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Abstract 
Software is pervasive in modern society, but we are often unaware of its presence until problems 
arise. Software is one of the most important and yet one of the most economically challenging 
techniques of this era. As a purely intellectual product, it is among the most labor-intensive, com-
plex, and error-prone technologies in human history. Until the 1970s, programmers were very me-
ticulous in planning their code, rigorously checking code, providing detailed documentation, and 
exhaustive testing before the software is released to users. However, as computer became wide-
spread, attitudes changed. Instead of meticulously planning code, the attitude of the average pro-
grammer today is possibly hacking sessions or writing any sloppy piece of code and the compiler 
will run diagonally, a situation called, “code and fix”, where the programmer tried to fix errors one 
by one until the software compiled properly. As programs grew in size and complexity, the limits 
of this “code and fix” approach became evident. In this paper, we studied the various reasons why 
software fails. Our studies reveal that the major reasons why software fails are poor or no design 
at all, inadequate testing of codes, and attitudinal changes among programmers and other factors. 
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1. Introduction 
Software is pervasive in modern society, but we are often unaware of its presence until problems arise. Software 
is one of the most important and yet one of the most economically challenging techniques of this era. As a pure-
ly intellectual product, it is among the most labor-intensive, complex, and error-prone technologies in human 
history [1] [2]. Computer users often experience code bloat, ugly, inefficient and poorly designed code resulting 
in software dysfunction. It is pretty difficult to find good software that is completely reliable. A good software is 
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a software that is usable, reliable, defect free, cost effective and maintainable. The truth is that most software 
sucks. Dijkstra [3] notes that “the average computer user has been served so poorly that he expects his system to 
crash all the time, and we witness a massive worldwide distribution of bug-ridden software for which we should 
be deeply ashamed.”  

Software engineering is different from other engineering disciplines. Mann [2] notes that “to overemphasize 
the uniqueness of software’s problem, when automotive engineers discuss the cars on the market, they don’t say 
that vehicles today are no better than they were ten or fifteen years ago. The same is true for aeronautical engi-
neers: nobody claims that Boeing or Airbus makes lousy planes. Nor do electrical engineers complain that chips 
and circuitry aren’t improving. Engineers constantly notice shortcomings in their designs and fix them little by 
little. Software engineering is a discipline just like any other engineering discipline, yet many software engineers 
believe that software quality is on the decline. In fact, software quality is getting worse.” In the last 25 years or 
so, software defects have wrecked a European satellite launch, delayed the opening of the hugely expensive 
Denver Airport for a year, destroyed NASA Mars mission, killed four marines in an helicopter crash, induced a 
U.S. Navy ship to destroy a civilian airliner, and shut down ambulance system in London, leading to as many as 
30 deaths. Between 1985 and 1987, a computer-controlled radiation therapy machine manufactured by the gov-
ernment-backed Atomic Energy of Canada massively overdosed patients in the United States and Canada, kill-
ing at least three. This was due to software error arising from poor or inadequate design or no design at all. 

Today, we rely more and more on sophisticated, software-based systems for mission-critical, business-critical 
and safety-critical applications. Companies can no longer write all of the software themselves; they often buy 
commercial-off-the-shelve (COTS) software and making use of Open Source software [4]. The result is that 
most of the software often contains faults which may not manifest immediately but manifest when the software 
is operational. These faults that manifest themselves only when the software is operational but fails to manifest 
itself when the software is dormant are called dormant faults. The presence of faults in code often causes errors 
when a function or method is called from a code segment containing the fault. The error in turn causes a system 
failure. In general, software is implemented based on its design. Thus software failure is the product of a design 
flaw [5]. 

At each stage of software development, errors may be introduced into the software. For instance, the require-
ment analysis may be incomplete, the design may be inadequate or omitted entirely. The earlier an error is in-
troduced into the software during the Software Development Life Circle (SDLC), the more severe and costly its 
impact is likely to be because the error is expanded in subsequent stages of the development. Errors are discov-
ered and fixed during the testing stage of SDLC. However, in actual fact, it is difficult to discover all errors. 
These undiscovered errors remain in the software and are dormant until the software become operational and 
they will start to manifest themselves. This is particularly true for large and complex software.  

These anomalies are not only restricted to system level but also to component and subroutine levels which 
will eventually affect the system’s normal operation. Consider a C++ code segment that computes the division 
of two integer values using variables x and y with x having a value 5 and y having a value 2. 

double IntDivision (int x, int y) 
{ 
return x/y; 

} 

Since x = 5 and y = 2, the result of the computation will be 2 instead of 2.5. This is because the division of 
two integer values will always be an integer since the fractional part is discarded or truncated. If the computation 
were to be financial calculation, it would cause system failure and the consequence would be financial loss. This 
could be very disastrous especially if the computation involves large sum of money. 

Software failure is very common with airplane crashes. Just as pilots never intend to crash, software develop-
ers do not aim to fail. When a commercial plane crashes, investigators look at many factors, such as the weather, 
maintenance records, the pilot’s disposition and training, and cultural factors within the airline. Software failure 
jeopardizes an organization’s prospects. If the failure is large enough, it can steal the company’s entire future 
such that the airline could be permanently closed due to lack of customer’s patronage as a result of lack of con-
fidence on the airline and its operators.  

It must be noted that large-scale software tends to fail three to five times compared to small ones. The larger 
the software, the more complex it is. Greater complexity increases the possibility of errors, because no one really 
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understands all the interacting parts of the whole or has the ability to test them. Thus the greater the software, 
the more complex it is both in its static elements (the discrete pieces of software, hardware, etc.) and its dynamic 
elements (the couplings and interactions among hardware, software, and users; connections to other systems, 
etc). It suffixes to say, therefore, that it is impossible to thoroughly test software of any real size. Pressman [6] 
notes that “exhaustive testing presents certain logical problems… Even a small 100-line program with some 
nested paths and a single loop executing less than twenty times may require 10 to the power of 14 possible paths 
to be executed… To test all of these 100 trillion paths assuming each could be evaluated in a millisecond, would 
take 3170 years”. The construction of new software devoid of errors that is pleasing to both the buyer and the 
user is perhaps the most difficult problem facing software engineers today. This is because software engineers 
do not devote enough time to the design of their software.  

2. What Is Software?  
Software can simply be defined as computer programs and associated documentation [7]. It consists of a number 
of separate programs, configuration files, which are used to set up these programs, system documentation, used 
to describe the structure of the system, and user documentation for explaining how the software should be used. 
Thus software is a general term used to describe all programs which control the activities of a computer system. 
The term program describes a sequence of instructions given to a computer to guide it in processing information. 
There are two major groupings of software system. These are: generic software and customized software. Ge-
neric software are software produced by software development companies and sold to users who want to buy 
them in open market while application software are software made for a particular application, that is, those 
software developed by software engineers targeted at solving a particular problem. 

2.1. Attributes of a Good Software 
• Functionality: Good software should deliver the required functionality and performance to the user and 

should be maintainable, dependable and acceptable. 
• Maintainability: Good software should be easy to maintain, it should be able to evolve so as to be able to 

meet changing requirements. 
• Dependability: The software must be trustworthy. It should be reliable, secure, and safe.  
• Efficiency: The should not make wasteful use of system resources 
• Acceptability: The software must be accepted by the users for which it was designed. This means it must be 

understandable, usable and compatible with other systems. 
• Survivability: Good software should be able to withstand and adapt to any environment where it is put to 

use. 

2.2. Critical Software 
Critical software systems are technical or socio-technical systems that people or businesses depend on. They are 
very strategic in the life of individuals and businesses. The effects of the failure of critical software could be 
very catastrophe if not properly managed. Critical software, ironically, often have characteristics that make fail-
ures more likely such as: real-time constraints, concurrency, and harsh physical environments. The three main 
types of critical software system according to [7] are: 
• Safety-critical: These are software used for protecting human lives. These software are used in areas such as 

cars and aircrafts, chemicals and nuclear plants, medical equipments, etc. Most safety-critical systems have 
real-time constraints. The throttles and brakes of a car must respond immediately the brake is pressed. Air-
craft must also respond promptly to their controls to avoid accidents which could result in loss of lives and 
property. 

• Mission-critical: These are software used for essential tasks such as telephone routing, financial transactions, 
stock control, house-hold appliances e.g., televisions, videos, etc. Sometimes, these appliances may be re-
called by their manufacturers if the software fails. This could be very expensive in terms of providing main-
tenance and installing new software. 

• Business-critical: These are software used for protecting confidential information. They are often employed 
in areas such as banks and other financial institutions, government applications, military applications, etc. 
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2.3. What Is Software Failure? 
Software failure can be explained from the software-centric and system-centric approaches. According to [8], 
the software-centric approach view “failure” as a property of the software itself. That is, the software is consi-
dered in isolation, and not the context of the system in which it operates. The system-centric approach view 
“failure” in relation to the system. That is, the approach considers software failure within the system itself. The 
system-centric approach is similar to the modeling of human performance, an unsafe human act is considered 
harmful only in the context of the system within which it occurs. Therefore, a failure occurs when a system fails 
to perform its required function(s) [9]. As noted in [10], discovering the unexpected is more important than con-
firming the known. Thus in software development, the “unexpected” one relates to defects. These defects when 
unattended to often cause failure [11] [12]. Thus software failure is an incorrect result to the specification or 
unexpected software behavior perceived by the user at the boundary of the software system, while a software 
fault is the identified or hypothesized cause of the software failure. Therefore, fault is the cause of software fail-
ure while failure is the effect that occurs as a result of the fault. Thus fault is the cause of failure [13]. Figure 1 
shows the relationship between defect, fault, and failure. 

To understand software failure, we present the definitions of some concepts from [14] used in this research 
work. These are:  

Fault/Defect: An incorrect step, process, or data resulting in an incorrect result. Therefore, faults are concrete 
manifestations of errors within the software. One error may cause several faults and various errors may cause 
identical faults. Faults are problems in the code. 

Failure: The inability of a system or component to perform its required function within the specified perfor-
mance requirement. A failure occurs when the user perceives that a software program ceases to deliver the ex-
pected service. The user may decide to identify the various levels of failure, such as catastrophic, which could be 
major or minor, depending on their impacts and consequences on the system such as monetary value (cost), hu-
man life, and property lost [15]. Thus failures are departures from the operational software system behavior 
from user expected requirements. A particular failure may be caused by several faults and some faults may nev-
er cause a failure. Also, a system may be reliable but not correct, i.e., it may contain faults but if we never ex-
ecute those faults, it is reliable. On the other hand, if we define correctness as the conformance of the code to the 
specification, a system may be correct but not reliable because the user may try to use the system in ways not 
permitted in the specification and the system may crash. Failures are incorrect external events. 

Errors: These are the differences between computed, observed, or measured value or condition and the true, 
specified, or theoretically correct value or condition. They are defects in the human thought process made while 
trying to understand given information, to solve problems, or to use methods and tools. It is also defined as the 
discrepancy between a computed, observed, or measured value or condition and the true, specified, or theoreti-
cally correct value or condition. Errors occur when some part of the computer software products result in an un-
desired state. 

Mistake: This is a human action that results in software containing a fault. It is a human action that produces 
incorrect result. Examples include omission or misinterpretation of user requirements in a software specifica-
tions, and incorrect translation or omission of a requirement in the design specification. 

Debugging: This is a diagnostic process where, given a failure, an attempt is made to find the associated 
fault.  

Mean-time-to-Failure (MTTF): The expected time that the next failure will occur (observed). It is the hours 
of operation divided by the number of failures. 

Mean-time-to-Recover (MTTR): The expected time until a system will be repaired after a failure is ob-
served. 

Types of Software Failures 
Different types of software failures can be identified. These are:  

• Process failure 
• Real-Time anomalies 
 

 Faults Error Failure 
 

Figure 1. Relationship between fault, error, and failure. 
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• Accuracy 
• Abstraction 
• Constraint 
• Reuse 
• Logic 
• Faulty code 
• Operator error 

Process Failure: Process failure occurs as a result of human errors or negligence arising from failures in de-
velopment such as poor development methodologies and errors in operation. A good example of process failure 
is the Therac-25. The Therac-25 was a radiation treatment machine malfunction for the treatment of cancer and 
tumors. The machine malfunction by delivering excess dose of radiation and caused the death of six people. This 
was due to software error arising from human error and inaccuracy. Another case of process failure occurs on 
August 6, 1997, Korean Air Flight 801 crashed into a rocky hillside in the middle of Guam. Of the 254 passen-
gers on board, 228 were killed due to negligence of the flight crew of system failure resulting from software 
modification which could not accurately cover the required radius of 55 nautical miles, 102 kilometers.  

Real-Time Anomalies: Software bug made soyuz stray. A computer software error sent a Russian spacecraft 
into a rare ballistic descent that subjected the three men on board to chest-crushing gravity loads that made it 
hard to breath. Their capsule landed nearly 300 miles off-target.  

Approximation/Accuracy: Loss of precision in converting from integer to float or division of two integers 
where the fractional part is discarded or round-up to integer since the division of two integer values gives an in-
teger. This is precision loss which can result in error if not properly handled. A good example of failure caused 
by precision error is in Patriot Missile that embeds software where the fault in the software caused the missile to 
miss target.  

Abstraction: The Y2K problem actually caused bugs such as incorrect interpretation of 99 to 00, that is, the 
algorithm incorrectly interprets year 2000 as 1900. This occurs as a result of lack of data abstraction which 
caused poor encapsulation of year data. This caused the date to spread throughout the code without abstraction 
mechanisms.  

Constraint: Typical examples: stray pointer and buffer overflow. These days, however, recent languages 
such as Java and C# (C-Sharp) have constraint checking on data types that helps the restriction on the data type 
that cannot be violated. The use of “Sandbox” also helps to guide against malicious faults. 

Reuse: Software reuse is a technique for building software to address the need to improve software develop-
ment efficiency and quality. It involves the use of artifacts from existing systems to build new ones in order to 
improve quality and maintainability and to reduce cost and development time [16]. Software reuse is a sought 
after goal. It is aimed at getting the most from design and implementation work that is being done. However, 
software that contains bugs will always result in failure whenever such software is reused and the bug manifests 
itself. Therefore, it is necessary to verify and test software to ensure that there are no bugs that could cause fail-
ure before such software are reused.  

Logic: These are “obvious” flaws in logic processing. A good example is the AT&T failure of 1990. The 
failure was attributed to software error resulting from software upgrade of switch. The upgrade caused the 
switch to develop errors and these errors are routed traffic to other switches while trying to reset the switch by 
sending “out of service” message. This message caused other switches to crash, sending “out of service” mes-
sage, thus propagating the problem. The failure was caused by a missing “break” statement (C++, Java, C# lan-
guages requires the break statements) in the software that controls the switch. The failure caused about 9 hours 
crash which caused about $60 million lost in revenue.  

Faulty Code: These are poorly written codes which often cause buffer overflow and runtime problems. Faul-
ty code is not exercised unless discovered by malicious hackers.  

Operator Error: Most times errors that occur in system software are due to mistakes on the part of the oper-
ators. A computer operator may be inexperienced in the use of computer or a particular operating system or even 
application software. Thus when using the software, he may perform some actions that may introduce errors or 
faults into the program. 

Examples of Critical Software Failure 
As software becomes increasingly important, the potential impact of bad code will increase to match. Soft-

ware defects have caused a lot of devastating effects in the last few decades. Software failure are very prevalent 
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everywhere. Here, we present some examples of cases of software failure:  
• Ariane-5 Satellite Launcher: On June 4 1996, there was total failure of Ariane-5 launcher on its maiden 

flight. Approximately 40 seconds after takeoff, the Ariane-5 rocket launcher was shut down and then lost 
control due to software failure resulting from internal variable exceeding a limit imposed by the underlying 
code which resulted in buffer overflow. It was reported that incorrect control signals were sent to the engines 
and these caused swiveled which caused it to break up and self-destructed. The software failed and the sys-
tem and the backup system shut down. Although it was reported that the same software worked perfectly for 
a previous version of the rocket (Ariane-4 rocket launcher), which was a smaller version, it failed completely 
for Ariane-5 launcher. The reasons are (1) the Ariane-4 launcher was smaller and as such has a lower initial 
acceleration and build up of horizontal velocity than Ariane-5; (2) the value of the variable on Ariane-4 
could never reach a level that caused overflow during the launch period [17]. Ironically, the code that failed 
was generating information that was not even necessary as soon as the launch had started. 

• The Therac-25: This is a radiation therapy machine used to administer drug to patients. The machine admi-
nistered massive overdoses of the drug resulting in the death of patients. This was caused by software up-
grade. The software upgrade allowed the operator to type faster when entering data. The parts of the machine 
that were not upgraded could not cope with the speed of data entry, thus causing the machine to administer 
the wrong doses. It took several weeks of intensive investigation to determine the cause of the problem. 

• The US Navy Ship Yorktown: In 1997, a prototype US Navy ship while trying to adjust a valve setting, a 
sailor mistakenly entered a zero into a database field; the ship was out of action for three hours. The fault 
was caused by a software failure due to improper input (data) field validation. The software program that the 
sailor was using on Windows NT should have refused to accept his command but did otherwise, and the 
program shut down the system. This is an operator error. However, the software was not properly designed. 
It should have being designed to recognize and reject an illegal command by throwing exception [18] [19]. 

• The WMF Bug: There are many instances in which Microsoft software had failed particularly security vul-
nerabilities that have given the company a reputation for buggy code. These faults resulting from Microsoft 
software products have made customers to shift attention to other software products. These days, it must be 
noted that not only the defects but the reaction to a software problem, requires serious attention by software 
providers. 

• The Marines’ Osprey Crashes: In December 2000, the US Marine Corps’ new hybrid plane-helicopter, 
known as the V-22 Osprey, crashed, killing four marines. The accident was largely due to software error. 

• The Mars Climate Orbiter Loss: In 1999, NASA lost contact with one of its well-publicized unmanned 
spacecraft, the Mars Orbiter. This was largely due to software failure which failed to convert different units 
of measurement. The “root cause” was software failure. The spacecraft failed to translate English units into 
metric units in a segment of ground-based, navigation-related mission software. Project managers failed to 
specify the system of measurement that was used by the subcontractors that developed the software as a re-
sult of the different metric systems that were used. Thus coding error caused it to overwrite two memory ad-
dresses, thus resulting in buffer overflow. 

• US Telephone Networks Failure: In the summer of 1991, telephone networks in several major United 
States cities suffered failure. The problems were traced to telephone switching software consisting of several 
million lines of code. The potential losses were enormous [20]. 

• The Bank of New York: On November 20, 1995, the bank of New York’s securities transaction software 
had a storage fault. For about ninety minutes, it lost information on $32 billion in transactions. The bank was 
forced to borrow $23.6 billion from the US Federal Reserve for a day, at a cost in interest of $5 million. Al-
though the information was later recovered, the bank’s reputation suffered as customers began to doubt the 
bank [20]. 

• US Patriot Air Defense Collided with Incoming Scud Missile: In the 1991 Gulf War, 28 US troops lost 
their lives when the Patriot air defense system collided with an incoming Scud Missile. The problem was 
caused by software error resulting from software upgrade. An upgrade to deal with missile was made, but at 
one place in the upgraded software, a necessary call to the subroutine was accidentally omitted. Although, 
the problem was detected, a warning was issued, and a software patch dispatched to users more than a week 
before the accident occurred. There was need to reboot the engine occasionally to correct the error which 
would have taken only one minute. There were warnings but the battery managers refused to heed to the 
warnings [21]. 
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• Mass Polar Lander (MPL): Like the Mars Orbiter, the Mars Polar Lander (MPL) free fell to the surface 
due to software failure resulting in the shutdown of the engines of the MPL. The software interpreted spu-
rious signals at the deployment. 

• Titan/Centaur/Milstar: In 1999, an airspace rocket called Titan IV B-32/Centaur TC-14/Milsrar-3 lost 
control and crashed due to software error. An incorrect roll rate filter constant zeroed the roll rate data, re-
sulting in the loss of roll axis control and then pitch control. The loss of altitude control caused excessive 
firings of the reaction control system and subsequent hydrazine depletion. The accident investigation board 
concluded that the failure of the Titan IV B-32 mission was due to an inadequate software development, 
testing, and quality assurance process for the Centaur upper stage. 

• SOlar Helicopter Observatory (SOHO): NASA Project, The SOHO spacecraft, on June 25, 1998 got lost. 
The loss was due to overconfidence and complacency resulting in inadequate testing and review of changes 
to software. 

2.4. Classification of Failures 
Jalote et al. [14] both at Microsoft Corporation proposed a classification of failure as: 
• Unplanned events, 
• Planned events, and  
• Configuration failure 

Unplanned Events: These are traditional failures like crash, hang, incorrect output or no output at all. These 
are caused by software failure. Other forms of unplanned events are: disasters, system errors, employee error, 
application error, operations overruns, utility failure, hardware failures, functionally incorrect response, and un-
timely response such as too fast or too slow. 

Planned Events: These events often cause system to shut down in a planned manner to perform some house-
keeping tasks. Examples include updates requiring restart, configuration changes requiring a restart.  

Configuration Failures: These failures occur as a result of due to configuration setting. In many systems, 
configuration failures account for a large percentage of failures [22]. Examples include application/system in-
compatibility error, installation/setup failures. 

2.5. Causes of Software Failure 
A Lack of Logic: Poor or no designs at all. Most often, software engineers or developers do not have a good 
design before coding or writing programs or software. This is the major cause of software failure today. Devel-
opers most times boot their computers and navigate to the programming language location and they will start 
coding without having a design. Such software is bound to fail. It is like an architect that is building a house 
without plan. Soon he will discover that some parts of the house have errors. What he does is simply to demolish 
those parts and start building again. Building a house this way will waste time and costs more, yet the house 
architect may never correct all the errors in the house. In fact, the house may even collapse at in no distance time. 
The same is true of the software. Once software does not have a very good design, the software is bound to fail 
as it is put into use. Again, most developers of software often have one major or comprehensive design called 
high-level design. For software to be properly developed and have minimal errors, the software must have both 
high-level and low-level (or detail) design. Before coding, both the high-level and detail designs must be prop-
erly done and correction made so as to minimize the errors that might arise from the software.  

Inadequate software testing: Most often, software developers do not adequately test their code before re-
leasing them to customers. For software to be reliable and free of defects, the software must be properly de-
bugged, rigorously tested. Defects in the code must be located and corrected such that the program meets its re-
quirements. Testing must be repeated severally to ensure that the changes have been correctly made. Also, the 
programmer should consider testing the software in all ways that might be anticipated by the user. The pro-
grammer should test the software with all available data both imaginary and real to ensure that the system is able 
to handle them without crashing. This kind of robust testing will in no doubt help the programmer to remove 
faults from the software as much as possible. 

Attitudinal changes among programmers: Until the1970s, programmers were very meticulous in planning 
their code, exhaustively and rigorously checking their code, providing standard and elaborate documentation and 
peer-vetting, and providing exhaustive testing before the software is released to users. However, as computer 
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became widespread, attitudes changed. Instead of meticulously planning code, the attitude of the average pro-
grammer today is possibly hacking sessions or writing any sloppy piece of code and the compiler will run di-
agonally, a situation called, “code and fix”, where the programmer try to fix errors one by one until the software 
compiled properly. As programs grew in size and complexity, the limits of this “code and fix” approach became 
evident. 

In addition to these factors, Robertson and Williams [23] proposed the following reasons for software failure.  
Software changes introduce incompatibilities: Software especially large and complex software must evolve 

during its lifetime if they must remain useful. As such, when they evolve, incompatibilities and errors are in-
itially not in the software may now be introduced which may result in software failure. 

Software is attacked by a hostile agent: In this case, there is change in environment where the software is 
applied. Here, the change is done explicitly with the intent to cause the software to fail. For example, the envi-
ronment in which the software is being used might have adverse effect on the software. Some time, the software 
user might intentionally delete some part of the software so that the software will no longer perform its functions 
properly thus resulting in failure. 

Failure resulting from unanticipated applications or use: Most often, failure can occur if a software prod-
uct is used in such a way that the software developer did not anticipate users might put the software into. For 
example, in embedded systems or applications, the number of ways the environment can change becomes so 
large that the programmer cannot realistically anticipate every possible failure. 

In addition to failures related to the faults introduced in the software during its software development life 
cycle (SDLC), software may also fail due to external causes. These are: 
• Human error: Using software in inappropriate way, input incorrect data into the software, attempting to di-

vide by zero often result in errors that could cause critical failures, which in turn could result in the loss of 
human lives and property.  

• Management laxity: Most times, before a failure occurs, the fault must have given some warnings which 
most times management often fail to ignore for reasons best known to them. Such reasons include considera-
tion of effort and costs that such faults may cause the organization. 

• Support systems: software used to perform complex tasks such as controlling some devices, need some lev-
el supporting systems, e.g., operating system computer hardware, electric power, etc. 

• Cyber Security: cyber threats such as viruses and hacking activities can undermine the capabilities of soft-
ware system due to software vulnerabilities especially if such threats are transmitted through the network. 

• Environment: Natural catastrophes such as fire outbreak, flooding, lightning, earthquake, etc., can affect the 
computers that embedded the software. 

3. Testing of Software Systems 
Software testing is a process of verifying and validating that a software system meets the business and technical 
requirements and works as expected. Testing is the process of evaluating a system or its component(s) with the 
aim to finding whether it satisfies the specified requirements. This activity results in determining the difference 
between the actual and expected results. System testing also identifies defects, flaws, or errors in the code that 
must be fixed. ANSI/IEEE 1059 standard defines testing as a process of analyzing a software item to detect the 
differences between existing and required conditions (that is defects/errors/bugs) and to evaluate the features of 
the software item. From the foregoing, it can be stated that testing is not just about finding bugs but it also en-
compass the process of ensuring that the software meets its requirements in terms of the outcome of the result(s).  

Testing is very important at each stage of software development process. Every time software is developed, 
the software must be well tested in order ensure that it is of high quality and that it is very reliable. In other 
words, there should be robust testing of software before it is released to the user or customer. According to [23], 
in testing software; “think diabolically! Think of every possible thing a user could possibly do with your system 
to demolish the software. You need to make sure your program is robust—in that it can properly respond in the 
face of erroneous user input.” This type of testing is called robustness testing, whereby test cases are chosen 
outside the domain to test robustness to unexpected erroneous input [10], and is included in defensive testing 
which includes tests under both normal and abnormal conditions [3] [24]. Knuth [25] lent credence to this when 
he notes that “my test programs are intended to break the system, to push it to its extreme limits, to pile compli-
cation on complication, in ways that the system programmer never consciously anticipated. To prepare such test 
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data, I get into the nearest, nastiest frame of mind that I can manage, and I write the cruelest code I can think of; 
then I turn around and embed that in even nastier constructions that are almost obscene.” Therefore software 
must be well tested at all stages of the development process and the final product should be exhaustively tested 
to ensure that errors will be very minimal if any at all before it is released to users to ensure reliability of the 
software. 

Types of Software Testing  
IEEE Standard Glossary of Software Engineering Terminology, IEEE Standard 610.12-1990, identified three 
types of software testing. They are: 
• Performance testing 
• Regression testing  
• Robustness testing 

Performance Testing: This is the testing conducted to evaluate the compliance of system or component with 
specified performance requirements. 

Regression Testing: This is selective retesting of a system or component to verify that modifications have 
not caused unintended effects and that the system or component still complies with its specified requirements. 

Robustness Testing: This is testing whereby test cases are chosen outside the domain to test robustness to 
unexpected, erroneous input. 

4. Evaluation of Software Failure  
Microsoft Office Systems 2003 through its Customer Experience Improvement Program (CEIP) technology. 
CEIP is an elaborate, programmable, event recording system for products, which can be used to record both 
failure data and usage data. In order to be able to record failures of a software product through CEIP, the product 
must be programmed to record events using CEIP provided Application Programming Interfaces (APIs). Gener-
ally, for capturing failure information, three types of events are captured. These are 1) application termination 
events which record normal exit, crash exits, hangs, and user forced exits. Some of these exit events are record-
ed by a handler that is executed before exiting while others are identified and recorded at the restart of the ap-
plication using some tracking mechanisms. These events are used mostly to identify crashes and hangs, 2) assert 
failure, this alert is often used to identify failures, and 3) alerts which is given when some special situations arise 
(e.g., file does not exist, network not available, file writing fails, etc.). Many of these alerts signify failures. 
These alerts usually provide additional information in order to determine the cause of a failure whenever such 
failure occurs. Thus the alert events are used to identify configuration failures. However, the assert failure 
usually record separate events from the alert events.  

Table 1 shows a sample of a report of software failures collected as recorded in CEIP. Data about different 
types of failures is recorded and their failure rates were also determined. Quite frequently, managers’ focus on 
crash-failures and hang-failures; since these are most disruptive for users, thus users attach highest weight to 
these failures. The table shows a part of a sample report that was generated by CEIP tools. The table shows ex-
amples of some products, number of sessions, the number of crash failures, and the number of hang failures, and  
 
Table 1. An example of CEIP report on software failures. 

Product No. of Sessions No. of Crash  
Failures No. of Hang Failures Session Length 

(meters) 
Crash Failure Rate 

(per hr) 
Hang Failure Rate 

(per hr) 

A 33,000 300 1000 3,140,000 0.0057 0.0191 

B 422,000 1200 8700 46,450,000 0.0015 0.0112 

C 20,000 100 700 2,540,000 0.0023 0.0165 

D 24,000 100 1000 5,940,000 0.0010 0.0101 

E 153,000 600 3300 12,920,000 0.0027 0.0153 

F 12,000 100 200 900,000 0.0066 0.0133 

G 648,000 2600 29,900 183,530,000 0.0008 0.0097 
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total session length. Failure rates for both crash failure and hang failures are then computed as number of fail-
ures per session or number of failures per hour of usage. Also, from this table the mean time to crash and hang 
and how they evolve with time can also be calculated based on past data.  

5. Conclusions 
As software becomes increasingly important, the potential impact of bad code will increase to match. The con-
struction of new software that is pleasing to both user and buyer, which does not contain errors, is an unexpec-
tedly hard problem. It is perhaps the most difficult problem facing software engineers today. Software defects 
have caused a lot of devastating effects in the last few decades. As software becomes increasingly important, the 
potential impact of bad code will increase to match. The real problems, however, lie in software’s basic design 
or rather, its lack of design. During design phase, there should be high-level design and detailed design where 
each component in the design is properly analyzed and tested to avoid design flaws. Some level of software 
failure will always be with us whether we like it or not as long as software practices and failure rates remain as 
they are today. Indeed, we need true failures—as opposed to avoidable blunders—to keep making technical and 
economic progress. But too many of the failures that occur today are avoidable. Given today’s IT practices, fail-
ure is a distinct possibility; and it would be a loss of unprecedented magnitude. Patents and taxpayers will ulti-
mately pay the price for the development, or the failure, of buggy software. And as society comes to rely on IT 
systems that are ever larger, more integrated, and more expensive, the costs of failure may become disastrously 
high.  

Finally, software failure tended to resemble the worst conceivable airplane crash, where the pilot was inexpe-
rienced but exceedingly rash, flew into an ice storm in an untested aircraft, and worked for an airline that gave 
lip service to safety while cutting back on training and maintenance. If you read the investigator’s report after-
ward, you would be shaking your head and asking, “wasn’t such a crash inevitable?” The same is also true of 
software. Yet failures, near-failures, and plain old bad software continue to plague us, while practices known to 
avert mistakes are shunned. It appears that getting quality software is not an urgent priority in most organiza-
tions. The tragedy of software engineering is not that we don’t know how to plan and conduct software rigorous 
and elaborate test, but that we know how and just don’t want to do it. 
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