Remarks on the Harnak Inequality for Local-Minima of Scalar Integral Functionals with General Growth Conditions

Tiziano Granucci
Scuola Superiore, Istituto P. Calamandrei, Firenze, Italy
Email: tizianogranucci@libero.it

Received September 2013

Abstract

In this paper we proof a Harnack inequality and a regularity theorem for local-minima of scalar intagral functionals with general growth conditions.

Keywords

Harnack Inequality, Regularity, Hölder Continuity

1. Introduction

In this paper we proof a Harnack inequality for local-minima of scalar intagral functionals of the calculus of variation of that type

$$
\begin{equation*}
\mathrm{J}[u, \Omega]=\int_{\Omega} f(x, u(x), \nabla u(x)) d x \tag{1.1}
\end{equation*}
$$

where Ω is a bounded open subset of $\mathbb{R}^{N}, \Phi:[0,+\infty) \rightarrow[0,+\infty)$ is a N-function and Φ globally satisfies the Δ^{\prime} condition in $[0,+\infty)$, f : $\Omega \times \mathbb{R} \times \mathbb{R}^{N} \rightarrow \mathbb{R}$ is a Carathéodory function and there exist $L_{1}, L_{2} \in(0,+\infty) L_{2}$ and

$$
\Phi(|z|) \leq f(x, s, z) \leq L_{2} \Phi(|z|)
$$

for a. e. $x \in \Omega$ and for every $(s, z) \in R^{R} \times R^{N}$. The risearch of regularity results for elliptic and parabolic equations start from the basic and most important results of E. De Giorgi [5] and J. Nash [27]. In 1990s, beginning from the papers of G. Astarita and G. Marrucci [3] and J. P. Gosez [13] has been developed a remarkable production of regularity results for functionals with general growths. In [7], [8] and [25], M. Fuchs, G. Mingione, G. Seregin and F. Siepe have studied functionals of the type

$$
\begin{equation*}
J[u, \Omega]=\int \Omega \nabla u(x) \mid \ln (1+|\nabla u(x)|) d x \tag{1.2}
\end{equation*}
$$

showing results of partial and global regularity for the minimizer of such functional in the scalar and vectorial case. Moreover in [8] M. Fuchs and G. Mingione, have already studied functionals of this type

$$
\begin{equation*}
J[u, \Omega]=\int_{\Omega} \Phi(|\nabla u|) d x \tag{1.3}
\end{equation*}
$$

[^0]In papers $[7,8,25]$ the regularity of the minimizer of the functionals (1.2) and (1.3) has been obtained starting from the weak Eulero-Lagrange equations using the hypothesis: $\Phi \in \mathrm{C}^{2}$. We remember that in $[7,8,25]$ there are important estimations on the $L^{\wedge}\{\infty\}$ norm of the gradient of the minima both in the scalar case and in the vectorial one. In [24] E. Mascolo and G. Papi have determined an inequality of Harnack for the minimizer of the functional (1.3) under the condition $\Phi \in \Delta_{2} \cap \nabla_{2}$. We observe that $\Phi \in \Delta_{2} \cap \nabla_{2}$ implies

$$
\begin{equation*}
t^{p}-c_{2}<\Phi(t)<c_{3} t^{m}+c_{4} \text { for } t>0 \tag{1.4}
\end{equation*}
$$

with real positive constants $\mathrm{c}_{1}, \mathrm{c}_{2}, \mathrm{c}_{3}, \mathrm{c}_{4}$ and $1<\mathrm{p} \leq \mathrm{m}$. Therefore the functional (1.3) satisfies non-standard growth conditions. Classical regularity theorem for functionals with standard growth conditions ($p=m$) has been proved in [9] and [10] (for a didactic explanation refer to [2,11,12]). In [26], G. Moscariello and L. Nania has obtain a results of hölder continuity for the local-minima of functional of the type (1.1) under the hypothesis that (1.4) holds with $1<\mathrm{p} \leq \mathrm{m}<((\mathrm{Np}) /(\mathrm{N}-\mathrm{p}))$. In [17], G. M. Lieberman proved an Harnack inequality for the local-minima of the functional (1.1) with $\Phi \in \mathrm{C}^{2}$ suth that verifies the following relation

$$
c_{5} \leq t \Phi^{\prime \prime}(t) / \Phi^{\prime}(t) \leq c_{6} \text { for } t>0
$$

with $0<\mathrm{c}_{5}<\mathrm{c}_{6}$. We are interested in functionals with quasi-linear growths and we will proof a regularity result which extend the ones obtained in $[17,24,26]$ to a wider N -functional class. In particular we get that the localminima of the following functionals:

$$
\begin{equation*}
J[u, \Omega]=\int_{\Omega}|\nabla u|^{p} \ln (1+|\nabla u|) d x \text { with } p>1 \tag{1.5}
\end{equation*}
$$

are holder continuous functions. In [14] and [15] we start to study the regularity of the local-minima introducing a maximal $L^{\Phi}-L^{\infty}$ inequality and estimating the measure of the level set $A(k, R)$. Moreover in [15] and [16] we have shown that the following hypothesis can be used in order to give a new estimation of the measure of the livel set $A(k, R)$:
$\mathrm{H}-1) \Phi$ globally satisfies the Δ^{\prime}-condition in $[0,+\infty)$;
$\mathrm{H}-2)$ there exists a constant $\mathrm{c}_{\mathrm{H}_{2}}>0$

$$
\begin{equation*}
\Phi(t) \Phi(1 / t) \leq c_{H_{2}} \text { for every } t \in(0,1) \tag{1.6}
\end{equation*}
$$

$\mathrm{H}-3$) there exists a constant $\mathrm{c}_{\mathrm{H}_{3}}>0$

$$
\begin{equation*}
\Phi^{-1}(t) \leq c_{H_{3}} t^{1 / m} \text { for every } t \in(0,1) \tag{1.7}
\end{equation*}
$$

Under these hypotheses we can show the following result.
Theorem 1: If $u \in W^{1} L^{\Phi}(\Omega)$ is a quasi-minima of the functional (1.1) and if Φ confirm the hypotheses $\mathrm{H}-1$, $\mathrm{H}-2$ and $\mathrm{H}-3$; then u is locally hölder continuous.

In these pages we show that the hypotheses $\mathrm{H}-2$ and $\mathrm{H}-3$ are purely technical and they can be eliminated. We can subsequently weaken besides $\mathrm{H}-1$.

We will suppose that the following hypothesis hold.
G-1) Let $\omega: \mathbb{R}^{+} \rightarrow \mathbb{R}^{+}$be an increasing function such that

$$
\begin{equation*}
\Phi(\varepsilon t) \leq c_{G} \varepsilon \varpi(\varepsilon) \Phi(t) \tag{1.8}
\end{equation*}
$$

for every $\mathrm{t} \in \mathbb{R}^{+}$and for every $\varepsilon \in(0,1)$, where $\mathrm{c}_{\mathrm{G}}>0$ is a real constant. Moreover we suppose that

$$
\lim _{x \rightarrow 0^{+}} \varpi(s)=0
$$

We say that $\Phi \in \mathrm{G}$ if (1.8) holds. The hypothesis G-1 implicates a type of quasi-sub-homogeneity condition on the N -function Φ.

Remark 1: We observe that if $\Phi \in \Delta_{2} \cap \nabla_{2}$ then by Lemma 3 (i) we have

$$
\Phi(\varepsilon t)=\varepsilon^{r}\left(1 / \varepsilon^{r}\right) \Phi(\varepsilon t) \leq \varepsilon^{r} \Phi(t)
$$

Then the functions $\Phi \in \Delta_{2} \cap \nabla_{2}$ verify the hypothesis G-1.
Remark 2: We observe that if $\Phi \in \Delta^{\prime}$ on $(0,+\infty)$ then Φ verify the hypothesis G-1; in fact

$$
\Phi(\varepsilon t) \leq c \Phi(\varepsilon) \Phi(t)
$$

Our principal results will be, a weak inequality of Harnack [Theorem 5] and the corollary of regularity that it follows of it [Corollary 2]. The proof of the Harnack inequality uses the techniques introduced in [6,17] and [24]. The only present novelty in the demonstrative technique is the use of an ε-Young inequality. This simple trick allows to recover the results introduced in [15-17,24,26] in a simple way and without using the properties of the functions $\Delta_{2} \cap \nabla_{2}$ (see Lemma of [15,24] and [26]). We finally observe that the hypotheses $\Delta_{2} \cap \nabla_{2}$ it is not, in general, equivalent to $\mathrm{H}-1$; therefore the hypothesis G-1 seems to be slightly more general of those introduced in [15-17,24,26].

Definition 1: Let p be a real valued function defined on $[0,+\infty)$ and having the following properties: $\mathrm{p}(0)=0$, $p(t)>0$ if $t>0, p$ is nondecreasing and right continuous on $(0,+\infty)$. Then the real valued function Φ defined on $[0,+\infty)$ by

$$
\begin{equation*}
\Phi(t)=\int_{[0, t]} p(s) d s \tag{1.9}
\end{equation*}
$$

is called an N -function.
The function $\Phi:[0,+\infty) \rightarrow[0,+\infty)$ defined by (1.9) satisfies the following properties:

$$
\begin{gathered}
\Phi(0)=0 \text { and } \Phi(t)>0 \text { if } t>0 ; \\
\Phi \text { is continuous on }[0,+\infty) \\
\Phi \text { is strictly increasing on }[0,+\infty) ; \\
\Phi \text { is convex on }[0,+\infty) \\
\lim _{x \rightarrow 0} \Phi(t) / t=0 \text { and } \lim _{x \rightarrow \infty} \Phi(t) / t=+\infty \\
\text { if } s>t>0, \text { then } \Phi(s) / s>\Phi(t) / t
\end{gathered}
$$

Definition 2: Let p be a real valued function defined on $[0,+\infty)$ and having the following properties: $\mathrm{p}(0)=0$, $\mathrm{p}(\mathrm{t})>0$ if $\mathrm{t}>0, \mathrm{p}$ is nondecreasing and right continuous on $(0,+\infty)$. We define

$$
q(s)=\sup _{p(t) \leq s}(t)
$$

and

$$
\begin{equation*}
\Psi(t)=\int_{[0, t]} q(s) d s \tag{1.10}
\end{equation*}
$$

The N -functions Φ and Ψ given by (1.9) and (1.10) are said to be complementary.
Particularly for us it will be important the following Lemma.
Lemma 1: Let Φ be an N -function, let Ψ be the complemantary N -function of Φ then we have

$$
\begin{equation*}
s t \leq \Phi(s)+\Psi(t) \tag{1.11}
\end{equation*}
$$

$\forall \mathrm{s}, \mathrm{t} \in \mathbb{R}^{+}$. Moreover for every $\varepsilon>0$ we get

$$
\begin{equation*}
s t \leq(1 / \varepsilon) \Phi(\varepsilon s)+(1 / \varepsilon) \Psi(t) \forall s, t \in \mathbf{i}^{+} . \tag{1.12}
\end{equation*}
$$

Definition 3: A N-function Φ is of class Δ_{2} globally in $(0,+\infty)$ if exists $\mathrm{k}>1$ such that

$$
\begin{equation*}
\Phi(2 t) \leq k \Phi(t) \forall t \in(0,+\infty) \tag{1.13}
\end{equation*}
$$

Definition 4: A N-function Φ is of class $\Delta_{2} \wedge\{\mathrm{~m}\}$ globally in $(0,+\infty)$, with $\mathrm{m}>1$, if for every $\lambda>1$

$$
\begin{equation*}
\Phi(\lambda t) \leq \lambda^{m} \Phi(t) \forall t \in(0,+\infty) \tag{1.14}
\end{equation*}
$$

The N -functions $\Phi \in \Delta_{2}{ }^{\mathrm{m}}$ are characterized by the following result
Lemma 2: Let Φ be a N-function and let Φ^{\prime} - be its left derivative. For $\mathrm{m}>1$ the following properties are equivalent:

1) $\Phi(\lambda t) \leq \lambda^{m} \Phi(t)$, for every $t \geq 0$, for every $\lambda>1$;
2) $t \Phi_{-}^{\prime}(t) \leq m \Phi(t)$, for every $t \geq 0$;
3) the function $\Phi(\mathrm{t}) / \mathrm{t}^{\mathrm{r}}$ is non-increasing on $(0,+\infty)$.

The N -functions $\Phi \in \nabla_{2}{ }^{\mathrm{r}}$ are characterized by the following result
Lemma 3: Let Φ be a N-function and let Φ^{\prime} - be its left derivative. For $r>1$ the following properties are equivalent:

1) $\Phi(\lambda t) \geq \lambda^{r} \Phi(t)$, for every $t \geq 0$, for every $\lambda>1$;
2) $t \Phi^{\prime}-(t) \geq r \Phi(t)$, for every $t \geq 0$;
3) the function $\Phi(\mathrm{t}) / \lambda^{\mathrm{r}}$ is non-decreasing on $(0,+\infty)$.

Definition 5: We say that a N-function Φ belongs to the class $\Phi \in \nabla_{2}{ }^{r}$ if any of the three condition (i)', (ii)' or (iii)' is satisfied.

Definition 6: We say that the N-function Φ satisfies the Δ^{\prime}-condition if there exist positive constants-c and t_{0}-such that

$$
\begin{equation*}
\Phi(t s) \leq c_{4} \Phi(t) \Phi(s) \tag{1.15}
\end{equation*}
$$

for every $\mathrm{t}, \mathrm{s} \geq \mathrm{t}_{0}$.
Definition 7: We say that the N -function Φ globally satisfies the Δ^{\prime}-condition in $[0,+\infty)$ if (1.12) holds for every $\mathrm{t}, \mathrm{s} \geq 0$.

We remember that if $\Phi \in \mathrm{C}^{2}$ then $\Phi \in \Delta^{\prime}$ if $t \Phi^{\prime \prime}(\mathrm{t}) / \Phi^{\prime}(\mathrm{t})$ is a non-increasing function, for further details refer to Theorems 5.1 and 5.2 and to the Lemma 5.2 of [19].

Lemma 4: If the N-function Φ satisfies the Δ^{\prime}-condition then it also satisfies the Δ_{2}-condition
The N -functions

$$
\begin{gathered}
\Phi_{1}(t)=t^{p} \text { with } p>1 ; \\
\Phi_{2}(t)=t^{p}(|\ln (t)|+1) \text { with } p>1 ; \\
\Phi_{3}(t)=(1+t) \ln (1+t)-t \\
\Phi_{4}(t)=\left(t^{2}\right) /(1+\ln (1+t))
\end{gathered}
$$

satisfy the Δ^{\prime}-condition. Moreover Φ_{1} and Φ_{2} satisfy the Δ^{\prime}-condition globally in $[0,+\infty)$ and belong to the class ∇_{2} globally in $[0,+\infty)$. The function Φ_{3} does not satisfy Δ^{\prime}-condition for all $\mathrm{t}, \mathrm{s} \geq 0$ and $\Phi_{3} \notin \nabla_{2}$. Osseviamo inoltre che la funzione $\Phi_{4} \in \nabla_{2} \cap \Delta_{2}$ but Φ_{4} does not satisfy the Δ^{\prime}-condition. For further details refer to $[1,19,28]$. Now we can introduce Orlicz spaces and Orlicz Sobolev Spaces, L^{Φ} and $W^{1} L^{\Phi}$; in these definitions and throughout the article we assume that Φ is a N-function of class $\Delta_{2}{ }^{m}$ for some $m>1$ and that $\Omega \subset \mathbb{R}^{N}$ is a bounded open set with Lipschitz boundary.

Definition 8: If u is a L^{N}-measurable function on Ω and: $\int_{\Omega} \Phi(|\mathrm{u}|) \mathrm{dx}<+\infty$ then $\mathrm{u} \in \mathrm{L}^{\Phi}(\Omega)$. Moreover

$$
\begin{equation*}
W^{1} L^{\Phi}(\Omega)=\left\{u \in L^{\Phi}(\Omega): \partial_{i} u \in L^{\Phi}(\Omega) \text { for } i=1, \ldots, N\right\} \tag{1.16}
\end{equation*}
$$

where $\partial_{i} \mathbf{u}$, for $\mathrm{I}=1, \ldots, \mathrm{~N}$, are the weak derivatives of u .
Theorem 2: $\mathrm{L}^{\Phi}(\Omega)$ e $\mathrm{W}^{1} \mathrm{~L}^{\Phi}(\Omega)$ are Banach spaces with the following norms

$$
\begin{equation*}
\|u\|_{\Phi, \Omega}=\inf \left(k>0: \int_{\Omega} \Phi((|u|) / k) d x \leq 1\right) \tag{1.17}
\end{equation*}
$$

and

$$
\begin{equation*}
\|u\|_{1, \Phi, \Omega}=\|u\|_{\Phi, \Omega}+\sum_{i=1, \ldots, N}\left\|\partial_{i} u\right\|_{\Phi, \Omega} . \tag{1.18}
\end{equation*}
$$

For greater details we refer to $[1,19,28]$. If $u \in W_{\text {loc }}{ }^{1} L^{\Phi}(\Omega)$, k is a real number and $Q_{R} \Subset \Omega$, we set

$$
\begin{aligned}
& A(k, R)=\left\{x \in Q_{R}: u(x)>k\right\}=\{u>k\} \cap Q_{R} \\
& B(k, R)=\left\{x \in Q_{R}: u(x)<k\right\}=\{u<k\} \cap Q_{R} .
\end{aligned}
$$

Remark 3: For almost each $k \in \mathbb{R}$ we get $|\mathrm{A}(\mathrm{k}, \mathrm{R})|=\left|\mathrm{Q}_{\mathrm{R}}\right|-|\mathrm{B}(\mathrm{k}, \mathrm{R})|$.
Definition 9: If $u \in \mathrm{~W}_{\mathrm{loc}}{ }^{1} \mathrm{~L}^{\Phi}(\Omega)$, we say that $\mathrm{u} \in \mathrm{ODG}_{\Phi}{ }^{+}(\Omega, \mathrm{H}, \mathrm{R})$ if for every couple of concentric balls $\mathrm{Q}_{\varrho} \subset \mathrm{Q}_{\mathrm{R}} \Subset \mathrm{Q}_{\mathrm{R}_{0}} \Subset \Omega$, with $\mathrm{R}<\mathrm{R}_{0}$, and for every $\mathrm{k} \in \mathbb{R}$ we have

$$
\begin{equation*}
\int_{A(k, \tilde{\mathbf{n}})} \Phi(|\nabla u|) d x \leq H \int_{A(k, R)} \Phi((u-k) /(R-\widetilde{\mathbf{n}})) d x \tag{1.19}
\end{equation*}
$$

Definition 10: If $u \in W_{\text {loc }}{ }^{1} L^{\Phi}(\Omega)$, we say that $u \in \operatorname{ODG}_{\Phi}{ }^{-}\left(\Omega, H, R_{0}\right)$ if for every couple of concentric balls $\mathrm{Q}_{\mathrm{e}} \subset \mathrm{Q}_{\mathrm{R}} \Subset \mathrm{Q}_{\mathrm{R}_{0}} \Subset \Omega$, with $\mathrm{R}<\mathrm{R}_{0}$, and for every $\mathrm{k} \in \mathbb{R}$ we have

$$
\begin{equation*}
\int_{B(k, \tilde{\mathbf{n}})} \Phi(|\nabla u|) d x \leq H \int_{B(k, R)} \Phi((k-u) /(R-\widetilde{\mathbf{n}})) d x \tag{1.20}
\end{equation*}
$$

Definition 11: If $u \in W_{\mathrm{loc}}{ }^{1} \mathrm{~L}^{\Phi}(\Omega)$, we say that $u \in \mathrm{ODG}_{-}\{\Phi\}\left(\Omega, \mathrm{H}, \mathrm{R}_{0}\right)$ if $\mathrm{u} \in \mathrm{ODG}_{-}\{\Phi\}^{\wedge}\{ \pm\}\left(\Omega, \mathrm{H}, \mathrm{R}_{0}\right)$, that is

$$
O D G_{\Phi}\left(\Omega, H, R_{0}\right)=O D G_{\Phi}^{+}\left(\Omega, H, R_{0}\right) \cap O D G_{\Phi}^{-}\left(\Omega, H, R_{0}\right) .
$$

Theorem 3: If $u \in \operatorname{ODG}_{\Phi}{ }^{+}\left(\Omega, H, R_{0}\right)$ then u is locally bounded above on Ω. Furthermore, for each $x_{0} \in \Omega$ and R $\leq \min \left(\mathrm{R}_{0}, \mathrm{~d}\left(\mathrm{x}_{0}, \partial \Omega\right), 1\right)$ there exists an universal constant $\mathrm{c}_{5}=\mathrm{c}_{5}(\mathrm{~N}, \mathrm{~m}, \mathrm{H})$ such that

$$
\Phi\left(e s s-\sup _{Q R / 2}\left(u_{+}(x)\right)\right) \leq\left(c_{7} /\left|Q_{R}\right|\right) \int_{Q R} \Phi\left(u_{+}\right) d x
$$

Proof: The proof follows using the demonstration methods presented in [24].
Corollary 1: If $u \in \operatorname{ODG}_{\Phi}\left(\Omega, H, R_{0}\right)$ then u is locally bounded on Ω. Furthermore, for each $x_{0} \in \Omega$ and $R \leq$ $\min \left(\mathrm{R}_{0}, \mathrm{~d}\left(\mathrm{x}_{0}, \partial \Omega\right), 1\right)$ there exists an universal constant $\mathrm{c}_{6}=\mathrm{c}_{6}(\mathrm{~N}, \mathrm{~m}, \mathrm{H})$ such that

$$
\Phi\left(e s s-\sup _{Q R / 2}(|u(x)|)\right) \leq\left(c_{7} /\left|Q_{R}\right|\right) \int_{Q R} \Phi(|u|) d x .
$$

Proof: The proof comes after Theorem 3 remembering that if $u \in \operatorname{DG}_{\Phi}{ }^{-}\left(\Omega, H, R_{0}\right)$ then $-u \in \operatorname{DG}_{\Phi}{ }^{+}\left(\Omega, H, R_{0}\right)$. Moreover the following lemma is valid:
Lemma 5: If $\mathrm{u} \in \mathrm{DG}_{\Phi}{ }^{+}\left(\Omega, \mathrm{H}, \mathrm{R}_{0}\right)$ then u is locally bounded above on Ω. Furthermore, for each $\mathrm{x}_{0} \in \Omega, \mathrm{R} \leq$ $\min \left(\mathrm{R}_{0}, \mathrm{~d}\left(\mathrm{x}_{0}, \partial \Omega\right), 1\right)$ and for every $\mathrm{p}>1$ there exists an universal constant $\mathrm{c}_{7}=\mathrm{c}_{7}(\mathrm{p}, \mathrm{N}, \mathrm{m}, \mathrm{H})$ such that

$$
\begin{equation*}
\left.\Phi^{1 / p}\left(e s s-\sup _{Q \tilde{\mathrm{x}}}|u|\right)\right) \leq\left(c_{7} /(R-\tilde{\mathbf{n}})^{N}\right) \int_{Q R} \Phi^{1 / p}(|u|) d x \tag{1.21}
\end{equation*}
$$

for each $\mathrm{Q}_{\varrho} \Subset \mathrm{Q}_{\mathrm{R}}$ and $0<\varrho<\mathrm{R}$.
Proof: The proof comes after Theorem 3 using the demonstration methods presented in [24].
Definition 12: Let $u \in \mathrm{~W}_{\text {loc }}{ }^{1} \mathrm{~L}^{\Phi}(\Omega)$ then it is a local minima of (1.1) if for every $\phi \in \mathrm{W}_{0}{ }^{1} \mathrm{~L}^{\Phi}(\Omega)$ we have

$$
J(u, \operatorname{supp}(\phi)) \leq J(u+\phi, \operatorname{supp}(\phi))
$$

Moreover we get:
Theorem 4 (Caccioppoli inequalities): If $\Phi \in \Delta_{2}$ and $u \in W_{\text {loc }}{ }^{1} L^{\Phi}(\Omega)$ is a local minima of (1.1) then $u \in \mathrm{ODG}_{\Phi}\left(\Omega, \mathrm{H}_{,} \mathrm{R}_{0}\right)$.

Using the previous results we obtain the following theorems:
Theorem 5 (Weak Harnack inequality): Let Φ be a N-function. Let u be a positive function satisfying $(1,17)$. If $\Phi \in \mathrm{G}$; then there exists $\mathrm{p}>1$ and a constant $\mathrm{c}>0$ such that

$$
\begin{equation*}
\Phi^{1 / p}\left(e s s-\inf _{Q R / 2}(u)\right) \geq c\left(1 / R^{N}\right) \int_{Q R} \Phi^{1 / p}(u) d x \tag{1.22}
\end{equation*}
$$

Theorem 6 (Main Theorem-Harnack inequality): Let Φ be a N -function. Let u be a positive local minimizer of (1.1). If $\Phi \in \mathrm{G}$; then there exists a constant $\mathrm{c}>0$ such that, for $\sigma \in(0,1)$ we have

$$
\begin{equation*}
e s s-\sup _{Q \sigma R}(u) \leq c e s s-\inf f_{Q \sigma R}(u) . \tag{1.23}
\end{equation*}
$$

Proof (Proof of the Main Theorem): Using the (1.21) and (1.22) we have (1.23).
Corollary 2: Let Φ be a N -function. If $\Phi \in \mathrm{G}$ and $\mathrm{u} \in \mathrm{W}^{1} \mathrm{~L}^{\Phi}(\Omega)$ is a local minimizer of the functional (1.1); then u is locally hölder continuous.

Proof: Using (1.20) and the technique introduced in $[6,11,12]$ we get the proof.
We finish observing that with small changes our demonstrative technique can also be applied to the quasi-minima of the functional (1.1). Besides we can also apply this demonstration using equivalent N -functions. Unfortunately, $\Phi_{2}(t)=t \ln (1+\mathrm{t})$ does not verify H 1 ; for this $\Phi_{2} \in \Delta^{\prime}$ on $\left[\mathrm{t}_{0},+\infty\right)$ with $\mathrm{t}_{0}>0$ but $\Phi_{2} \notin \Delta^{\prime}$ globally on $[0,+\infty)$. We should think to solve this problem using the concept of equivalent N -function; the demonstrative technique allows it, but we do not know if it exists a N -function Φ_{3} equivalent to Φ_{2} which globally verifies Δ^{\prime} globally on $[0,+\infty)$. It is still an unsolved problem.I thank the colleague Dott. Elisa Albano who translated the article into English supporting and encouraging me so much.

2. Proof of the Weak Harnack Inequality

2.1. Lemmata

Let define

$$
v_{R}(y)=((u(R y)) / R), y \in Q_{1}
$$

then we have the following Caccioppoli inequalities

$$
\begin{equation*}
\int_{A(k, \sigma, v R)} \Phi\left(\left|\nabla v_{R}\right|\right) d x \leq H \int_{A(k, \tau, v R)} \Phi\left(\left(\left(v_{R}-k\right) /(\tau-\sigma)\right)\right) d x \tag{2.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\int_{B(k, \sigma, v R)} \Phi\left(\left|\nabla v_{R}\right|\right) d x \leq H \int_{B(\mathbb{K}, \tau, v)} \Phi\left(\left(\left(k-v_{R}\right) /(\tau-\sigma)\right)\right) d x \tag{2.2}
\end{equation*}
$$

where $0<\sigma<\tau<1$ and $k \in \mathbb{R}$.
Let us start remembering the following lemma:
Lemma 6: Let $\mathrm{g}(\mathrm{t})$, $\mathrm{h}(\mathrm{t})$ be a non-negative and increasing functions on $[0,+\infty)$ then $\mathrm{g}(\mathrm{t}) \mathrm{h}(\mathrm{s}) \leq \mathrm{g}(\mathrm{t}) \mathrm{h}(\mathrm{t})+\mathrm{g}(\mathrm{s}) \mathrm{h}(\mathrm{s})$ for every $\mathrm{s}, \mathrm{t} \in[0,+\infty)$.

Proof: If $\mathrm{s} \leq \mathrm{t}$ then $\mathrm{g}(\mathrm{t}) \mathrm{h}(\mathrm{s}) \leq \mathrm{g}(\mathrm{t}) \mathrm{h}(\mathrm{t}) \leq \mathrm{g}(\mathrm{t}) \mathrm{h}(\mathrm{t})+\mathrm{g}(\mathrm{s}) \mathrm{h}(\mathrm{s})$. If $\mathrm{t} \leq \mathrm{s}$ then $\mathrm{g}(\mathrm{t}) \mathrm{h}(\mathrm{s}) \leq \mathrm{g}(\mathrm{s}) \mathrm{h}(\mathrm{s}) \leq \mathrm{g}(\mathrm{t}) \mathrm{h}(\mathrm{t})+\mathrm{g}(\mathrm{s}) \mathrm{h}(\mathrm{s})$.
Let us remember for the sake of completeness the following lemma:
Lemma 7: Let $\Phi \in \Delta_{2}$ and $u \in W^{1} L^{\Phi}(\Omega)$. Suppose that u is positive in Q_{R} and satisfies (2.2) then there exists a positive constants δ_{0} such that if for some $\theta>0$ we have $|\mathrm{B}(\theta, \mathrm{u}, \mathrm{R})| \leq \delta_{0}\left|\mathrm{Q}_{\mathrm{R}}\right|$, then

$$
\begin{equation*}
\inf _{Q R / 2}\{u\} \geq(\theta / 2) . \tag{2.3}
\end{equation*}
$$

Proof: The proof follows using the demonstration methods presented in [24]. Refer to Lemma 4.1 of [24].
Our demonstration of the weak inequality of Harnack founds him on the following Lemma 8. We have shown the Lemma 8 using an opportune ε-Young inequality.

Lemma 8: Let be Φ a N-function and $\Phi \in G$. Let $u \in W^{1} L^{\Phi}(\Omega)$. Suppose that u satisfies (2.2). For every $\delta \in(0,1)$ and $\mathrm{T}>(1 / 2)$, there exists a positive constant $\mu(\delta, T)$ such that if u is positive on $\mathrm{Q}_{2 \text { TR }}$ and there exists $\theta>$ 0 such that $|\mathrm{B}(\theta, \mathrm{u}, \mathrm{R})| \leq \delta\left|\mathrm{Q}_{\mathrm{R}}\right|$, we have

$$
\begin{equation*}
\inf _{Q T R}\{u\} \geq \mu(\delta, T) \theta \tag{2.4}
\end{equation*}
$$

Proof: Let $\delta \in(0,1)$. We first prove that if u is positive in Q_{R} and there exists $\theta>0$ such that $|\mathrm{B}(\theta, \mathrm{u}, \mathrm{R})|<\delta\left|\mathrm{Q}_{\mathrm{R}}\right|$, there exists a constant $\lambda(\theta)$ such that

$$
\begin{equation*}
\inf _{Q R / 2}\{u\} \geq \lambda(\theta) \theta \tag{2.5}
\end{equation*}
$$

We consider the function w_{R} define by $w_{R}(y)=0$ if $v_{R}(y) \geq k, w_{R}(y)=k-v_{R}$ if $k>v_{R}(y)>h, w_{R}(y)=k-h$ if $\mathrm{v}_{\mathrm{R}}(\mathrm{y}) \leq \mathrm{h}$
where $v_{R}(y)=((u(R y)) / R), y \in Q_{1}$. Let us consider $k_{i}=\left(\theta /\left(2^{i} R\right)\right)$ with $I \leq v$, since $w_{R}=0$ in $Q_{1} \backslash B\left(k_{i}, v_{R}, 1\right)$ and

$$
\left|Q_{1} \backslash B\left(k_{i}, v_{R}, 1\right)\right|>(1-\delta)\left|Q_{R}\right|
$$

by Sobolev inequality we have

$$
\Phi\left(k_{i}-k_{i-1}\right)\left|B\left(k_{i}, v_{R}, 1\right)\right| \leq\left|B\left(k_{i}, v_{R}, 1\right)\right|^{1 / N}\left[\int_{Q_{1}}\left(\Phi\left(w_{R}\right)\right)^{N /(N-1)} d x\right]^{(N-1) / N)}
$$

and

$$
\begin{equation*}
\Phi\left(k_{i}-k_{i-1}\right)\left|B\left(k_{i}, v_{R}, 1\right)\right| \leq\left. C_{S N}| | B\left(k_{i}, v_{R}, 1\right)\right|^{1 / N} \int_{\Delta i} \Phi^{\prime}\left(w_{R}\right)\left|\nabla w_{R}\right| d x \tag{2.6}
\end{equation*}
$$

where $\Delta_{\mathrm{i}}=\mathrm{B}\left(\mathrm{k}_{\mathrm{i}}, \mathrm{v}_{\mathrm{R}}, 1\right) \backslash \mathrm{B}\left(\mathrm{k}_{\mathrm{i}-1}, \mathrm{v}_{\mathrm{R}}, 1\right)$. Using the Young inequality $\mathrm{ab} \leq \Psi(\mathrm{a})+\Phi(\mathrm{b})$, where Φ is the complementary function of Φ, we have

$$
\int_{\Delta i} \Phi\left(w_{R}\right)\left|\nabla w_{R}\right| d x=(m / \varepsilon) \int_{\Delta i}\left(\Phi^{\prime}\left(w_{R} / m\right) \varepsilon\left|\nabla w_{R}\right| d x\right.
$$

and

$$
(m / \varepsilon) \int_{\Delta i}\left(\Phi^{\prime}\left(w_{R} / m\right) \varepsilon\left|\nabla w_{R}\right| d x \leq(m / \varepsilon) \int_{\Delta i} \Psi\left(\Phi^{\prime}\left(w_{R}\right) / m\right)+\Phi\left(\varepsilon\left|\nabla w_{R}\right|\right) d x\right.
$$

then

$$
\begin{equation*}
\int_{\Delta i} \Phi\left(w_{R}\right)\left|\nabla w_{R}\right| d x \leq(m / \varepsilon) \int_{\Delta i} \Psi\left(\Phi^{\prime}\left(w_{R}\right) / m\right)+\Phi\left(\varepsilon\left|\nabla w_{R}\right|\right) d x \tag{2.7}
\end{equation*}
$$

Since

$$
\Psi\left(\Phi^{\prime}\left(w_{R}\right) / m\right) \leq \Psi\left(w_{R} \Phi^{\prime}\left(w_{R}\right) /\left(m w_{R}\right) \leq \Psi\left(\Phi\left(w_{R}\right) / w_{R}\right)\right.
$$

from the inequality

$$
\Psi(\Phi(t) / t))<\Phi(t)
$$

(see inequality (6), page 230 of [1]) we have

$$
\int_{\Delta i} \Phi\left(w_{R}\right)\left|\nabla w_{R}\right| d x \leq(m / \varepsilon) \int_{\Delta i} \Phi\left(w_{R}\right)+\Phi\left(\varepsilon\left|\nabla w_{R}\right|\right) d x
$$

then

$$
\Phi\left(k_{i}-k_{i-1}\right)\left|B\left(k_{i}, v_{R}, 1\right)\right| \leq C_{S N}\left|B\left(k_{i}, v_{R}, 1\right)\right|^{1 / N}(m / \varepsilon) \int_{\Delta i} \Phi\left(w_{R}\right)+\Phi\left(\varepsilon\left|\nabla w_{R}\right|\right) d x
$$

Moreover, since Φ globally satisfies the Δ^{\prime}-condition in $[0,+\infty)$, it follows

$$
\Phi\left(k_{i}-k_{i-1}\right)\left|B\left(k_{i}, v_{R}, 1\right)\right| \leq C_{S N}\left|B\left(k_{i}, v_{R}, 1\right)\right|^{\mid / N}\left[(m / \varepsilon) \Phi\left(k_{i}-k_{i-1}\right)\left|\Delta_{i}\right|+\left(m c_{1} c_{G} \varpi(\varepsilon)\right) \int_{\Delta i} \Phi\left(\left|\nabla w_{R}\right|\right) d x\right]
$$

since

$$
\int_{\Delta i} \Phi\left(\left|\nabla w_{R}\right|\right) d x=\int_{\Delta i} \Phi\left(\left|\nabla v_{R}\right|\right) d x
$$

using Caccioppoli's inequality (2.2) we have

$$
\left.\left|B\left(k_{i}, v_{R}, 1\right)\right|\right|^{1-1 / N} \leq C_{S N}(m / \varepsilon)\left|\Delta_{i \mid}+C_{S N} m c_{2} \varpi(\varepsilon)\right| Q_{2} \mid .
$$

Summing the last inequality on i from 0 to v we have

$$
(1+v)\left|B\left(k_{i}, v_{R}, 1\right)\right|^{1-1 / N} \leq C_{S N}(m / \varepsilon)\left|Q_{1}\right|+C_{S N} m c_{2} \varpi(\varepsilon)\left|Q_{2}\right|(1+v)
$$

and

$$
\left|B\left(k_{i}, v_{R}, 1\right)\right|^{1-1 / N} \leq C_{S N}(m /(\varepsilon(1+v)))\left|Q_{1}\right|+C_{S N} m c_{2} \quad \varpi(\varepsilon)\left|Q_{2}\right| .
$$

Fix $\varepsilon=\left(1 /(1+v)^{1 / 2}\right)$, then

$$
\left|B\left(k_{i}, v_{R}, 1\right)\right|^{1-1 / N} \leq C_{S N}\left(m /(1+v)^{1 / 2}\right)\left|Q_{1}\right|+C_{S N} m c_{2} \varpi\left(1 /(1+v)^{1 / 2}\right)\left|Q_{1}\right|
$$

and

$$
\begin{equation*}
\left|B\left(k_{i}, v_{R}, 1\right)\right|^{1-1 / N} \leq C_{S N} m\left(1 /(1+v)^{1 / 2}+c_{2} \varpi\left(1 /(1+v)^{1 / 2}\right)\right)\left|Q_{1}\right|^{1-1 / N} \tag{2.9}
\end{equation*}
$$

From (2.9) we have

$$
\left|B\left(k_{i}, v_{R}, 1\right)\right| \leq\left(C_{S N} m\right)^{N /(N-1)}\left(1 /(1+v)^{1 / 2}+c_{2} \quad \varpi\left(1 /(1+v)^{1 / 2}\right)^{N /(N-1)}\left|Q_{1}\right|\right.
$$

Since $\varpi(\mathrm{s}) \downarrow 0$ for $\mathrm{s} \downarrow 0$ then we can choose v such that

$$
\left(C_{S N} m\right)^{N /(N-1)}\left(1 /(1+v)^{1 / 2}+c_{2} \varpi\left(1 /(1+v)^{1 / 2}\right)^{N /(N-1)} \leq(1 / 2)\left(\delta_{0}\right)^{(N-1) N}\right.
$$

where δ_{0} is the constant in Lemma 7, then there exists $\lambda\left(\delta_{0}\right)$ such that

$$
\inf _{Q R / 2}\{u\} \geq \lambda(\delta) \theta .
$$

Let now $\mathrm{T}>(1 / 2)$ and assume $|\mathrm{B}(\theta, \mathrm{u}, \mathrm{R})| \leq \delta\left|\mathrm{Q}_{\mathrm{R}}\right|$ and u positive in $\mathrm{Q}_{2 \mathrm{R}}$. Since

$$
|A(\theta, u, 2 T R)||\geq(1-\gamma)| Q_{R}\left|=\left((1-\delta) /(2 T)^{\mathrm{n}}\right)\right|\left|Q_{2 T R}\right|
$$

we have

$$
|B(\theta, u, 2 T R)| \leq\left(1-(1-\delta) /(2 T)^{\mathrm{n}}\right)\left|Q_{2 T R}\right|
$$

then there exists a constant depending on δ and T such that (2.4) holds.
Using the technique introduces in [11] we get the following lemma.
Lemma 9: Let $\mathbf{u} \in \mathrm{DG}_{\Phi}{ }^{-}$with $\mathrm{k}_{0}=0$ and let u be positive in Q_{2}. Let $\delta \in(0,1)$ and $\mathrm{t}>0$. If

$$
\left|\left\{x \in Q_{1}: u(x)>t\right\}\right| \geq 2^{-s}\left|Q_{1}\right|
$$

then

$$
\inf _{Q 1 / 2}\{u\}>c^{s} t
$$

where $\mathrm{c}=\mathrm{c}(\delta)$ being as in Lemma 8 with $\delta=2^{-\mathrm{N}-1}$.
Proof: For $\mathrm{s}=0$ the claim is true by Lemma 8. Now we use the inductive process. We assume the claim true for some s and we prove it for $s+1$. Let us define $A_{i}=\left\{x \in Q_{1}: u(x)>c^{i} t\right\}$; by hipothesis, if $A_{0}=\left\{x \in Q_{1}: u(x)>\right.$ t\} then

$$
\left|A_{0}\right|>\left(1 / 2^{s+1}\right)\left|Q_{1}\right| .
$$

We have two alternative.

1) We assume $\left|A_{0}\right|>2^{-s}\left|Q_{1}\right|$, the by inductive hypothesis

$$
\inf _{Q 1 / 2}\{u\}>c^{s} t>c^{s+1} t
$$

2) Otherwise $2^{-s-1}\left|\mathrm{Q}_{1}\right|<\left|\mathrm{A}_{0}\right|<2^{-s}\left|\mathrm{Q}_{1}\right|$. Let us assume $\mathrm{g}=\chi _\left\{\mathrm{A}_{0}\right\}$ and apply the Calderon-Zygmund argument to g in Q_{1} with parameter $(1 / 2)$ then we find a sequence of dyadic cubes $\left\{Q_{j}\right\}$ such that

$$
\begin{gathered}
(1 / 2)<\left(1 /\left|Q_{j}\right|\right) \int Q_{j} g d x<2^{N-1} \\
g<(1 / 2) \text { in } Q_{1} \backslash \bigcup_{j} Q_{j}
\end{gathered}
$$

if Q_{j} is one of the 2^{N} subcubes of P_{i} arising during the Calderon-Zygmund process, then

$$
\left(1 /\left|P_{i}\right|\right) \int_{P i} g d x \leq(1 / 2)
$$

From (2) and (3) we get

$$
\left|A_{0}\right|=\left|A_{0} \cap \bigcup_{i} P_{i}\right|=\sum_{i}\left|A_{0} \cap P_{i}\right| \leq(1 / 2) \sum_{i}\left|P_{i}\right| ;
$$

moreover

$$
\left|A_{0} \cap P_{i}\right| \geq\left|A_{0} \cap Q_{j}\right| \geq(1 / 2)\left|Q_{j} \geq\left(1 / 2^{N+1}\right)\right| P_{i} \mid
$$

We apply Lemma 8 and we obtain

$$
\inf _{P i}\{u\} \geq c t
$$

Let us consider

$$
A_{1}=\left\{x \in Q_{1}: u(x)>c t\right\}
$$

then $\mathrm{P}_{\mathrm{i}} \subset \mathrm{A}_{1}$ and

$$
\left|Q_{1}\right| 2^{-s-1}<\left|A_{0}\right|<(1 / 2)\left|A_{1}\right|
$$

by inductive hypotesis

$$
\inf _{Q_{1 / 2}}\{u\}>c^{s+1} t
$$

2.2. Proof of the Weak Harnack Inequality

Now we can proof the inequality (1.19) using the technique introduced by Di Benedetto-Trudinger in [6].
Proof (Proof of Theorem 5); Given any $\mathrm{t}>0$ choose an integer s such that

$$
\lambda_{t}=\left|\left\{x \in Q_{R}: u(x)>t\right\}\right| \geq 2^{-s}\left|Q_{R}\right|
$$

i.e.

$$
s \geq \ln \left(\lambda_{t} / Q_{R} \mid\right) / \ln (1 / 2) ;
$$

then by Lemma 9 we get

$$
\text { ess }-i n f_{Q R 2}\{u\}>c^{s} t
$$

therefore

$$
u(x) \geq t\left(\lambda_{t}| | Q_{R} \mid\right)^{\ln (() / \ln (1 / 2)} .
$$

Let us define

$$
\xi=\text { ess }-\inf f_{Q R 2}\{u\}
$$

then

$$
\lambda_{t} \leq\left(\xi^{\alpha} / t^{\alpha}\right)\left|Q_{R}\right|
$$

where $\alpha=\ln \left((1 / 2) / \ln (\mathrm{c})\right.$. Since $\Phi^{\prime}(\mathrm{t}) \mathrm{t} \leq \mathrm{m} \Phi(\mathrm{t})$ for $\mathrm{p}>\max \{1,(\mathrm{~m} / \alpha)\}$ we have

$$
\int_{Q R} \Phi^{1 / p}(u) d x=(1 / p) \int_{[0,+\infty]} \Phi^{1 / p-1}(t) \Phi(t) \lambda_{t} d t \leq(1 / p) \Phi^{1 / p}(\xi)\left|Q_{R}\right|+(m / p)\left|Q_{R}\right| \xi^{\alpha} \int_{[\xi,+\infty]} \Phi^{1 / p}(t) / t^{\alpha+1} d t
$$

Integrating by parts, we have

$$
\int_{[\xi,+\infty]} \Phi^{1 / p}(t) / t^{\alpha+1} d t \leq(1 /(\alpha[1-(m /(p \alpha))])) \Phi^{1 / p}(\xi) \xi^{-\alpha}
$$

hence

$$
\left(1 /\left|Q_{R}\right|\right) \int_{Q R} \Phi^{1 / p}(u) d x \leq c \Phi^{1 / p}\left(e s s-\inf _{Q R / 2}\{u\}\right) .
$$

References

[1] Adams, R. (1975) Sobolev Spaces. Accademic Press, New York.
[2] Ambrosio, L. Lecture Notes on Partial Differential Equations.
[3] Astarita, G. and Marrucci, G. (1974) Principles of Non-Newtonian Fluid Mechanics. McGraw-Hill, London.
[4] Bhattacharaya, T. and Leonetti, F. (1993) $\mathrm{W}^{\wedge}\{2,2\}$ Regularity for Weak Solutions of Elleptic Systems with Nonstandard Growth. J. Math. Anal. Appl., 176, 224-234. http://dx.doi.org/10.1006/imaa.1993.1210
[5] De Giorgi, E. (1957) Sulla differenziabilità e l'analicità delle estremali degli integrali multipli. Mem.Accad. Sci Torino, cl. Sci. Fis. Mat. Nat., 3, 25-43.
[6] Di Benedetto, E. and Trudinger, N. (1984) Harnack Inequalities for Quasi-Minima of Variational Integrals. Ann. Inst. H. Poincaré (analyse non lineaire), 1, 295-308.
[7] Fuchs, M. and Seregin, G. (1998) A Regularity Theory for Variational Intgrals with LlnL-Growth. Calc. Var., 6, 171-187. http://dx.doi.org/10.1007/s005260050088
[8] Fuchs, M. and Mingione, G. (2000) Full $\mathrm{C}^{\wedge}\{1, \alpha\}$-Regularity for Free and Constrained Local Minimizers of Elliptic Variational Integrals with Nearly Linear Growth. Manuscripta Mathematica, 102, 227-250. http://dx.doi.org/10.1007/s002291020227
[9] Giaquinta, M. and Giusti, E. (1982) On the Regularity of Minima of Variational Integrals. Acta Mathematica, 148, 31-46. http://dx.doi.org/10.1007/BF02392725
[10] Giaquinta, M. and Giusti, E. (1984) Quasi-Minima. Ann. Inst. H. Poincarè (Analyse non lineaire), 1, 79-107.
[11] Giaquinta, M. and Martinazzi, L. (2005) An Introduction to the Regularity Theory for Elliptic Systems, Harmonic Maps and Minimal Graphs. S.N.S. press, Pisa.
[12] Giusti, E. (1994) Metodi diretti nel Calcolo delle Variazioni. U. M. I., Bologna.
[13] Gosez, J.P. (1974) Non Linear Elliptic Problems for Equations with Rapidly (or Slowly) Increasing Coefficents. Transactions of the American Mathematical Society, 190, 163-205. http://dx.doi.org/10.1090/S0002-9947-1974-0342854-2
[14] Granucci, T. (2014) An Alternative Proof of the Hölder Continuity of Quasi-Minima of Scalar Integral Functionals with General Growths. Afr. Mat., 25,197-212. http://dx.doi.org/10.1007/s13370-012-0109-3
[15] Granucci, T. An Alternative Proof of the Hölder Continuity of Quasi-Minima of Scalar Integral Functionals with General Growths. Part II. Submit to Afrika Matematika.
[16] Granucci, T. Observations on $L^{\Phi}-L^{\infty}$ Estimations and Applications to Regularity. Submit to Indian Journal of Pure and Applied Mathematics.
[17] Lieberman, G.M. (1991) The Natural Generalization of the Natural Conditions of Ladyzhenskaya and Ural'tseva for Elliptic Equations. Communications in Partial Differential Equations, 16, 331-361. http://dx.doi.org/10.1080/03605309108820761
[18] Klimov, V.S. (2000) Embedding Theorems and Continuity of Generalized Solutions of Quasilinear Elliptic Equations. Differential Equation, 36, 870-877. http://dx.doi.org/10.1007/BF02754410
[19] Krasnosel'skij, M. A. and Rutickii, Ya.B. (1961) Convex Function and Orlicz Spaces. Noordhoff, Groningen.
[20] Marcellini, P. (1993) Regularity for Elliptic Equations with General Growth Conditions. Journal of Differential Equations, 105, 296-333. http://dx.doi.org/10.1006/jdeq. 1993.1091
[21] Maercellini, P. (1996) Regularity for Some Scalar Variational Problems under General Growth. Journal of Optimization Theory and Applications, 1, 161-181. http://dx.doi.org/10.1007/BF02192251
[22] Marcellini, P. (1996) Everywhere Regularity for a Class of Elliptic Systems without Growth Conditions. Annali della Scuola Normale Superiore di Pisa, 23, 1-25.
[23] Mascolo, E. and Papi, G. (1994) Local Bounddeness of Minimizers of Integrals of the Calculus of Variations. Annali di Matematica Pura ed Applicata, 167, 323-339. http://dx.doi.org/10.1007/BF01760338
[24] Mascolo, E. and Papi, G. (1996) Harnack Inequality for Minimizer of Integral Functionals with General Growth Conditions. Nonlinear Differential Equations and Applications, 3, 231-244. http://dx.doi.org/10.1007/BF01195916
[25] Mingione, G. and Siepe, F. (1999) Full $\mathrm{C}^{\wedge}\{1, \alpha\}$ Regularity for Minimizers of Integral Functionals with L logL Growth. Zeitschrift für Analysis und ihre Anwendungen, 18, 1083-1100. http://dx.doi.org/10.4171/ZAA/929
[26] Moscariello, G. and Nania, L. (1991) Hölder Continuity of Minimizers of Functionals with Nonstandard Growth Conditions. Ricerche di Matematica, 15, 259-273.
[27] Nash, J. (1958) Continuity of Solutions of Parabolic and Elliptic Differential Equations. American Journal of Mathematics, 80, 931-953. http://dx.doi.org/10.2307/2372841
[28] Rao, M.M. and Ren, Z.D. (1991) Theory of Orlicz Spaces. Marcel Dekker, New York.
[29] Talenti, G. (1990) Bounddeness of Minimizers. Hokkaido Mathematical Journal, 19, 259-279. http://dx.doi.org/10.14492/hokmj/1381517360

[^0]: How to cite this paper: Granucci, T. (2014) Remarks on the Harnak Inequality for Local-Minima of Scalar Integral Functionals with General Growth Conditions. Journal of Applied Mathematics and Physics, 2, 194-203.
 http://dx.doi.org/10.4236/jamp.2014.25024

