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Abstract 
The weighted Gini-Simpson quadratic index is the simplest measure of biodiversity which takes 
into account the relative abundance of species and some weights assigned to the species. These 
weights could be assigned based on factors such as the phylogenetic distance between species, or 
their relative conservation values, or even the species richness or vulnerability of the habitats 
where these species live. In the vast majority of cases where the biodiversity is measured the spe- 
cies are supposed to be independent, which means that the relative proportion of a pair of species 
is the product of the relative proportions of the component species making up the respective pair. 
In the first section of the paper, the main versions of the weighted Gini-Simpson index of biodiver- 
sity for the pairs and triads of independent species are presented. In the second section of the pa- 
per, the weighted Gini-Simpson quadratic index is calculated for the general case when the species 
are interdependent. In this instance, the weights reflect the conservation values of the species and 
the distribution pattern variability of the subsets of species in the respective habitat induced by 
the inter-dependence between species. The third section contains a numerical example. 
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1. Introduction 
In a certain habitat, let n  be the number of species; ip  the relative abundance of species  i ; ( )1, , nP p p=   
the distribution of the relative abundance of species. We have: 
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( )0, 1, , ; 1.i iip i n p≥ = =∑  

The simplest measure of biodiversity is the Gini-Simpson quadratic index (Gini [1], Simpson [2]): 

( ) ( ) 21 1 ;i i ii iGS GS P p p p= = − = −∑ ∑  

Recently, Jost [3] [4], and Jost et al. [5] gave some examples showing that the Gini-Simpson index does not 
behave well when the number of species n is very large. Guiasu and Guiasu [6] showed, however, that the 
Rich-Gini-Simpson index: 

( ) ( )1i ii
RGS P n p p= −∑ , 

which depends explicitly on the number of species (species richness), preserves all the properties of the classic 
Gini-Simpson index GS but, unlike GS, behaves very well when n is large. 

Another measure of diversity is the weighted Gini-Simpson index introduced in Guiasu and Guiasu [7]: 

( ) ( )1W i i ii
GS P w p p= −∑ , 

where ( )1, , nW w w=   are some nonnegative weights assigned to the species, such as the conservation values 
of the respective species, for instance. Obviously, wGS  becomes RGS if iw n=  for each 1, , .i n=   

Let us assume that in a certain region there are n  species and m  sites. In what follows, the subscripts i  
and j  refer to species ( ), 1, ,i j n=   and the subscripts k  and r  refer to sites, ( ), 1, ,k r m=  . 

Let ( )1, ,, ,k k n kP p p=   be the vector whose components are the relative abundances of the individual spe-
cies within site k , such that: 

( ), ,0, 1, , ; 1,i k i ki
p i n p≥ = =∑  

for each 1, , .k m=   A measure of diversity μ may be used in the standard additive partioning of diversity in-
duced by individual species if it is a concave function, which means that it satisfies the inequality: 

( ) ( )k k k kk k
P Pµ λ λ µ≥∑ ∑                                 (1) 

for arbitrary parameters: 

( )0, 1, , , 1.k kk
k mλ λ≥ = =∑                             (2) 

For each site k , we calculate the diversity ( )kPµ  among its species, called the local diversity of the re-
spective site. In such a case, as pointed out by Lande [8], the right-hand side of (1) is the α-diversity, denoted by 
α, measuring the average local diversity, or the average within-diversity. The left-hand side of (1) is the 
γ-diversity, denoted by γ, measuring the diversity among the species belonging to the averaged union of the ha-
bitats, called the regional or total diversity. As shown in [6] [7] [9], the measures of biodiversity GS , RGS , 
and WGS , the last one when its weights do not depend on the relative proportions of species 1, , np p , are 
concave functions and satisfy the inequality (1), for arbitrary parameters (2). Unlike the α-diversity and the 
γ-diversity, there is no consensus about how to interpret and calculate the β-diversity. According to Whittaker 
[10] [11] who introduced the terminology, β-diversity is the ratio between γ-diversity and α-diversity, namely, 
β γ α= . This is the multiplicative partitioning of diversity. According to MacArthur [12], MacArthur and 
Wilson [13], and Lande [8], β-diversity is the difference between γ-diversity and α-diversity, namely, β γ α= − . 
This is the additive partitioning of diversity. In both cases, the β-diversity measures the variation of the diversity 
among habitats, or the average between-diversity in the additive case. 

As the classic Gini-Simpson index GS  is a concave function of the relative abundance of species 
( )1, , nP p p=  , it may be used in the additive partitioning of diversity. Hill [14] showed that: 

( )1 1 GS−  

may be used in the multiplicative partitioning of diversity. Similarly, the weighted Gini-Simpson quadratic index 
WGS  is a concave function of the relative abundance of species ( )1, , nP p p=   if the weights 
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( )1, , nW w w=   do not depend on the relative abundance ( )1, , nP p p=   and, therefore, may be used in the 
additive partitioning of diversity, where β γ α= − . The corresponding multiplicative weighted Gini-Simpson 
quadratic index for individual species: 

( ) ( ) 121 i i W i ii i
w p GS P w p

−
  − =∑ ∑  

may be used in the multiplicative partitioning of diversity where the β -diversity is the ratio between the γ - 
diversity and the 𝛼𝛼-diversity, i.e. β γ α= . 

Let ijD d =    be a square matrix whose entries are the distances between species, such as the phylogenetic 
distances, for instance. Thus, ijd  is the distance between the species i  and j , and we have: 

( )0, 0, , 1, ,ij iid d i j n≥ = =  . 

Rao’s index [15], also called quadratic entropy or dissimilarity measure, is: 

( ) .D ij i jij
R P d p p= ∑  

Viewed as a function of the relative abundance of individual species, DR  is a quadratic function. Unfortu- 
nately, if the distance matrix D  is arbitrary, Rao’s index DR , taken as a diversity measure μ, does not satisfy 
the inequality (1) for arbitrary parameters (2) and, therefore, cannot be used in a standard additive partitioning of 
the diversity. There are some excellent papers dealing with diversity (Pavoine et al. [16], Ricotta [17], Ricotta 
and Szeidel [18], Hardy and Senterre [19], Villéger and Mouillot [20], Hardy and Jost [21], Ricotta and Szeidel 
[22], Sherwin [23], De Bello et al. [24], and Tuomisto [25] [26]). Some of them discuss how to use Rao’s index 

DR  in the additive partioning of diversity. Some research focused on finding special kinds of distance matrices 
D for which the corresponding Rao’s index DR  is a concave function, such as the matrix D  assumed to be 
Euclidean, for instance. Some other research focused on how to use Rao’s index for getting a nonstandard addi-
tive partitioning of diversity, which means determining whether some special parameters (2) could be used in 
order to define analog α-, β-, and γ-diversities corresponding to these particular parameters. However, the 
weighted Gini-Simpson quadratic index of biodiversity, applied to the pairs of species, provides a concave re-
placement of Rao’s index and, therefore, is appropriate for use in the additive partitioning of diversity for arbi-
trary distance matrix D . 

Let ijw  be the weight assigned to the pair of species ( ),i j ; ijπ  is the joint probability of the ordered pair 
of species ( ),i j . The joint probability of the pair of species { },i j  is: ij jiπ π+ . We have: 

0, 1; 0;ij ij ijij wπ π≥ = ≥∑  

Denote by: ijW w =    and ijπ π =   . Let 0ic ≥  be the value of species i  and ( )1, , nc c c=  . Again, let 
ijD d =    be the matrix whose entry ijd  is the distance between the species i  and j . The weighted Gini- 

Simpson quadratic index of biodiversity for pairs of species is: 

( ) ( )1W ij ij ijijGS wπ π π= −∑ . 

As shown in Guiasu and Guiasu ([27] [28]), ( )WGS π  is a concave function of the joint distribution π , 
when the weights do not depend on the probability distribution π , and, therefore, may be used in the additive 
partitioning of diversity, where β γ α= − . The corresponding multiplicative weighted Gini-Simpson quadratic 
index for pairs of species: 

( ) ( ) 1
2

, ,
1 ij ij W ij iji j i j

w GS wπ π π
−

 − = ∑ ∑ ; 

may be used in the multiplicative partitioning of diversity where the β -diversity is the ratio between the γ - 
diversity and the α -diversity, i.e. β γ α= . 

Let us assume now that the weights are: 

( ) ( )1 1
2 2ij i j ij

n n
w c c d

−
= + , 
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where: ( )1
2

n n −
 is the number of distinct pairs of species (the richness of the distinct pairs of species), and 

( )1
2 i jc c+  is the average value of the pair of species ( ),i j . If the species are considered to be independent 

from the point of view of their relative abundance, then: 

ij i jp pπ = , 

and the corresponding weighted Gini-Simpson quadratic index of biodiversity for the distinct pairs of species 
becomes: 

( ) ( ) ( ), ,

1
1

2n c D i j ij i j i ji j

n n
GS c c d p p p p

<

−
= + −∑ . 

As mentioned in [27] [28], this measure is a concave replacement of the Rao’s index. It depends on the dis-
tance between species, the richness of the pairs of distinct species, the value of the species, and the relative pro-
portion of the species. 

As shown in [9], the weighted Gini-Simpson quadratic index may be applied to the study of the biodiversity 
of the triads of species as well. Let ijD d =    be the matrix whose generic entry ijd  is the distance between 
species i  and j . The area of the triangle formed by the distinct species i , j , and k , is given by the He-
ron’s formula: 

( )( )( )
1 2

ijk ij jk kiA s s d s d s d = − − −  , 

where s  is the semi-perimeter of this triangle: 

1
2 ij jk kis d d d = + +  . 

If the species are independent from the point of view of their relative abundance, taking ijkA A =    and the 
richness of the triads of species as weights, the corresponding weighted Gini-Simpson quadratic index for triads 
of independent species is: 

( )( ) ( ),

1 2
1

6n D ijk i j k i j ki j k

n n n
GS A p p p p p p

≠ ≠

− −
= −∑ , 

where 
( )( )1 2

6
n n n− −

 is the number of distinct triads of species. If the values of the species are also taken into  

account, the weighted Gini-Simpson quadratic index for triads of species is: 

( ), , 1n c D ijk i j k i j ki j kGS w p p p p p p
≠ ≠

= −∑ , 

where the weights are: 

( )( ) ( )
1 2

.
6 3

,i j k
ijk ijk

c c cn n n
w A i j k

+ +− −
= ≠ ≠  

2. Interdependent Species 
In the current literature on biodiversity the species from a habitat are considered to be independent from the 
point of view of their relative abundance and the separate abundance of each species is taken into account. Thus, 
if ip  is the relative proportion of species i , then the relative proportion of the ordered pair of species ( ),i j  
is i jp p . In real life, however, the species can be interdependent and the biodiversity in the ecosystem is influ-
enced by this interdependence. For instance, pairs of species can interact in various types of inter-specific eco-
logical relationships, including mutualism, where both species benefit from the interaction, commensalism, 
where one species benefits and the other one is not significantly affected, and parasitism, where the parasite 
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benefits and the host species is harmed. While interactions between pairs of species are easier to study, and have 
generally been the focus of most inter-specific studies, the interdependence among several species within a par-
ticular ecosystem can often be much more complex and crucial for determining the biodiversity found at a cer-
tain location. As an example, in sage-scrub habitat fragments in southern California, the presence of coyotes (the 
top predators in these habitats) keeps the numbers of mesopredators, such as domestic cats and raccoons, down. 
Since domestic cats are effective predators of local scrub-breeding birds, these bird species actually benefit from 
the presence of coyotes. Therefore, when the coyote populations decline, local scrub-breeding birds are more 
likely to become extinct, and bird species diversity decreases (Crooks and Soulé [29]). This is an example of 
multiple interactions involving several species, which shows how these inter-specific relationships can affect the 
biodiversity of the ecosystem. 

Let { }1, , nx x  be the distinct species that may be found in a given large habitat, like some species of plants 
on a large island, for instance. Making observations at several different locations of this island, denote by 

1 ki iN


 the number of locations where only the species { }1
, ,

ki ix x  have been found, coexisting together. If 
N  is the total number of locations where observations have been made, the relative proportion of the subset of 
species { }1

, ,
ki ix x  is: 

1 1k ki i i iN Nθ =
 

. 

We have: 

0 1 1i ij ijk ni i j i j kθ θ θ θ θ
≠ ≠ ≠

+ + + + + =∑ ∑ ∑



, 

where 0θ  is the relative proportion of finding none of the species { }1, , nx x  at the locations on the island 
where observations have been made. 

Let 
1 ki iw


 be some nonnegative weights assigned to the subset of species { }1
, ,

ki ix x . The weighted Gini- 
Simpson quadratic index for interdependent species is: 

( ) ( ) ( )

( ) ( )

0 0 0

1 1 1

1 1 1

1 1

W i i i ij ij iji j
i

ijk ijk ijk n n ni j k

GS w w w

w w

θ θ θ θ θ θ

θ θ θ θ

≠

≠ ≠

= − + − + −

+ − + + −

∑∑

∑
  



.                   (3) 

The main problem is to investigate what kind of weights could adequately reflect the species biodiversity on 
the island, along with the abundance of these species. A reasonable answer is offered by the use of Shannon’s 
[30] entropy, as a measure of uncertainty, and Watanbe’s [31] entropic measure of interdependence. 

As mentioned before, 
1 ki iθ


 is the relative abundance of the separate subset of species { }1
, ,

ki ix x  alone, 
or the probability of finding only the subset of species { }1

, ,
ki ix x , and no other species, at a location on the 

island where observations have been made. Let 
1 ki iπ


 be the probability distribution that describes the presence, 
denoted by the symbol 1, or absence, denoted by the symbol 0, of the species belonging to the subset 
{ }1

, ,
ki ix x . The Shannon entropy 

1 ki iH


 corresponding to the probability distribution 
1 ki iπ


 measures how 
much variability is induced on the respective island by the subset of species { }1

, ,
ki ix x  at the locations where 

observations have been made. The subset of species { }1
, ,

ki ix x  contributes more to the diversity of the re- 
spective habitat if its variability, as measured by the corresponding entropy 

1 ki iH


, is larger. We have: 

( )
1

0 ln 2 0.693147181
k

k
i iH k≤ ≤ =


. 

The minimum value corresponds to the case when the same configuration present/absent of the species of the 
subset { }1

, ,
ki ix x  is found at every location where observations were made. This happens, for instance, when 

all the species of the subset { }1
, ,

ki ix x  were found at every location. In such a case, there is no variability as 
far as the distribution of the subset of species { }1

, ,
ki ix x  on the respective island is concerned. The maximum 

value corresponds to the case when all the configurations indicating presence/absence of the species from the 
subset { }1

, ,
ki ix x  are encountered at the different locations where observations were made, with equal like-

lihood, thereby inducing a maximum variability on the island. 
For the subset { }ix , the components of the probability distribution iπ , which describes its distribution pat-

tern variability, are ( )1iπ  and ( )0iπ  giving the probability that the species ix  is present or absent at the lo-
cations where observations were made. The corresponding entropy is: 
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( ) ( ) ( ) ( )1 ln 1 0 ln 0i i i i iH π π π π= − − . 

We have: 0 ln 2 0.693147181,iH≤ ≤ =  where the minimum is obtained when ( )1 1iπ = , which means that 
the species ix  is present, with certainty, at every location, or when ( )0 1iπ = , which means that the species 

ix  is absent, with certainty, at every location. In both such cases, the species ix  induces no distribution varia-
bility on the island. The maximum value of iH  corresponds to the case when ( ) ( )1 0 1 2i iπ π= = , which 
means that the species ix  is present at half of the locations and absent at the other half, inducing a maximum 
variability on the island. This has nothing to do with the abundance of the species ix , which obviously contri-
butes to the diversity on the island; it has to do with the way in which the species ix  is distributed within the 
respective island. Abundance and distribution variability are both components of diversity. 

For the subset { },i jx x , the components of the probability distribution ijπ , which describes its distribution 
pattern variability, are ( )11ijπ , ( )10ijπ , ( )01ijπ  and ( )00ijπ , giving the probability that the species ix  and 

jx  are present or absent at the locations where observations were made. Thus, ( )11ijπ , for instance, is the 
probability that both species are present, or proportion of locations where both ix  and jx  are present. The 
corresponding entropy is: 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
11 ln 11 10 ln 10

01 ln 01 00 ln 00
ij ij ij ij ij

ij ij ij ij

H π π π π

π π π π

= − −

− −
. 

We have: 20 ln 2 1.386294361,ijH≤ ≤ =  where the minimum is obtained when ( )11 1ijπ = , or when 
( )10 1ijπ = , or when ( )01 1ijπ = , or when ( )00 1ijπ = , which means that only one of the patterns 11, 10, 01, 

or 00 is observed, with certainty, at every location. This indicates that the subset of species { },i jx x  induces no 
distribution pattern variability on the respective island. The maximum value of ijH  corresponds to the case 
when ( ) ( ) ( ) ( )11 10 01 00 1 4ij ij ij ijπ π π π= = = = . This indicates that the four different patterns of pres-
ence/absence of the two species are uniformly distributed at the locations on the island where observations were 
made, inducing a maximum distribution pattern variability on the island. 

If the species of the subset { }1
, ,

ki ix x  were independent, as far as the individual presence/absence is con-
cerned, then the entropy 

1 ki iH


 would be a suitable weight reflecting the distribution pattern variability in-
duced by this subset of species. But, more often than not, the species are not independent as far as the individual 
presence/absence is concerned. The interdependence between species will diminish variability. To give a simple 
example, if two species, ix  and jx , are independent, as far as the individual presence/absence is concerned, 
then there are four possibilities to consider at each location: (a) 1x  present and 2x  present; (b) 1x  present 
and 2x  absent; (c) 1x  absent and 2x  present; (d) 1x  absent and 2x  absent. If, however, the two species are 
interdependent and, for instance, can be present only together, then there are only two possibilities to deal with, 
namely: (a) 1x  present and 2x  present; (b) 1x  absent and 2x  absent. Obviously, we have less variability 
due to the interdependence between the two species. 

The amount of interdependence between the species of the subset { }1
, ,

ki ix x , as introduced by Watanabe 
[31], is given by the sum of the entropies of the species of the subset minus the entropy of the entire subset of 
species, namely: 

1 1 1k k ki i i i i iI H H H= + + −
 

 . 

We have: 
1

0
ki iI ≥



, and 
1

0
ki iI =



 if and only if the species of the subset { }1
, ,

ki ix x  are independent. 
Details may be found in Guiasu [32]. 

The degree of distribution pattern variability induced by the subset of species { }1
, ,

ki ix x  on the respective  

island is obtained by subtracting the interdependence between the species of the subset { }1
, ,

ki ix x  from the 
entropy of this subset of species, namely: 

1 1 1k k ki i i i i iV H I= −
  

 . 

Summarizing, diversity depends on the abundance of species, the number of species (richness), the values of 
species, and the distribution pattern variability of the species. The classic Gini-Simpson index measures diversi-
ty taking into account only the abundance of species. The weighted Gini-Simpson quadratic index takes into ac-
count all four factors just mentioned. 
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Let ( )1, , nc c c=   be the positive numbers reflecting the value of the species { }1, , nx x , respectively, such 
as the conservation values of species, for instance. Normally, ( )1, 1, ,ic i n≥ =  . The weight assigned to the 
subset of species { }1

, ,
ki ix x  is: 

( )1 1 1k k ki i i i i iw c c V= + +
 


.                               (4) 

Obviously, 0 1w =  and i i iw c H= , because: 

0i i iI H H= − = ; i i i iV H I H= − = . 

If we do not take the value of the species into account or have no such information available, then we assume 
that 1 1nc c= = = , in which case 

1 ki ic c k+ + = , which is the richness of the subset of species 
{ }1

, ,
ki ix x  , and the weights (4) become: 

1 1k ki i i iw kV=
 

. 

The main conclusion is that for interdependent species, the diversity is measured by the formula (3) where the 
weights are given by (4). 

3. Numerical Example 
On an island, observations are made at several locations, looking for four species of plants, denoted by 
{ }1 2 3 4, , ,x x x x . Seven different patterns have been found, denoted by { }1 2 3 4 5 6 7, , , , , ,y y y y y y y , as shown in the 
table below, with the relative frequencies: 

1 2 3 4

5 6 7

0.325, 0.050, 0.325, 0.050,
0.025, 0.025, 0.200,

q q q q
q q q
= = = =

= = =
 

respectively. 
 

 1y  2y  3y  4y  5y  6y  7y  

1x  1 1 1 1 0 0 0 

2x  1 1 0 0 1 1 0 

3x  0 0 1 1 1 1 0 

4x  0 1 0 1 0 1 1 

 
The entries in this table are: 1 meaning “presence” and 0 meaning “absence” of the species from the rows in 

the patterns from the columns. Thus, pattern 4y , for instance, shows that the species 1 3 4, , andx x x  have been 
found together at a certain location, but the species 2x  was absent. Of course, the same pattern may be found at 
different locations on the island, but no pattern different from those listed in the table was found at any location 
on the island where observations were made. The number jq  is the relative frequency of the pattern jy , or the 
percentage of the locations where the pattern jy  was found. Let us assume that the conservation values of the 
species are: 1 2 3 45, 2, 3, 1c c c c= = = = . The relative abundance of the subsets of species, taken separately, are: 

1 2 3 4 70, 0.200qθ θ θ θ= = = = = , 

12 1 13 3 140.325, 0.325, 0q qθ θ θ= = = = = , 

23 5 24 340.025, 0, 0qθ θ θ= = = = , 

123 124 2 134 40, 0.050, 0.050q qθ θ θ= = = = = , 

234 6 12340.025, 0qθ θ= = = . 

For the subset of species { }1x : 
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( ) ( )1 1 2 3 4 11 0.750, 0 0.250q q q qπ π= + + + = = ; 1 1 10.562335, 0, 0.562335;H I V= = =  

For the subset of species { }2 :x  

( ) ( )2 1 2 5 6 21 0.425, 0 0.575q q q qπ π= + + + = = ; 2 2 20.681855, 0, 0.681855;H I V= = =  

For the subset of species { }3x : 

( ) ( )3 3 4 5 6 31 0.425, 0 0.575q q q qπ π= + + + = = ; 3 3 30.681855, 0, 0.681855;H I V= = =  

For the subset of species { }4x : 

( ) ( )4 2 4 6 7 41 0.325, 0 0.675q q q qπ π= + + + = = ; 4 4 40.630581, 0, 0.630581;H I V= = =  

For the subset of species { }1 2,x x : 

( )12 1 211 0.375,q qπ = + =  ( )12 3 410 0.375q qπ = + = ,  

( )12 5 601 0.050,q qπ = + =  ( )12 700 0.200qπ = = ; 

12 121.20730, 0.0368900,H I= =  12 1.17041;V =  

For the subset of species { }1 3,x x : 

( )13 3 411 0.375,q qπ = + =  ( )13 1 210 0.375q qπ = + = , 

( )13 5 601 0.050,q qπ = + =  ( )13 700 0.200qπ = = ; 

13 131.20730, 0.0368900,H I= =  13 1.17041;V =  

For the subset of species { }1 4,x x : 

( )14 2 411 0.100,q qπ = + =  ( )14 1 310 0.650q qπ = + = , 

( )14 6 701 0.225,q qπ = + =  ( )14 500 0.025qπ = = ; 

14 140.938112, 0.254804,H I= =  14 0.683308;V =  

For the subset of species { }2 3,x x : 

( )23 5 611 0.050,q qπ = + =  ( )23 1 210 0.375q qπ = + = , 

( )23 3 401 0.375,q qπ = + =  ( )23 700 0.200qπ = = ; 

23 231.20730, 0.156410,H I= =  23 1.05089;V =  

For the subset of species { }2 4,x x : 

( )24 2 611 0.075,q qπ = + =  ( )24 1 510 0.350q qπ = + = , 

( )24 4 701 0.250,q qπ = + =  ( )24 300 0.325qπ = = ; 

24 241.27356, 0.0388760,H I= =  24 1.23468;V =  

For the subset of species { }3 4,x x : 

( )34 4 611 0.075,q qπ = + =  ( )34 3 510 0.350q qπ = + = , 

( )34 2 701 0.250,q qπ = + =  ( )34 100 0.325qπ = = ; 
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34 341.27356, 0.0388760,H I= =  34 1.23468;V =  

For the subset of species { }1 2 3, ,x x x : 

( )123 111 0,π =  ( )123 1 2110 0.375q qπ = + = , 

( )123 3 4101 0.375q qπ = + = , ( )123 5 6011 0.050q qπ = + = , 

( )123 100 0π = , ( )123 010 0π = , 

( )123 001 0π = , ( )123 7000 0.200qπ = = . 

123 1231.20730, 0.718745,H I= =  123 0.488555;V =  

For the subset of species { }1 2 4, ,x x x : 

( )124 2111 0.050,qπ = =  ( )124 1110 0.325qπ = = , 

( )124 4101 0.050qπ = = , ( )124 6011 0.025qπ = = , 

( )124 3100 0.325qπ = = , ( )124 5010 0.025qπ = = , 

( )124 7001 0.200qπ = = , ( )124 000 0π = . 

124 1241.53646, 0.338311,H I= =  124 1.19815;V =  

For the subset of species { }1 3 4, ,x x x : 

( )134 4111 0.050,qπ = =  ( )134 3110 0.325,qπ = =  

( )134 2101 0.050qπ = = , ( )134 6011 0.025qπ = = , 

( )134 1100 0.325qπ = = , ( )134 5010 0.025qπ = = , 

( )134 7001 0.200qπ = = , ( )134 000 0π = . 

134 1341.53646, 0.338311,H I= =  134 1.19815;V =  

For the subset of species { }2 3 4, ,x x x : 

( )234 6111 0.025,qπ = =  ( )234 5110 0.025qπ = = , 

( )234 2101 0.050qπ = = , ( )234 4011 0.050qπ = = , 

( )234 1100 0.325qπ = = , ( )234 3010 0.325qπ = = , 

( )234 7001 0.200qπ = = , ( )234 000 0π = . 

234 2341.53646, 0.457831,H I= =  234 1.07863;V =  

For the subset of species { }1 2 3 4, , ,x x x x : 

( )1234 11100 0.325,qπ = =  ( )1234 21101 0.050qπ = = , 

( )1234 31010 0.325qπ = = , ( )1234 41011 0.050qπ = = , 

( )1234 50110 0.025qπ = = , ( )1234 60111 0.025qπ = = , 
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( )1234 70001 0.200qπ = = , 

(all the other patterns have a probability equal to 0) 

1234 12341.53646, 1.02017,H I= =  1234 0.516294.V =  

Applying Formula (4), the weights are: 

1 2.81168w = , 2 1.36371w = , 3 2.04557w = , 

4 0.63058w = , 12 8.19287w = , 13 9.36328w = , 

14 4.09985w = , 23 5.25445w = , 24 3.70404w = , 

34 4.93872w = , 123 4.88555w = , 124 9.58520w = , 

134 10.78335w = , 234 6.47178w = , 1234 5.67923w = . 

Applying Formula (3) with these weights, we obtain the amount of plant biodiversity on the island (at least as 
far as the four species, in this simplified example, are concerned), as measured by the weighted Gini-Simpson 
quadratic index: 5.20575WGS = . 

If the weights are ignored and we apply Formula (3) with all the weights equal to 1, we obtain the diversity on 
the island induced only by the abundance of the subsets of species, as measured by the classic Gini-Simpson in- 
dex: 0.74252GS = . 

4. Conclusions 
The classic Gini-Simpson index is the oldest and simplest measure of biodiversity. It takes into account only the 
relative abundance of the species from a habitat. As pointed out recently, this index of biodiversity does not be-
have well when the number of species is very large. The weighted Gini-Simpson index preserves the qualities of 
the classic index but behaves well when the number of species is very large. Moreover, the weights may be cho-
sen in such a way that not only the relative abundance of species but also the number of species (richness), the 
distance between species, and the value of species are taken into account when the diversity in the habitat is 
measured. The weighted Gini-Simpson index continues to be a concave function of the relative abundance of 
species, allowing it to be used in the additive and multiplicative partitioning of diversity. 

In the current applications of the weighted Gini-Simpson index the species are considered to be independent 
from the point of view of their individual relative abundance, which means that the joint relative proportion of a 
set of species is the product of the relative proportions of the species of this set. The first section of this paper 
summarizes the main variants of the weighted Gini-Simpson index recently introduced for dealing with such in-
dependent species. There are cases, however, when the species are not independent from the point of view of the 
relative abundance. The second section of this paper deals with interdependent species and the weighted Gi-
ni-Simpson index is adapted for dealing with such a more complex case. The new concept of distribution pattern 
variability of species is introduced, essentially based on Shannon’s entropy and Watanabe’s entropic measure of 
global interdependence. The new weighted Gini-Simpson index of biodiversity for interdependent species 
measures the amount of biodiversity induced by the abundance of species, the species richness, the value of spe-
cies, and the distribution pattern variability of the subsets of interdependent species in the respective habitat. 

The third section contains a numerical example which shows how the general formulas from the second sec-
tion have to be applied. 

References 
[1] Gini, C. (1912) Variabilità e mutabilità. In: Pizetti, E. and Salvemini, T., Eds., Rome: Libreria Eredi Virgilio Veschi, 

Memorie di metodologica statistica. 
[2] Simpson, E.H. (1949) Measurement of Diversity. Nature, 163, 688. http://dx.doi.org/10.1038/163688a0 
[3] Jost, L. (2007) Partitioning Diversity into Independent Alpha and Beta Components. Ecology, 88, 2427-2439. 

http://dx.doi.org/10.1890/06-1736.1 

http://dx.doi.org/10.1038/163688a0
http://dx.doi.org/10.1890/06-1736.1


R. C. Guiasu, S. Guiasu 
 

 
465 

[4] Jost, L. (2009) Mismeasuring Biological Diversity: Response to Hoffmann and Hoffmann. Ecological Economics, 68, 
925-928. http://dx.doi.org/10.1016/j.ecolecon.2008.10.015 

[5] Jost, L., DeVries, P., Walla, T., Greeney, H., Chao, A. and Ricotta, C. (2010) Partitioning Diversity for Conservation 
Analyses. Diversity and Distributions, 16, 65-76. http://dx.doi.org/10.1111/j.1472-4642.2009.00626.x 

[6] Guiasu, R.C. and Guiasu, S. (2010) The Rich-Gini-Simpson Quadratic Index of Biodiversity. Natural Science, 2, 1130- 
1137. http://dx.doi.org/10.4236/ns.2010.210140 

[7] Guiasu, R.C. and Guiasu, S. (2003) Conditional and Weighted Measures of Ecological Diversity. International Journal 
of Uncertainty, Fuzziness and Knowledge-Based Systems, 11, 283-300. 

[8] Lande, R. (1996) Statistics and Partitioning of Species Diversity and Similarity among Multiple Communities. Oikos, 
76, 5-13. http://dx.doi.org/10.2307/3545743 

[9] Guiasu, R.C. and Guiasu, S. (2010) New Measures for Comparing the Species Diversity Found in Two or More Habi- 
tats. International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, 18, 691-720. 

[10] Whittaker, R.H. (1972) Evolution and Measurement of Species Diversity. Taxon, 21, 213-251. 
http://dx.doi.org/10.2307/1218190 

[11] Whittaker, R.H. (1977) Evolution of Species Diversity in Land Communities. In: Hecht, M.K. and Steere, B.W.N.C., 
Eds., Evolutionary Biology, Plenum Press, New York, 1-67. http://dx.doi.org/10.1007/978-1-4615-6953-4_1 

[12] MacArthur, R.H. (1965) Patterns of Species Diversity. Biological Review, 40, 510-533. 
http://dx.doi.org/10.1111/j.1469-185X.1965.tb00815.x 

[13] MacArthur, R.H. and Wilson, E.O. (1967) The Theory of Island Biogeography. Princeton University Press, Princeton. 
[14] Hill, M. (1973) Diversity and Evenness. A Unifying Notation and Its Consequences. Ecology, 88, 2427-2439. 
[15] Rao, C.R. (1982) Diversity and Dissimilarity Coefficients: A Unified Approach. Theoretical Population Biology, 21, 

24-43. http://dx.doi.org/10.1016/0040-5809(82)90004-1 
[16] Pavoine, S., Ollier, S. and Pontier, D. (2005) Measuring Diversity from Dissimilarities with Rao’s Quadratic Entropy: 

Are Any Dissimilarities Suitable? Theoretical Population Biology, 67, 231-239. 
http://dx.doi.org/10.1016/j.tpb.2005.01.004 

[17] Ricotta, C. (2005) Additive Partitioning of Rao’s Quadratic Diversity: A Hierarchical Approach. Ecological Modelling, 
183, 365-371. http://dx.doi.org/10.1016/j.ecolmodel.2004.08.020 

[18] Ricotta, C. and Szeidel, L. (2006) Towards a Unifying Approach to Diversity Measures: Bridging the Gap between the 
Shannon Entropy and Rao’s Quadratic Index. Theoretical Population Biology, 70, 237-243. 
http://dx.doi.org/10.1016/j.tpb.2006.06.003 

[19] Hardy, O.J. and Senterre, B. (2007) Characterizing the Phylogenetic Structure of Communities by an Additive Parti- 
tioning of Phylogenetic Diversity. Journal of Ecology, 95, 493-506. 
http://dx.doi.org/10.1111/j.1365-2745.2007.01222.x 

[20] Villéger, S. and Mouillot, D. (2008) Additive Partitioning of Diversity Including Species Differences: A Comment on 
Hardy and Senterre (2007). Journal of Ecology, 96, 845-848. http://dx.doi.org/10.1111/j.1365-2745.2007.01351.x 

[21] Hardy, O.J. and Jost, L. (2008) Interpreting Measures of Community Phylogenetic Structuring. Journal of Ecology, 96, 
849-852. http://dx.doi.org/10.1111/j.1365-2745.2008.01423.x 

[22] Ricotta, C. and Szeidel, L. (2009) Diversity Partitioning of Rao’s Quadratic Entropy. Theoretical Population Biology, 
76, 299-302. http://dx.doi.org/10.1016/j.tpb.2009.10.001 

[23] Sherwin, W.B. (2010) Entropy and Information Approaches to Genetic Diversity and Its Expression: Genomic Geo- 
graphy. Entropy, 12, 1765-1798. http://dx.doi.org/10.3390/e12071765 

[24] De Bello, F., Lavergne, S., Meynard, C.N., Lepš, J. and Thuiller, W. (2010) The Partitioning of Diversity: Showing 
Theseus a Way out of the Labyrinth. Journal of Vegetation Science, 21, 992-1000. 
http://dx.doi.org/10.1111/j.1654-1103.2010.01195.x 

[25] Tuomisto, H. (2010) A Diversity of Beta Diversities: Straightening up a Concept Gone Awry. Part 1. Defining Beta 
Diversity as a Function of Alpha and Gamma Diversity. Ecography, 33, 2-22. 
http://dx.doi.org/10.1111/j.1600-0587.2009.05880.x 

[26] Tuomisto, H. (2010) A Diversity of Beta Diversities: Straightening up a Concept Gone Awry. Part 2. Quantifying Beta 
Diversity and Related Phenomena. Ecography, 33, 23-45. http://dx.doi.org/10.1111/j.1600-0587.2009.06148.x 

[27] Guiasu, R.C. and Guiasu, S. (2011) The Weighted Quadratic Index of Biodiversity for Pairs of Species: A Generaliza-
tion of Rao’s Index. Natural Science, 3, 795-801. http://dx.doi.org/10.4236/ns.2011.39104 

[28] Guiasu, R.C. and Guiasu, S. (2012) The Weighted Gini-Simpson Index: Revitalizing an Old Index of Biodiversity. In-
ternational Journal of Ecology, 2012, 10 p. 

http://dx.doi.org/10.1016/j.ecolecon.2008.10.015
http://dx.doi.org/10.1111/j.1472-4642.2009.00626.x
http://dx.doi.org/10.4236/ns.2010.210140
http://dx.doi.org/10.2307/3545743
http://dx.doi.org/10.2307/1218190
http://dx.doi.org/10.1007/978-1-4615-6953-4_1
http://dx.doi.org/10.1111/j.1469-185X.1965.tb00815.x
http://dx.doi.org/10.1016/0040-5809(82)90004-1
http://dx.doi.org/10.1016/j.tpb.2005.01.004
http://dx.doi.org/10.1016/j.ecolmodel.2004.08.020
http://dx.doi.org/10.1016/j.tpb.2006.06.003
http://dx.doi.org/10.1111/j.1365-2745.2007.01222.x
http://dx.doi.org/10.1111/j.1365-2745.2007.01351.x
http://dx.doi.org/10.1111/j.1365-2745.2008.01423.x
http://dx.doi.org/10.1016/j.tpb.2009.10.001
http://dx.doi.org/10.3390/e12071765
http://dx.doi.org/10.1111/j.1654-1103.2010.01195.x
http://dx.doi.org/10.1111/j.1600-0587.2009.05880.x
http://dx.doi.org/10.1111/j.1600-0587.2009.06148.x
http://dx.doi.org/10.4236/ns.2011.39104


R. C. Guiasu, S. Guiasu 
 

 
466 

[29] Crooks, K.R. and Soulé, M.E. (1999) Mesopredator Release and Avifaunal Extinctions in a Fragmented System. Na- 
ture, 400, 563-566. http://dx.doi.org/10.1038/23028 

[30] Shannon, C.E. (1948) A Mathematical Theory of Communication. Bell System Technical Journal, 27, 379-423, 
623-656. http://dx.doi.org/10.1002/j.1538-7305.1948.tb01338.x 

[31] Watanabe, S. (1969) Knowing and Guessing. Wiley, New York. 
[32] Guiasu, S. (1977) Information Theory with Applications. McGraw-Hill, New York. 

http://dx.doi.org/10.1038/23028
http://dx.doi.org/10.1002/j.1538-7305.1948.tb01338.x

	Weighted Gini-Simpson Quadratic Index of Biodiversity for Interdependent Species
	Abstract
	Keywords
	1. Introduction
	2. Interdependent Species
	3. Numerical Example
	4. Conclusions
	References

