mapping ( )1 1C P I→  and ( )2 2C P I→  

respectively. Their complements O1
c
 and 2

cO  are the soft set ( )1,F C¬  and ( )2,G C¬ . Their union, 
( ) ( )1 2, ,F C G C¬ ¬

 is the soft set ( ), kK C¬ , where 
( ) ( ) ( )1 2 2 1 1 2kC C C C C C C¬ = ¬ −¬ ¬ −¬ ¬ ¬  

 defined by the mapping ( )3kC P I¬ → . Such that; 

( ) ( )
( ) ( )

* *
3

* 3 *

, i i
i k

i i

f c I f c
c C

f c I f c

¬ = −
∀ ∈

¬ = −




 

Since 3kC C¬ = ¬ , the approximation function H and K are the same. Since they are all defined over ( )3P I . □ 
2) This proof is similar to 1). Assume that 3 1 2O O O= ≠ ∅ . O3 is thus the soft set, (H, C3). By the defini-

tion of intersection, O3 is defined such that, 3 1 2C C C=  , 3 1 2R R R=  , 3 1 2A A A=   and 3 1 2I I I=  . 
By the definition of the complement, (H, C3)c is the soft set ( )3,H C¬  and can be defined by the mapping

( )3 3 .C P I¬ →  where ( )3 1 2C C C¬ ¬= ¬ . Which is approximated as 

( ) ( )
( ) ( )

* *
3

3
* 3 *

, i i
i

i i

f c I f c
c C

f c I f c

 ¬ = −∀ ∈ 
¬ = −

 

Now, let us consider 1
cO  and 2

cO . 
O1 is the soft set (F, C1) and O2 is the soft set (G, C2) defined by the mapping ( )1 1C P I→  and ( )2 2C P I→  

respectively. Their complements 1
cO  and 2

cO  are the soft set ( )1,F C¬  and ( )2,G C¬ . The intersection of 
their complement, ( ) ( )1 2, ,F C G C¬ ¬

 is the soft set ( ), kK C¬  defined by the mapping ( )3kC P I¬ →  
Such that ( )1 2kC C C¬ ¬= ¬  is approximated as 

( ) ( )
( ) ( )

* *
3

* 3 *

, i i
i k

i i

f c I f c
c C

f c I f c

 ¬ = −∀ ∈ 
¬ = −

 

Since 3kC C¬ = ¬ , the approximation functions H and K are the same. Since they are all defined over 
( )3 .P I      
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Proposition 5: Associative laws for union and intersection is obvious in the context of ontologies 
1) ( ) ( )31 2 1 2 3OO O O O O=   

 
2) ( ) ( )31 2 1 2 3OO O O O O=   

 
Proposition 6: Distributive laws between union and intersection hold in the context of ontologies 

1) ( ) ( ) ( )1 2 3 1 2 1 3O O O O O O O=    

 
2) ( ) ( ) ( )1 2 3 1 2 1 3O O O O O O O=    

 
Proof: 
1) Let ( )( )1 2 3

, O O OF C
 

 be the soft set defined by ( )1 2 3O O O 

. If an individual ( )*i cf∈ , 

( )1 2 3O O OCc∈
 

, then i must also be defined in ( )1
, OF C  or in ( )( )2 3

, O OF C


. (by the definition of union). If i is 

defined in ( )( )2 3
, O OF C



, by the definition of intersection, i must be defined in ( )2
, OF C  and in ( )3

, OF C . By 
the definition of union, i is then defined in ( )( )1 2

, O OF C


 and in ( )( )1 3
, O OF C



. We can conclude that, i is de- 
fined in ( ) ( )( )1 2 1 3

, O O O OF C
  

. (by the definition of intersection). 

If i is defined in ( )1
, OF C  then, i is defined in ( )( )1 2

, O OF C


 and in ( )( )1 3
, O OF C



. (by the definition of un- 

ion). We can conclude that, i is defined in ( ) ( )( )1 2 1 3
, O O O OF C

  

. (by the definition of intersection). 
This implies that, 

( )( ) ( ) ( )( )1 2 3 1 2 1 3
, ,O O O O O O OF C F C⊆

    

.                            (1) 

Let ( ) ( )( )1 2 1 3
, O O O OF C

  

 be a set defined by ( ) ( )1 2 1 3O O O O  

. If an individual ( )*i cf∈ , where 

( ) ( )1 2 1 3O O O Oc C=
  

, then, by the definition of intersection, i must be defined in [ ( )1
, OF C  or ( )2

, OF C ] as well 

as in [ ( )1
, OF C  or ( )3

, OF C ]. 

If i is defined in ( )1
, OF C , then it is also defined in ( )( )1 2 3

, O O OF C
 

 by the definition of union. 

If i is defined in ( )2
, OF C  and not in ( )1

, OF C , then it must be defined in ( )3
, OF C  in order to satisfy the 

fact that i is defined in ( )( )1 3
, O OF C



. Consequently, i is defined in ( )( )1 2 3
, O O OF C

 

 by the definition of union. 
This imply that 

( )( ) ( ) ( )( )1 2 3 1 2 1 3
, ,O O O O O O OF C F C⊇

    

.                           (2) 

From (1) and (2),  

( )( ) ( ) ( )( )1 2 3 1 2 1 3
, ,O O O O O O OF C F C⊆

    

 and ( )( ) ( ) ( )( )1 2 3 1 2 1 3
, ,O O O O O O OF C F C⊇

    

, thus,  

( )( ) ( ) ( )( )1 2 3 1 2 1 3
, ,O O O O O O OF C F C=

    

. 

Consequently,  

( ) ( ) ( )1 2 3 1 2 1 3O O O O O O O=    

.     

2) Let ( )( )1 2 3
, O O OF C

 

 be set defined by ( )1 2 3O O O 
. If an individual ( )*i cf∈ , ( )1 2 3O O OCc∈

 

, then 

i must be defined in ( )1
, OF C  and in ( )( )2 3

, O OF C


. (by the definition of intersection) 

If i is defined in ( )( )2 3
, O OF C



, by the definition of union, i is defined in ( )2
, OF C  or in ( )3

, OF C  or in 
both by the definition of union. 

If i is defined in ( )2
, OF C  then, i is also defined in ( )( )1 2

, O OF C


 Since i is already in ( )1
, OF C . we can 

conclude that, i is defined in ( ) ( )( )1 2 1 3
, O O O OF C

  

. (by the definition of union) 

If i is defined in ( )3
, OF C  then, i is also defined in ( )( )1 3

, O OF C


 Since i is already in ( )1
, OF C . We can 

conclude that, i is defined in ( ) ( )( )1 2 1 3
, O O O OF C

  

. (by the definition of union) 
This imply that 
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( )( ) ( ) ( )( )1 2 3 1 2 1 3
, ,O O O O O O OF C F C⊆

    

.                         (3) 

Let ( ) ( )( )1 2 1 3
, O O O OF C

  

 be a soft set defined by ( ) ( )1 2 1 3O O O O  

. If an individual ( )*i cf∈ , where 

( ) ( )1 2 1 3O O O Oc C∈
  

, then, i must be defined either in [ ( )1
, OF C  and ( )2

, OF C ] or in [ ( )1
, OF C  and ( )3

, OF C ]. 

If i is defined in ( )1
, OF C  and ( )2

, OF C , then it is also defined in ( )2 3
, O OF C



 by the definition of union. 

Consequently, defined in ( )( )1 2 3
, O O OF C

 

. 

If i is defined in ( )1
, OF C  and in ( )3

, OF C , then it is also defined in ( )2 3
, O OF C



 by the definition of union.  

Consequently, defined in ( )( )1 2 3
, O O OF C

 

. 

This implies that, 

( )( ) ( ) ( )( )1 2 3 1 2 1 3
, ,O O O O O O OF C F C⊇

    

.                       (4) 

From (3) and (4),  

( )( ) ( ) ( )( )1 2 3 1 2 1 3
, ,O O O O O O OF C F C⊆

    

 and ( )( ) ( ) ( )( )1 2 3 1 2 1 3
, ,O O O O O O OF C F C⊇

    

 thus,  

( )( ) ( ) ( )( )1 2 3 1 2 1 3
, ,O O O O O O OF C F C=

    

. 

Consequently, 

( ) ( ) ( )1 2 3 1 2 1 3O O O O O O O=    

     

5. Related Work 
Several proposed approaches for handling uncertainty in ontologies rely on mathematical techniques of uncer-
tainty especially the probabilistic approach and the fuzzy logic approach. Fuzzy extensions of OWL have been 
proposed in [13] as a means of handling uncertainty in OWL ontologies. Pronto [3] is a probabilistic DL reason-
er prototype. Pronto is able to represent and reason about uncertainty in OWL ontologies by establishing the 
probabilistic relationships between OWL classes and probabilistic relationships between an OWL class and an 
individual. BayesOWL [4] modeled uncertainty in OWL ontologies through Bayesian Network. BayesOWL is 
used to quantify the degree of overlapping or inclusion between two concepts. [1] proposed an approach of ad-
dressing the problem of representing uncertainty based on the Dempster-Shafer theory [14]. They constructed a 
Dempster-Shafer ontology that can be imported into any specific domain ontology and to instantiate it in an un-
certain manner. [15] proposed an extension of description logics using possibilistic logics to reason with incon-
sistent and uncertain knowledge. The authors defined the semantics and syntax of possibilistic description logics. 
They also defined two inference services in possibilistic description logics named possibilistic inference and a 
variation called linear order inference which is a drowning-free variant of possibilistic inference. In [16] the au-
thors proposed a tableaux algorithm for computing the inconsistency degree of a knowledge base in possibilistic 
DL ALCIR+, which extends possibilistic DL ALC with inverse roles and transitive roles. They proposed a 
blocking condition to ensure the termination of their algorithm. 

All these techniques of handling uncertainty did not provide any algebra to support their operations. There are 
very few papers that really address the ontologies algebras. The ONION project [17] [18] provides an algebra 
for ontologies composition. However, their algebra is restricted to the syntax alone, without formally going into 
the semantics of their proposed syntax. In [19] the authors define most of the expressed ontological operations 
and requirements algebraically. However, their algebra is limited only to Resource Description Framework 
(RDF). [20] defines an algebra of relations in order to express the relations between ontologies entities in a gen-
eral way. They show its benefits in expressing disjunctive relations, merging alignments in different ways, 
amalgamating alignments with relations of different granularity, and composing alignments. All these attempts 
to develop algebras for ontologies totally overlook the presence of uncertainty in ontologies, which is addressed 
in this paper. 
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6. Conclusion 
In this paper, we have used the concept of soft set and rough set to define an algebra for handling uncertainty in 
DL ontologies. Basic operations of ontologies are modeled while taking into consideration the uncertainty that 
may exist in the domain being modeled. This work is theoretical in nature allowing various modelers of ontolo-
gies with uncertainty to guide their implementation strategies or to prove the correctness of their methodologies. 
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