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Abstract 
This paper deals with control of chaotic behavior of a delayed Cellular Neural Network (DCNN) 
model which is a one-dimensional regular array of four cells with continuous activation function. 
We investigate different dynamical behaviors including limit cycle, torus, and chaos for different 
range of weight parameters of the system. Regarding synaptic weight as parameter, Hopf bifurca- 
tions are obtained in the system without delay. In the delayed model condition for the Global as-
ymptotic stability of the equilibrium point is presented. Numerical simulation and results are 
given to show the role of delay in chaos control of the CNNs. 
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1. Introduction 
An artificial neural network (ANN) is a mathematical model that can mimic the biological process of human 
brain. An ANN can be presented by a directed graph composed of neurons as nodes and synapses or nerves as 
edges with an algorithm that show how impulses are conducted through the network. There are various types of 
network architecture. Cellular Neural Networks (CNNs) introduced by Chua and Yang [1] is one dimensional 
regular array of locally connected circuits (called cells), they are able to display various dynamics, such as limit 
cycle, torus, especially chaos. Neural oscillation can arise from interactions between different brain areas. Time 
delays can play an important role here because nerve impulse takes a time to travel the length of the axon to the 
target neuron which in turn takes the time to summate their inputs and produce response. Brain areas are as-
sumed to be bidirectionally (BAM) coupled forming delayed feedback loops. An example of such a feedback 
loop is the connection between the thalamus and cortex [2] [3]. The malfunctioning of the neural system is often 
related to changes in the delay parameter causing unmanageable shifts in the phases of the neural signals. Some 
of the visible mechanical consequences could be explained: such as tremor in the fingers, difficulties in balanc-
ing; the increased danger of falling over for elderly people or even motion disorders in the case of bursts of epi-
lepsy, Parkinson disease and so on [4]. 

Physiological experiments suggest that the main components of neural activity in olfactory systems are chao- 
tic. In the olfactory system, the phase transition has the appearance of a change in the EEG from a chaotic, ape- 
riodic fluctuation to a more regular nearly periodic oscillation. Chaotic activity enables the rapid state transitions 
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essential for information processing. Without this ability, the brain could not quickly concern itself with a new 
task. Thus, we can assume chaos for the rapid transitions between perceptual states. Without it, observation 
could be extremely slow. It is supposed that brains injured by Alzheimer’s disease have electrophysiologically 
inactive neurons and/or synapses and show decreased chaotic behavior. Results of various research works in this 
area support the assumption that chaos plays an important role in brain function, for instance, learning and 
memory [5]-[13].  

This paper is structured as follows: In Section 2 we analyze a new family of simplified 4-CNNs, as shown in 
Figure 1. In Section 3, we investigate different dynamical behaviors including chaos for different range of 
weight parameters of the system. Using Matlab software we can observe limit cycle, torus and chaos in a new 
family of 4-CNNs for different range of adjustable parameters of main diagonal of the weight matrix. Numerical 
results are discussed showing changes of dynamics of the system from unstable to stable (chaos control) one 
through bifurcation due to variation in the individual weight parameter. In Section 4, a delayed Cellular Neural 
Networks (DCNNs) is considered where the chaotic dynamics is controlled [see Figure 2]. A sufficient 
condition for the Global asymptotic stability of the equilibrium point in the delayed model is found. Finally 
some concluding remarks have been drawn on the implication of our results in the context of related work 
mentioned above. 

2. Limit Cycle, Torus and Chaos in 4-CNNs 
In this section, the dynamics of this system can be described by the following ordinary differential equations: 

( ) ( )
4

1
1, 2,3,0 4,i i i ij j i

j
x c x t W f x it c

=

= = − + > ∑                        (1) 

where ( )ijW W=  is a 4 4×  weight matrix describing the strength of the connection from j  th neuron on the 
i  th neuron. [ ( )]if x t  is the output state of the i  th neuron at time t . 

For numerical simulation we consider [1.1, 1.5, 4.5, 15]Tc = , ( ) tanh( )i if x x=  and the weight matrix 
W  to be 
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where 3 33p W=  is an adjustable parameter. 
The phase portraits (Figures 3-5) show the evidence that there exist limit cycles, torus and chaotic attractors 

with different values of 3p . In Figure 6, chaotic nature is controlled by taking 3 6.4( 6.1)p = >  which is also 
confirmed by bifurcation diagram (see Figure 7) with respect to parameter 3p . 
 

 
Figure 1. Architecture of the network model 4-cell Cellular Neural 
Networks. 

 

 
Figure 2. Architecture of the network model 4-cell delayed Cellular 
Neural Networks. 
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Figure 3. Solution trajectory showing periodic behavior and corresponding phase portrait in 1 2 3( , , )x x x space with 
parameter 3 2p = . 

 

   
Figure 4. Solution trajectory showing chaotic behavior and corresponding phase portrait in 1 2 3( , , )x x x space with 
parameter p3 = 4.4. 3 6.4p = . 

 

   
Figure 5. Solution trajectory showing chaotic behavior and corresponding phase portrait in 1 2 3( , , )x x x space 
with parameter 3 5.4p = . 
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Figure 6. Solution trajectory showing stable behavior and corresponding phase portrait in 1 2 3( , , )x x x  space with pa- 
rameter 3 6.4p = . 

 

   
(a)                                                    (b) 

Figure 7. (a) Bifurcation diagram with respect to parameter 3p , (b) The four Lyapunov exponents when 3 5.4p = . 
 

Again, if we consider all other self-synaptic weights like 4 44p W=  as adjustable parameter, then we get sim- 
ilar type of behavior which is shown in the following Figure 8. 

3. Mathematical Model with Time Delay and Global Stability 
We consider an artificial 4-neuron network model of Cellular Neural Networks time delayed connections 
between the neurons by the delay differential equations: 

( ) ( ) ( )
4
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with ( )ix t  is the activation state of i th neuron at time t, [ ( )]if x t  is the output state of the i th neuron at time 
t, iia  is self-synaptic weight, ijb  is the strength of the j  th neuron on the i  th neuron at time ( )t τ− , τ  
is the signal transmission delay and ic  (decay rate) is the rate with which the i th neuron will reset its potential 
to the resting state in isolation when disconnected from the network. In the following, we assume that each of 
the relation between the output of the cell f  and the state of the cell possess following properties: 

(H1) f is bounded on R ; 
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(H2) There is a number 0µ >  such that ( ) ( )f u f v u vµ− ≤ −  for any , .u v R∈  
It is easy to find from (H2) that f  is a continuous function on R . In particular, if output state of the cell is 

described by ( ) tanh( )i if x x= , then it is easy to see that the function f  clearly satisfy the hypotheses (H1) 
and (H2). 

Theorem 1 For the DCNN (3), suppose output of the cell [ ( )]if x t  satisfy the hypotheses (H1) and (H2) 
above and there exist constants *

ijα , *
ijβ , *

ijη , *
ijξ , ijα , ijβ , ijη , ij Rξ ∈  such that 
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1, 2,3, 4i = , in which *
ijα , *

ijβ , *
ijη , *

ijξ , ijα , ijβ , ijη , ijξ ( , 1, 2,3, 4)i j =  are any real constants with 
* * 1ij ijα β+ = , * * 1ij ijη ξ+ = , 1ij ijα β+ = , 1ij ijη ξ+ = , µ  is a constant number of the hypothesis (H2) above. 

Then the equilibrium *x  of the DCNN (3) is also globally asymptotically stable independent of delays. 

4. Conclusion 
This paper addresses chaos control by varying the adjustable parameter (self-connection weights) and 
introducing time delay [see Figure 9] in original model of 4-cell CNNs. These two approaches stabilize unstable  
 

 
Figure 8. Bifurcation diagram with respect to parameter 4p . 

 

   
Figure 9. Control of chaos: Solution trajectory showing periodic behavior corresponding phase portrait in 1 2 3( , , )x x x  space 
with parameter 5.4p = . 
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Figure 10. Solution trajectory showing stable behavior satisfying globally asymptotically 
stable conditions. 

 
periodic orbits that a chaotic attractor encompasses. Furthermore, different from the work of Yang and Huang 
[14] where adjustable parameter lies off the main diagonal (self-connection weights), we consider it on the main 
diagonal which seems more meaningful for controlling chaos in CNNs. Besides global stability criteria ensures 
asymptotically stable behavior for DCNN model [see Figure 10]. The results obtained enforce more restrictions 
on synaptic weight and decay parameters. 
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