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Abstract 
This paper presents a wavelet-based approach for estimating the response of the base-isolated 
structure under seismic ground motions. The seismic ground motion record is expressed as the 
multi-scale wavelet coefficients which presents the time-frequency characteristics of the seismic 
excitation. The wavelet domain governing differential equation between the wavelet coefficients 
of the excitation and response is derived. Numerical study on a one-storey base isolated structure 
is performed. The result shows that the wavelet based response computation method is of high 
precision. 
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1. Introduction 
Earthquakes will usually induce huge disasters to the civil structures. The way to compute structural responses 
under seismic ground motions has been of continued interest to researchers over the past few decades. Base iso-
lation is a passive device used to reduce earthquake load effect of structures [1]. Compared with other seismic 
resistant measures, base isolation has good applicability, safety and reliability. Seismic ground motions are gen-
erally amplitude and frequency modulated time records [2]. Their evolutions in the time-frequency domain are 
their main characteristics [3]. The recently developed wavelet analysis has emerged as a powerful tool to ana-
lyze variations in time-frequency content [4,5]. It has been widely used for engineering vibration analysis [6].  

This paper presents a wavelet-based approach for estimating the response of the equivalent linear base-iso- 
lated frame under seismic ground motions. The seismic ground motion record is expressed as the multi-scale 
wavelet coefficients which presents the time-frequency characteristics of the seismic expression. The wavelet 
domain governing differential equation between the wavelet coefficients of the excitation and response is de- 
rived. Numerical study on a one-storey base isolated structure is performed and presented below. 
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2. Wavelet Transform and Mother Function 
For any function 2( ) ( )t L Rψ ∈ , if it satisfies the admissible condition 

2( )

R

C dψ

ψ ω
ω

ω
= < ∞∫



                                    (1) 

where ( )ψ ω  is the Fourier transform of ( )tψ , the function ( )tψ  is called the “mother wavelet”. A series of 
wavelet functions , ( )a b tψ , as the dilated and translated version of ( )tψ  using scale (or dilation) parameter a  
and translation parameter b , can then be constructed as 

,
1( ) , ; 0a b

t bt a b R a
aa

ψ ψ − =     ∈ ≠ 
 

                            (2) 

The wavelet transform of the function, 2( ) ( )f t L R∈ , with respect to the basis ( )tψ , is defined as 
1
2,( , ) , ( )a b

R

t bW f a b f a f t dt
aψ ψ ψ− − =< >=  

 ∫                         (3) 

It can be also expressed in another form as 

( ), ,( , ) , ( )a b a bR
W f a b f a F dψ ψ ω ψ ω ω=< >= ∫                        (4) 

Here, the ( )F ω  is the fourier form of the ( )f t . It is possible to reconstruct ( )f t  from its wavelet coeffi- 
cients ( , )W f a bψ  

2

1 1( ) ( , ) t bf t W f a b dadb
C aa ψ

ψ

ψ
∞ ∞

−∞ −∞
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This integral has to be discretized for numerical evaluation.  
Assuming that 

, ( 1)j
j ja b j bσ= = − ∆                                    (6) 

( ) ( ) ( ) ( )1 1 1 12, 2j j j j j j j j j ja a a a a b b b b b b+ − + −
   ∆ = − + − ∆ = − + − = ∆                  (7) 

discretizing the Equation (5) in such a way, the discretized version is thus obtained as 

,( ) ( , ) ( )
j ij i a b

i j j

K bf t W f a b t
a ψ ψ∆

= ∑∑                               (8) 

where K  is a constant with a value equal to 3
8

K
Cψπ

= . 

In this study, the LittleWood-Paley (L-P) mother wavelet function is used as it provides an orthogonal basis 
with excellent frequency localization characteristics. Its time-domain expression is 

1 sin 2 sin( ) t tt
t

π πψ
π

−
=                                   (9) 

the frequency-domain expression is 

( ) 1ˆ 2
2

ψ ω π ω π
π

=   ≤ ≤                                (10) 

As a comparison, the Morlet wavelet mother function and the harmonic wavelet mother function would be 
chosen. The Morlet wavelet basis is expressed as 

( ) ( )2 2 cos 5tt e tψ −=                                  (11) 
The frequency-domain expression is 

( ) ( )21 5
21ˆ
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And the Harmonic wavelet basis is expressed as 

( )
4 2

2

i t i te et
i t

π π

ψ
π
−

=                                   (13) 

The frequency-domain expression is 

( ) 1ˆ 2 4
2

ψ ω π ω π
π

=      ≤ <                               (14) 

3. Wavelet-Based Response Computation of Base-Isolated Structure 
Considering a base-isolated structure subjected to the seismic ground acceleration ( )z t , if the base-isolation 
system is set to be equivalent to a linear system, the equation of motion of the structure can be expressed as fol- 
low 

[ ]{ } [ ]{ } [ ]{ } [ ]{ }m x c x k x m I z+ + = −                             (15) 

where [ ] [ ],m c  and [ ]k  are the n n×  mass, damping and stiffness matrixes respectively,
 { }I

 
is the 1n×  

ground displacement influence vector; { }x  is the 1n×  displacement vector relative to the ground motion. 
Assuming the damping is the classically damping [8]. Equation (15) can be transformed into the following n un- 
coupled equations. The displacements response could then be represented as mode shape vector 
{ }( ) ( 1, 2 )j j nφ =   and generalized modal coordinate ( )( 1, 2 )j t j nη =   

{ } { }( )

1
( ) ( )

n
j

j
j

x t tφ η
=

= ∑                                    (16) 

Then, the original equation can be decoupled as a series of equation describing the motion in a particular 
mode of vibration 

22 ; 1,2j j j j j j j z j nη ς ω η ω η α+ + = −   = 
                           (17) 

where, { } [ ][ ] { } [ ]{ }( ) ( ) ( ), , ( )
T Tj j j

j j j m I mω ς α φ φ φ=  represent the jth mode natural frequency, damping ratio 
and participation factor. 

Taking the wavelet transform on the both sides of Equation (16), the following relationship is obtained for the 
response [7] 

( )

1
( , ) ( , )

n
j

i p q i j p q
j

W x a b W a bψ ψφ η
=

= ∑                              (18) 

where, the ( )j
iφ  is the ith element of mode shape { }( )jφ . Taking the wavelet transform of both sides of Equa- 

tion (17) with the chosen wavelet basis , ( )a b tψ , 
2( , ) 2 ( , ) ( , ) ( , )j j j j j j jW a b W a b W a b W z a bψ ψ ψ ψη ς ω η ω η α+ + = −                       (19) 

Considering the fast decaying property of the wavelet basis in time domain and it can be shown 

2

1( , ) ( , )W a b W a b
aψ ψη η=



                                 (20) 

The right side of the Equation (20) can be written as 
2

,2( , ) ( ) ( )a bW a b x t dt
bψη η ψ
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Exchanging the integral with the double differentials and applying the Leibnitz rule of differential, 
2

2 2

1( , ) ( , )W a b W a b
b aψ ψη η∂

=
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                                 (22) 

Substituting the Equation (20) into Equation (22), it can be obtained that 
2
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Similarly, the following expression can be obtained 

( , ) ( , )j jW a b W a b
bψ ψη η∂

=
∂

                                  (24) 

Substituting the Equation (23) and Equation (24), the Equation (19) is expressed as [9] 
2

2
2 ( , ) 2 ( , ) ( , ) ( , )j j j j j j jW a b W a b W a b W z a b

bb ψ ψ ψ ψη ς ω η ω η α∂ ∂
+ + = −

∂∂
                (25) 

The differential equation shows the relationship between the input wavelet coefficients and the response 
wavelet coefficients. For a particular ja ，the Equation (25) can be easily solved, so the wavelet coefficients for 
the given frequency band can be obtained. It should be noted that the coefficients contain both time and fre- 
quency information to understand the time-frequency characteristic of the excitation and response. 

4. Numerical Study 
For a one storey base-isolated structure, Figure 1 shows, the base-isolation system can be equivalent as a linear 
system. For a base-isolation system of shear displacement ductility ratio µ , strain hardening ratio α , and 
elastic stiffness uK , the equivalent stiffness and damping could be expressed as below according to the 
AASHTO guide specifications [10] 

0
1 ( 1) 2(1 )( 1),

[1 ( 1)]b u bk Kα µ α µξ ξ
µ πµ α µ

+ − − −
= − =

+ −
 

Therefore, the one storey base-isolated structure can be simplified as a 2DOF system with the lumped masses
,b fm m , the stiffnesses ,b fk k , and the damping ,b fc c . Denoting that 2 ( )b b f bT m m kπ= + , 

2f f fT m kπ=  which is the vibration period of the non-isolated structure, and . The damping 

ratio is set to be  and . 
The seismic ground motion considered is the seismic ground motion recorded during 1971 San Fernando 

earthquake. Figure 2 shows the first 15s of ground motion time record and the corresponding wavelet 
time-frequency characteristic. As presented, the seismic is of an energy concentration in the time duration 
around 8s and in the frequency band of 1-3Hz. 

To compute structural response under earthquake, the wavelet coefficients of structural response in each scale 
are computed firstly and then transformed into time domain via wavelet reconstruction. For different mother 
wavelet function, the following parameters are set during the computation: for L-P wavelet mother function, 

2σ = , for 2jaπ ω π≤ ≤ , so j = − 5,−4,...4 ; for Harmonic wavelet mother function, 2, jσ = = − 4,−3,...5 ; 
for Morlet wavelet mother function, 2, jσ = = − 9,−8,...5 . Figure 3 shows the computed time history of ab- 
solute acceleration and relative displacement response of fm  by wavelet based computation and time-integra- 
tion with 1, 2bv T s= =   and 1f sΤ = . As presented, the computed response histories based on different wave- 
let basis functions match very well with the computed history by the time-integration. 

Varying the natural periods fT  from 0.10 s to the 3.0 s and fixing 1, 2bv T s= = , the absolute acceleration  
 

 
Figure 1. The base-isolated structure. 

f bv m m=

0.10bς = 0.03fς =
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Figure 2. The San Fernando ground motion record and its wavelet representation. 

 

   
(a)                                                    (b) 

Figure 3. Comparison of computed acceleration (a) and relative displacement (b) response with 1, 2bv T s= =  and 

1f sΤ =  using the time-integration and wavelet based methods. 

 
and relative displacement response spectrum are computed using different methods and different mother wavelet 
functions. Figure 4 shows the result. As presented for this study, the response calculated from Morlet wavelet  

0 5 10 15
-10

-5

0

5

10

ac
ce

le
ra

ti
on

 (
m

/s
2 )

t (s)

f (
H

z)

 

 

0 5 10 15
0

5

10

15

20

25

30

0.05

0.1

0.15

0.2

0.25

0.3

0 5 10 15
-0.6

-0.4

-0.2

0

0.2

0.4

0.6

t (s)

ac
ce

le
ra

tio
n 

(g
)

 

 
integration
L-P
harmonic
morlet

0 5 10 15
-0.2

-0.1

0

0.1

0.2

t (s)

re
la

tiv
e 

di
sp

la
ce

m
en

t (
m

)

 

 
integration
L-P
harmonic
morlet



W. S. Ding, Z. Sun 
 

 
168 

  
(a) 

  
(b) 

Figure 4. Comparison of computed acceleration (a) and relative displacement (b) spectra using time-integration and wavelet 
based methods. 
 
will generally provide an over-estimation and the response calculated from L-P and harmonic wavelet will gen- 
erally provide an under-estimation; the computation errors for acceleration response spectrum are generally lar-
ger than the computation errors for relative displacement response spectrum; the response calculated using L-P 
wavelet is generally of the best accuracy. 

5. Summary 
This paper presents a wavelet-based approach for estimating the response of the base-isolated structure under 
seismic ground motions. Numerical study on a one-storey base isolated structure is performed. The results show 
that the wavelet decomposition can provide orthogonal multi-scale expression of structure governing equation of 
motion and can be used for structural vibration response computation; the L-P mother wavelet function is of 
good fast decaying property in time domain and precise localization property in frequency domain and can pro- 
vide good precision on nonstationary seismic excitation expression as well as on structural seismic response 
computation. 
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