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Abstract 
In this paper we proof a Harnack inequality and a regularity theorem for local-minima of scalar 
intagral functionals with general growth conditions. 
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1. Introduction 
In this paper we proof a Harnack inequality for local-minima of scalar intagral functionals of the calculus of 
variation of that type 

                         (1.1) 

where Ω is a bounded open subset of N , Φ:[0,+∞)→[0,+∞) is a N-function and Φ globally satisfies the Δ′- 
condition in [0,+∞), Nf :        is a Carathéodory function and there exist  L ,L 0,  L ₁ ₂ ₂  and 

 

∈ ∈ℝ ℝfor a. e. x Ω and for every (s,z) × N . The risearch of regularity results for elliptic and parabolic equations 
start from the basic and most important results of E. De Giorgi [5] and J. Nash [27]. In 1990s, beginning from 
the papers of G. Astarita and G. Marrucci [3] and J. P. Gosez [13] has been developed a remarkable production 
of regularity results for functionals with general growths. In [7], [8] and [25], M. Fuchs, G. Mingione, G. 
Seregin and F. Siepe have studied functionals of the type 

                         (1.2) 

showing results of partial and global regularity for the minimizer of such functional in the scalar and vectorial 
case. Moreover in [8] M. Fuchs and G. Mingione, have already studied functionals of this type 

                              (1.3) 

       J , , ,u f x u x u x dx   

     , ,| | | |z f x s z L z   ₂

      |, 1 |J u u x ln u x dx     

   | |, .J u u dx    
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In papers [7,8,25] the regularity of the minimizer of the functionals (1.2) and (1.3) has been obtained starting 
from the weak Eulero- ∈Lagrange equations using the hypothesis: Φ C². We remember that in [7,8,25] there are 
important estimations on the L^{∞} norm of the gradient of the minima both in the scalar case and in the vec- 
torial one. In [24] E. Mascolo and G. Papi have determined an inequality of Harnack for the minimizer of the 
functional (1.3) under the condition ∈Φ Δ2 ∇∩ 2 ∈. We observe that Φ  Δ2 ∇∩ 2 implies 

                            (1.4) 

with real positive constants c ,c ,c ,c₁ ₂ ₃ ₄  and 1 < p ≤ m. Therefore the functional (1.3) satisfies non-standard 
growth conditions. Classical regularity theorem for functionals with standard growth conditions (p = m) has 
been proved in [9] and [10] (for a didactic explanation refer to [2,11,12]). In [26], G. Moscariello and L. Nania 
has obtain a results of hölder continuity for the local-minima of functional of the type (1.1) under the hypothesis 
that (1.4) holds with 1 < p ≤ m < ((Np)/(N-p)). In [17], G. M. Lieberman proved an Harnack inequality for the 
local- ∈minima of the functional (1.1) with Φ C² suth that verifies the following relation 

 

with 0 < c5 < c6. We are interested in functionals with quasi-linear growths and we will proof a regularity result 
which extend the ones obtained in [17,24,26] to a wider N-functional class. In particular we get that the local- 
minima of the following functionals: 

                   (1.5) 

are holder continuous functions. In [14] and [15] we start to study the regularity of the local-minima introducing 
a maximal LΦ-L∞ inequality and estimating the measure of the level set A(k,R). Moreover in [15] and [16] we 
have shown that the following hypothesis can be used in order to give a new estimation of the measure of the li- 
vel set A(k,R): 

H-1) Φ globally satisfies the Δ′-condition in [0,+∞); 
H-2) there exists a constant Hc 0₂  

                    (1.6) 

H-3) there exists a constant Hc 0₃  

                     (1.7) 

Under these hypotheses we can show the following result. 
Theorem 1: If uW¹LΦ(Ω) is a quasi-minima of the functional (1.1) and if Φ confirm the hypotheses H-1, 

H-2 and H-3; then u is locally hölder continuous. 
In these pages we show that the hypotheses H-2 and H-3 are purely technical and they can be eliminated. We 

can subsequently weaken besides H-1.  
We will suppose that the following hypothesis hold. 
G-1) Let ϖ:     be an increasing function such that 

                              (1.8) 

for every t   and for every ɛ (0,1), where cG > 0 is a real constant. Moreover we suppose that 

 

We say that Φ∈G if (1.8) holds. The hypothesis G-1 implicates a type of quasi-sub-homogeneity condition 
on the N-function Φ. 

Remark 1: We observe that if Φ∈Δ₂∩∇₂ then by Lemma 3 (i) we have 

 

Then the functions Φ∈Δ₂∩∇₂ verify the hypothesis G-1. 
Remark 2: We observe that if Φ∈Δ′ on (0,+∞) then Φ verify the hypothesis G-1; in fact 

 

   0p mt c t c t c for t    ₂ ₃ ₄

   '' '
5 6/  0c t t t c for t    

   |, 1   | 1
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Our principal results will be, a weak inequality of Harnack [Theorem 5] and the corollary of regularity that it 
follows of it [Corollary 2]. The proof of the Harnack inequality uses the techniques introduced in [6,17] and [24]. 
The only present novelty in the demonstrative technique is the use of an ɛ-Young inequality. This simple trick 
allows to recover the results introduced in [15-17,24,26] in a simple way and without using the properties of the 
functions Δ2∩ 2  (see Lemma of [15,24] and [26]). We finally observe that the hypotheses Δ2∩ 2  it is not, in 
general, equivalent to H-1; therefore the hypothesis G-1 seems to be slightly more general of those introduced in 
[15-17,24,26]. 

Definition 1: Let p be a real valued function defined on [0,+∞) and having the following properties: p(0) = 0, 
p(t) > 0 if t > 0, p is nondecreasing and right continuous on (0,+∞). Then the real valued function Φ defined on 
[0,+∞) by 

                                 (1.9) 

is called an N-function.  
The function Φ: [0,+∞)→[0,+∞) defined by (1.9) satisfies the following properties: 

 

 

 

 

 

 
Definition 2: Let p be a real valued function defined on [0,+∞) and having the following properties: p(0) = 0, 

p(t) > 0 if t > 0, p is nondecreasing and right continuous on (0,+∞). We define 

 
and 

                             (1.10) 

The N-functions Φ and Ψ given by (1.9) and (1.10) are said to be complementary. 
Particularly for us it will be important the following Lemma. 
Lemma 1: Let Φ be an N-function, let Ψ be the complemantary N-function of Φ then we have 

                              (1.11) ∀s, t∈ℝ⁺. Moreover for every ɛ > 0 we get 

                   (1.12) 

Definition 3: A N-function Φ is of class ₂  globally in (0,+∞) if exists k > 1 such that 

                            (1.13) 

Definition 4: A N-function Φ is of class ₂ ^{m} globally in (0,+∞), with m>1, if for every λ>1 

                           (1.14) 

The N-functions m₂  are characterized by the following result 
Lemma 2: Let Φ be a N-function and let Φ'₋ be its left derivative. For m > 1 the following properties are 

equivalent: 
1) Φ(λt) ≤ λmΦ(t), for every t ≥ 0, for every λ>1; 
2) tΦ'₋(t) ≤ mΦ(t), for every t ≥ 0;  
3) the function Φ(t)/tr is non-increasing on (0,+∞). 

   0,[ ]tt p s ds  

   0 0  0   0;and t if t    

    0, ;is continuous on 

     0, ;is strictly increasing on 

    0, ;is convex on 
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The N-functions Φ∈∇₂r are characterized by the following result 
Lemma 3: Let Φ be a N-function and let Φ'₋ be its left derivative. For r>1 the following properties are equiv- 

alent:  
1) Φ(λt) ≥ λrΦ(t), for every t ≥ 0, for every λ > 1; 
2) tΦ'₋(t) ≥ rΦ(t), for every t ≥ 0; 
3) the function Φ(t)/λr is non-decreasing on (0,+∞). 
Definition 5: We say that a N-function Φ belongs to the class Φ∈∇₂r if any of the three condition (i)', (ii)' or 

(iii)' is satisfied. 
Definition 6: We say that the N-function Φ satisfies the Δ′-condition if there exist positive constants—c and 

t₀—such that 

                             (1.15) 

for every t,s ≥ t₀. 
Definition 7: We say that the N-function Φ globally satisfies the Δ′-condition in [0,+∞) if (1.12) holds for 

every t, s ≥ 0. 
We remember that if Φ∈C² then Φ∈Δ′ if tΦ''(t)/Φ'(t) is a non-increasing function, for further details refer to 

Theorems 5.1 and 5.2 and to the Lemma 5.2 of [19]. 
Lemma 4: If the N-function Φ satisfies the Δ′-condition then it also satisfies the ₂ -condition 
The N-functions 

 

 

 

 
satisfy the Δ′-condition. Moreover ₁  and ₂  satisfy the Δ′-condition globally in [0,+∞) and belong to the 
class ∇2 globally in [0,+∞). The function ₃  does not satisfy Δ′-condition for all t,s ≥ 0 and Φ3∇2. Ossevia- 
mo inoltre che la funzione   ₄ ₂ ₂  but ₄  does not satisfy the Δ′-condition. For further details refer to 
[1,19,28]. Now we can introduce Orlicz spaces and Orlicz Sobolev Spaces, LΦ and W¹LΦ; in these definitions 
and throughout the article we assume that Φ is a N-function of class m₂  for some m > 1 and that Ω⊂ℝN is a 
bounded open set with Lipschitz boundary. 

Definition 8: If u is a LN-measurable function on Ω and: ∫ΩΦ(|u|)dx <+ ∞ then u∈LΦ(Ω). Moreover 

               (1.16) 

where ∂iu, for I = 1,...,N, are the weak derivatives of u. 
Theorem 2: LΦ(Ω) e W¹LΦ (Ω) are Banach spaces with the following norms 

                   (1.17) 

and 

                    (1.18) 

For greater details we refer to [1,19,28]. If u∈Wloc¹L
Φ (Ω), k is a real number and RQ  , we set 

 

 
Remark 3: For almost each k∈ℝ we get |A(k,R)| = |QR|-|B(k,R)|. 
Definition 9: If uWloc¹L

Φ (Ω), we say that u∈ODGΦ⁺(Ω,H, R ) if for every couple of concentric balls 
Qϱ⊂QR⋐QR₀⋐Ω, with R<R₀, and for every k∈ℝ we have 

               (1.19) 

     ts c t s   ₄

  1;pt t with p  ₁

    1   1;pt t ln t with p   ₂

     1 1 ;t t ln t t    ₃

      ² / 1 1 .t t ln t   ₄

      ¹ :   1,...,iW L u L u L for i N         

   , 0 : | / 1|u inf k u k dx      ‖‖

1, , , 1,...., , .i N iu u u        ‖ ‖ ‖‖ ‖ ‖

      , : ,R RA k R x Q u x k u k Q     

      , : .R RB k R x Q u x k u k Q     

      ( ) (, , )| | /A k A k Ru dx H u k R dx       ñ ñ
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Definition 10: If u∈Wloc¹L
Φ (Ω), we say that u∈ODGΦ⁻ (Ω,H,R₀) if for every couple of concentric balls 

Qϱ⊂QR⋐QR₀⋐Ω, with R < R₀, and for every k∈ℝ we have 

                     (1.20) 

Definition 11: If u∈Wloc¹L
Φ (Ω), we say that u∈ODG_{Φ}(Ω,H,R₀) if u∈ODG_{Φ}^{±}(Ω,H,R₀), that is 

 
Theorem 3: If u∈ODGΦ⁺(Ω,H,R₀) then u is locally bounded above on Ω. Furthermore, for each x₀∈Ω and R 

≤ min(R₀,d(x₀,∂Ω),1) there exists an universal constant c5 = c5(N,m,H) such that 

 
Proof: The proof follows using the demonstration methods presented in [24]. 
Corollary 1: If u∈ODGΦ(Ω,H,R₀) then u is locally bounded on Ω. Furthermore, for each x₀∈Ω and R ≤ 

min(R₀,d(x₀,∂Ω),1) there exists an universal constant c6 = c6(N,m,H) such that 

 
Proof: The proof comes after Theorem 3 remembering that if u∈DGΦ⁻(Ω,H,R₀) then -u∈DGΦ⁺(Ω,H,R₀). 
Moreover the following lemma is valid: 
Lemma 5: If u∈DGΦ⁺(Ω,H,R₀) then u is locally bounded above on Ω. Furthermore, for each x₀∈Ω, R ≤ 

min(R₀,d(x₀,∂Ω),1) and for every p > 1 there exists an universal constant c7 = c7(p,N,m,H) such that 

               (1.21) 

for each RQ Q  and 0 < ϱ < R. 
Proof: The proof comes after Theorem 3 using the demonstration methods presented in [24]. 
Definition 12: Let u∈Wloc¹L

Φ(Ω) then it is a local minima of (1.1) if for every ϕ∈W₀¹LΦ(Ω) we have 

 
Moreover we get: 
Theorem 4 (Caccioppoli inequalities): If ₂  and u∈Wloc¹L

Φ(Ω) is a local minima of (1.1) then 
u∈ODGΦ(Ω,H,R₀). 

Using the previous results we obtain the following theorems: 
Theorem 5 (Weak Harnack inequality): Let Φ be a N-function. Let u be a positive function satisfying (1,17). 

If Φ∈G; then there exists p > 1 and a constant c > 0 such that 

               (1.22) 

Theorem 6 (Main Theorem-Harnack inequality): Let Φ be a N-function. Let u be a positive local minimizer of 
(1.1). If Φ∈G; then there exists a constant c > 0 such that, for σ∈(0,1) we have 

                       (1.23) 

Proof (Proof of the Main Theorem): Using the (1.21) and (1.22) we have (1.23). 
Corollary 2: Let Φ be a N-function. If Φ∈G and u∈W¹LΦ(Ω) is a local minimizer of the functional (1.1); 

then u is locally hölder continuous. 
Proof: Using (1.20) and the technique introduced in [6,11,12] we get the proof. 

We finish observing that with small changes our demonstrative technique can also be applied to the quasi-mi- 
nima of the functional (1.1). Besides we can also apply this demonstration using equivalent N-functions. Unfor- 
tunately,    t tln 1 t  ₂  does not verify H1; for this Φ₂∈Δ′ on [t₀,+∞) with t₀>0 but Φ₂∉△′ globally on 
[0,+∞). We should think to solve this problem using the concept of equivalent N-function; the demonstrative 
technique allows it, but we do not know if it exists a N-function ₃  equivalent to ₂  which globally verifies 
Δ′ globally on [0,+∞). It is still an unsolved problem.I thank the colleague Dott. Elisa Albano who translated the 
article into English supporting and encouraging me so much. 

      ( ) (, , )| | /B k B k Ru dx H k u R dx       ñ ñ
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2. Proof of the Weak Harnack Inequality 
2.1. Lemmata 
Let define 

 
then we have the following Caccioppoli inequalities 

              (2.1) 

and 

              (2.2) 

where 0 < σ < τ < 1 and k∈ℝ. 
Let us start remembering the following lemma: 
Lemma 6: Let g(t), h(t) be a non-negative and increasing functions on [0,+∞) then g(t)h(s) ≤ g(t)h(t) + g(s)h(s) 

for every s, t∈[0,+∞). 
Proof: If s ≤ t then g(t)h(s) ≤ g(t)h(t) ≤ g(t)h(t) + g(s)h(s). If t ≤ s then g(t)h(s) ≤ g(s)h(s) ≤ g(t)h(t) + g(s)h(s). 
Let us remember for the sake of completeness the following lemma: 
Lemma 7: Let ₂  and u∈W¹LΦ(Ω). Suppose that u is positive in QR and satisfies (2.2) then there exists 

a positive constants δ₀ such that if for some θ > 0 we have |B(θ,u,R)| ≤ δ₀|QR|, then 

                                 (2.3) 

Proof: The proof follows using the demonstration methods presented in [24]. Refer to Lemma 4.1 of [24]. 
Our demonstration of the weak inequality of Harnack founds him on the following Lemma 8. We have shown 

the Lemma 8 using an opportune ɛ-Young inequality. 
Lemma 8: Let be Φ a N-function and Φ∈G. Let u∈W¹LΦ(Ω). Suppose that u satisfies (2.2). For every 

δ∈(0,1) and T > (1/2), there exists a positive constant μ(δ,T) such that if u is positive on Q2TR and there exists θ > 
0 such that |B(θ,u,R)| ≤ δ|QR|, we have 

                              (2.4) 

Proof: Let δ∈(0,1). We first prove that if u is positive in QR and there exists θ > 0 such that |B(θ,u,R)| < δ|QR|, 
there exists a constant λ(θ) such that 

                               (2.5) 

We consider the function wR define by wR(y) = 0 if vR(y) ≥ k, wR(y) = k − vR if k > vR(y) > h, wR(y) = k − h if 
vR(y) ≤ h 
where vR(y) = ((u(Ry))/R), y∈Q₁. Let us consider ki = (θ/(2iR)) with I ≤ ν, since wR = 0 in  i RQ \ B k , v ,1₁  
and 

 

by Sobolev inequality we have 

 
and 

             (2.6) 

where Δi = B(ki,vR,1)\B(ki-1,vR,1). Using the Young inequality ab ≤ Ψ(a) + Φ(b), where Φ is the complementary 
function of Φ, we have 

 

     / ,Rv y u Ry R y Q  ₁

       ) ,( , , ), (| | /A k vR R A k vR Rv dx H v k dx          

       ) ,( , , ), (| | /B k vR R B k vR Rv dx H k v dx          

   /2 / 2 .QRinf u 

   , .QTRinf u T  
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and 

 
then 

           (2.7) 

Since 

 
from the inequality 

 
(see inequality (6), page 230 of [1]) we have 

 
then 

 
Moreover, since Φ globally satisfies the Δ′-condition in [0,+∞), it follows 

 
since 

 
using Caccioppoli’s inequality (2.2) we have 

 
Summing the last inequality on i from 0 to ν we have 

 
and 

 
Fix ɛ = (1/(1 + ν)1/2), then 

 
and 

            (2.9) 

From (2.9) we have 

 

Since ϖ(s)↓0 for s↓0 then we can choose ν such that 

 

where δ₀ is the constant in Lemma 7, then there exists λ(δ₀) such that 
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Let now T > (1/2) and assume |B(θ,u,R)| ≤ δ|QR| and u positive in Q2R. Since 

 
we have 

 
then there exists a constant depending on δ and T such that (2.4) holds. 

Using the technique introduces in [11] we get the following lemma. 
Lemma 9: Let u∈DGΦ⁻ with k₀ = 0 and let u be positive in Q₂ . Let δ∈(0,1) and t > 0. If 

 
then 

 
where c = c(δ) being as in Lemma 8 with δ = 2-N-1. 

Proof: For s = 0 the claim is true by Lemma 8. Now we use the inductive process. We assume the claim true 
for some s and we prove it for s + 1. Let us define Ai = {x∈Q₁:u(x) > cit}; by hipothesis, if A₀ = {x∈Q₁:u(x) > 
t} then 

 
We have two alternative. 
1) We assume |A₀| > 2-s|Q₁|, the by inductive hypothesis 

 
2) Otherwise 2-s-1|Q₁| < |A₀| < 2-s|Q₁|. Let us assume g = χ_{A₀} and apply the Calderon-Zygmund argument 

to g in Q₁  with parameter (1/2) then we find a sequence of dyadic cubes {Qj} such that 

 

  11/ 2 ;j
j

g in Q Q   

if Qj is one of the 2N subcubes of Pi arising during the Calderon-Zygmund process, then 

 
From (2) and (3) we get 

 0 0 0 1/ 2 ;i i ii i
i

A A P A P P       

moreover 

 
We apply Lemma 8 and we obtain 

 
Let us consider 

 
then PiA₁ and 

 
by inductive hypotesis 
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2.2. Proof of the Weak Harnack Inequality 
Now we can proof the inequality (1.19) using the technique introduced by Di Benedetto-Trudinger in [6]. 

Proof (Proof of Theorem 5); Given any t > 0 choose an integer s such that 

 
i.e. 

 
then by Lemma 9 we get 

 
therefore 

 
Let us define 

 
then 

 
where α = ln((1/2)/ln(c). Since Φ'(t)t ≤ mΦ(t) for p > max{1,(m/α)} we have 

 
Integrating by parts, we have 

 
hence 
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