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Abstract 
This research work investigated comparative studies of expert system design and control of crude 
oil distillation column (CODC) using artificial neural networks based Monte Carlo (ANNBMC) 
simulation of random processes and artificial neural networks (ANN) model which were validated 
using experimental data obtained from functioning crude oil distillation column of Port-Harcourt 
Refinery, Nigeria by MATLAB computer program. Ninety percent (90%) of the experimental data 
sets were used for training while ten percent (10%) were used for testing the networks. The 
maximum relative errors between the experimental and calculated data obtained from the output 
variables of the neural network for CODC design were 1.98 error % and 0.57 error % when ANN 
only and ANNBMC were used respectively while their respective values for the maximum relative 
error were 0.346 error % and 0.124 error % when they were used for the controller prediction. 
Larger number of iteration steps of below 2500 and 5000 were required to achieve convergence of 
less than 10−7 for the training error using ANNBMC for both the design of the CODC and controller 
respectively while less than 400 and 700 iteration steps were needed to achieve convergence of 
10−4 using ANN only. The linear regression analysis performed revealed the minimum and maxi- 
mum prediction accuracies to be 80.65% and 98.79%; and 98.38% and 99.98% when ANN and 
ANNBMC were used for the CODC design respectively. Also, the minimum and maximum prediction 
accuracies were 92.83% and 99.34%; and 98.89% and 99.71% when ANN and ANNBMC were used 
for the CODC controller respectively as both methodologies have excellent predictions. Hence, ar-
tificial neural networks based Monte Carlo simulation is an effective and better tool for the design 
and control of crude oil distillation column. 
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1. Introduction 
Neural networks were inspired by the power, flexibility and robustness of the biological brain. They are com- 
putational analogs of the basic biological components of a brain—neurons, synapses and dendrites. Artificial 
neural networks (ANN) consist of many simple computational elements (summing units—neurons—and 
weighted connections—weights) that work together in parallel and in series [1]. An ANN has the ability to learn 
relationships between given sets of input and output data by changing the weights. This process is called training 
the ANN [2]. The most well known training algorithm is the Back Propagation (BP) algorithm ([3] [4]). It 
minimizes the total sum of square error, which is the difference between the desired and actual output, using the 
gradient descent method. One of the most important properties of a trained ANN is its ability to generalize, 
which means that ANN can generate a satisfactory set of outputs from inputs that are not used during its training 
process [5]. The performance of the ANN model is a function of several design parameters such as the number 
of hidden layers, the number of hidden neurons in each hidden layer, the size of the training set and the training 
parameters. Theoretical work in ANN has shown that a single hidden layer is sufficient to approximate any com- 
plex nonlinear function under quite general conditions. While too many hidden neurons can hinder the ANN’s 
ability to generalize data not seen during training by causing over-fitting, too few hidden neurons can cripple its 
ability to learn the mapping at hand [6]. 

An important stochastic and probabilistic tool that can be used in simulating the artificial neural networks 
model is the Monte Carlo simulation. Monte Carlo means using random numbers in scientific computing. More 
precisely, it means using random numbers as a tool to compute something that is not random. Monte Carlo 
analysis is a computer-based method of analysis developed in the 1940’s that uses statistical sampling tech-
niques in obtaining a probabilistic approximation to the solution of a mathematical equation or model [7]. Nu- 
merical simulations of stochastic processes have become an important task in many engineering fields. Monte 
Carlo approaches are particularly suitable tools for those simulation purposes. Their usefulness in diverse engi- 
neering applications and other fields has been well established over a period of decades [8].  

Zhang et al. [9] studied the microscopic structures of the binary mixture of methanol-hexane under different 
conditions by the Monte Carlo (MC) method. Alexander et al. [10] presented a spatial model using Monte Carlo 
simulation for the mean and correlation of highly dispersed count down and applied it to individual-level counts 
of the nematode Wuchereria bancrofti, a parasite of humans which causes the disease lymphatic filariasis. Gilks 
et al. [11] rejuvenated particles based on Markov chain Monte Carlo. Khu et al. [12] investigated the reduction 
of Monte-Carlo simulation runs for uncertainty estimation in hydrological modelling. Kuo et al. [13] used the 
data from Monte Carlo simulation to verify the proposed method integration of ART2 neural networks and 
genetic K-means algorithm for analyzing web browsing paths in electronic commerce. Yuxiang et al. [14] in- 
vestigated the diffusion behavior of methanol in different critical media (n-pentane, n-hexane, n-heptane and 
acetone) using Monte Carlo (MC) method. Yeh et al. [15] proposed a methodology based on Monte Carlo simu- 
lation and ANN to estimate the reliability of a threshold voting system, which is a generalization of k-out-of-n 
systems. Sugiyama [16] reviewed three software packages for Monte Carlo simulation/risk analysis on a spread- 
sheet. A Monte Carlo particle model associated with neural networks for tracking problem had been examined 
[17]. A general regression neural network and Monte Carlo simulation model for survival and growth of 
Salmonella on raw chicken skin as a function of serotype, temperature and time for use in risk assessment had 
been developed [18]. Liu [19] investigated volumetric estimation of existing accumulated oil and gas in reser- 
voir using Monte Carlo simulation. Safdari et al. [20] used artificial neural networks and Monte Carlo simu- 
lation in terms of uncertainty for the prediction of budget deficit in Iran. 

Though previous research works had applied artificial neural networks in oil refineries ([21]-[25]), none had 
applied artificial neural networks based Monte Carlo simulation in the expert system design and control of crude 
oil distillation column of a refinery as far as literature review is concerned. This makes this research work to be  
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first of its kind to apply the method in oil refinery. An expert system is a computer system employing expert 
knowledge to attain high levels of performance in solving the problems within a specific domain area [26]. To- 
day, expert systems have demonstrated their potential, gained credibility and are being widely used to solve a 
variety of problems in industry and government [27]. One of these complex problems for the control of which an 
expert system is amenable, is a crude oil distillation column [25]. The crude separation process involves many 
complex phenomena which have to be controlled in its best placement [23]. Controlling distillation column 
starts by identifying controlled, manipulated and load variables. Controlled variables are those variables that 
must be maintained at a precise value to satisfy column objectives [24]. The stages involved in transforming 
crude oil into finished products using crude oil distillation column in a petroleum refinery had been discussed 
([19] [25] [28] [29]). Figure 1 shows a typical configuration of a crude oil distillation system. 

Where ADU and VDU are atmospheric and vacuum distillation columns; TPA, MPA and BPA are the top, 
middle and bottom pump-arounds of ADU; LGO and HGO are light gas oil and heavy gas oil for the atmos- 
pheric distillation column; VLGO and VHGO are light gas oil and heavy gas oil for the vacuum distillation 
column. 

The objective of this research work is to develop MATLAB computer program for the algorithms of the ar- 
tificial neural networks based Monte Carlo simulation and test it on existing running data of a crude oil distilla- 
tion column in a Refinery. Also to compare the computed results with the real data of the running crude oil dis- 
tillation column of the Refinery using only artificial neural networks (ANN) and artificial neural networks based 
Monte Carlo (ANNBMC) simulation separately. The results obtained when only artificial neural networks mod- 
el was used for expert system design and control of the examined crude oil distillation column of the refinery 
had been presented elsewhere [25]. 

2. Scope 
The network training is accomplished based on the standard method of error back-propagation. The search for 
the optimum adjustment of the weights and biases is realized with the aid of a gradient descends method operat- 
ing with a generalized delta rule. Monte Carlo simulation is used as a stochastic and probabilistic tool in gene- 
rating random numbers used in adjusting the weights in the neural network. 

3. Modelling Equations 
3.1. Network Configuration and Data Conditioning 
The output signal yk generated by neuron k of the ANN is given as [30]: 
 

 
Figure 1. Schematic diagram of crude oil distillation systems [19].                                                
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where yk = Output signal; ϕ  = Activation function; m = Total number of inputs to the neuron; j = Input; kjw  
= Synaptic weight of input j for neuron k; xj = Input Signal; bk = Bias value of neuron k. 

The activation function (ϕ ) is required to be nonlinear and monotonically increasing from zero to unity. The 
logistic sigmoid function is given as [31]: 

( ) ( )( ) 1
1 expx xϕ

−
= + −                                      (2) 

where ( )xϕ  = Sigmoidal function of input x. 
The derivative of the logistic sigmoidal function which must be computed millions of times during the net- 

work training is [31]: 

( ) ( ) ( )( )1x x xϕ ϕ ϕ′ = ⋅ −                                     (3) 

where ( )xϕ′  = Derivative of the sigmoidal function of input x. 
The signal flow through the network is summarized as [32]: 
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where J(L) denotes the number of neurons j(L) in layer L, ( ) ( )1L Lj j
w −  represents the weight for the signal from  

neuron j(L−1) in layer L − 1 to neuron j(L) in layer L, and ( )Lj
b  is the bias of neuron j(L) in layer L. 

The original raw data values zj are transformed into the input signals xj using the equation 

( ) 1
j j zx z z −= − ⋅σ                                          (6) 

where z  denotes the mean value of the raw data and 1
z
−σ  is the inverse of the standard deviation of the raw 

data. 
The generated process values (p) are determined using the equation  

( )1SN
zp y z

−
= Φ ⋅σ +                                       (7) 

where ( )1SN y
−

Φ  is the inverse function of the standard normal distribution of the network output y, zσ  and 
z  are the standard deviation and mean values of the raw data z. 

3.2. Artificial Neural Networks Back-Propagation Algorithm 
The network training is accomplished based on the standard method of error back-propagation [33]. The free 
values of the neural network (weights and biases) are adjusted so that the network is capable of reproducing the 
training data with a sufficient precision. Thus, for each sequence of process values ( ) ( )1, ,n r nz t z t− −  the net-
work is intended to generate a prognosis Pn for the subsequent process value ( )nz t  with a minimum prediction 
error given as [2]: 

( )n ne z t p= −                                             (8) 
and error energy given as [34]: 

21
2

E e= ⋅                                                  (9) 

Specifically, 

( )( )2

1

N

n n
n r

z t p MIN
= +

− ⇒∑                                     (10) 
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in which N = Length of the observed process record (training data); r = Order of the tapped delay line memory. 
The search for the optimum adjustment of the weights and biases is realized with the aid of a gradient descend 

method operating with a generalized delta rule. For each predicted process value the prediction error of the 
neural network is retraced through the complete network (back-propagation) to compute changes of the weights 
and biases. This is done iteratively, as described subsequently, until the prediction error approaches the global 
minimum. 

One sequence of r + 1 successive process values ( ) ( ) ( )1, , ,n r n nz t z t z t− −  is randomly selected from the 
training data with the aid of a discrete uniform distribution over the N – r possible choices. Then, the error signal 
e(q) in the current iteration step q is determined with Equation (9) and is used to compute the local gradients  

kjE w∂ ∂  in the weight space, proportional to which the weights and biases are to be changed. Let ( ) ( )Lj
v q  be 

the argument of the activation function ( )Lj
ϕ  in neuron ( )Lj  of layer L and ( ) ( )1Lj

y q−  denotes the neuron  

output of neuron ( )1Lj −  in the previous layer 1L − . The new weights for the next iteration step are stated as 
[30]: 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )1 1 1 11 . 1L L L L L L L Lj j j j j j j j
w q w q w q q y qα η δ− − − −

 + = + − + ⋅ ⋅  
           (11) 

where 

( ) ( ) ( ) ( ) ( ) ( )( )L L Lj j j
q e q v qδ ϕ′= ⋅                                   (12) 

for the neuron ( ) 1Lj =  in the output layer, and 
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for the neurons ( )Lj  in layer L. Therefore, the biases ( )Lj
b  are treated as weights ( ) ( )1L Lj j

w −  for constant input  

signals ( )1 1L
jy − = +  from the previous layer 1L − . The parameters α  and η  are introduced to control the 

numerical behaviour of the iteration. Whereas the learning rate η > 0  determines the degree with which the 
actual error gradients effect the weight change, the momentum factor [ )0,1α ∈  acts as a delay parameter in the 
weight adjustment. 

When the weight adjustment in iteration step q is completed, the next sequence of r + 1 successive process 
values ( ) ( ) ( )1, , ,n r n nz t z t z t− −  is randomly selected to proceed with the weight adjustment in iteration step q 
+ 1. This procedure of iteratively adjusting the weights and biases is referred to as sequential training mode, 
which possesses the advantage of being stochastic in nature. This induces a good performance in the search for 
the global minimum of the objective function. 

3.3. Monte Carlo Simulation 
A set of weighted particles (samples), drawn from the posterior distribution of the model parameters, is used to 
map integrals to discrete sums. More precisely, the posterior can be approximated by the following empirical 
estimate [35]: 

( ) ( )( )
0:

0: 0: 0:
1

1ˆ i
t

N

t t t
i

p y d
N θ

θ θ
=

= δ∑                              (14) 

where the random samples ( ){ }0: ; 1, ,i
t i Nθ =  , are drawn from the posterior distribution and ( ).dδ  denotes the 

Dirac delta function. Consequently, any expectations of the form [36]: 

( )( ) ( ) ( )0: 0: 0: 1: 0:t t t t t t tE g g p y dθ θ θ θ= ∫                         (15) 

may be approximated by the following estimate [37]: 

( )( ) ( )( )0: 0:
1

1 N
i

t t t t
i

E g g
N

θ θ
=

= ∑                                   (16) 

where the particles ( )
0:

i
tθ  are assumed to be independent and identically distributed for the approximation to hold. 
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According to the law of large numbers [34], 

( )( ) ( )( ).
0: 0:

a s
t t t tNE g gθ Ε θ→∞→                               (17) 

where .a s
N→∞→  denotes almost sure convergence. Moreover, if the posterior variance of ( )0:t tg θ  is bounded, 

( ) ( )( )
1: 0:.var

t t tp d g θ < ∞ , then the following central limit theorem holds [38]: 

( )( ) ( )( )( ) ( ) ( )( )( )1:0: 0: 0:.0, var
tt t t t t tN p dN E g E g N gθ θ θ→∞− →                (18) 

where N→∞→  denotes the convergence in distribution. 

3.4. Algorithm and Architecture for the Design and Control of Crude Oil Distillation 
Column Using Artificial Neural Networks Based Monte Carlo Simulation 

The algorithm for design and control of crude oil distillation column using artificial neural networks based 
Monte Carlo Simulation stated in sub-sections 3.0.1, 3.0.2 and 3.0.3 above is shown in Figure 2. 

The inputs to the column are crude oil and steam flow while the outputs are Naphthalene, Kerosene, Light 
Diesel Oil and Heavy Diesel Oil. Some quantity of Naphthalene, Kerosene and Light Diesel Oil (reflux flows) 
are returned into the column while stripping (distillate flows) is sent to the storage tank. 
 

 
Figure 2. Algorithm for design and control of crude oil distillation column using artificial neural networks based 
monte carlo simulation [2].                                                                      
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The neural networks based Monte Carlo simulation architecture for the design of the crude oil distillation 
column (CODC) is fourteen inputs with one hidden layer (nine nodes) and seven outputs (14-1-7) making a total 
of 30 nodes distributed over the three layers. The inputs to the network for the design are feed temperature of 
crude oil, kerosene flow ratio, AGO flow ratio, diesel flow ratio, crude oil flow rate, API gravity of crude oil, 
sulphur content of crude oil, compositions of C2, C3, i-C4, n-C4, i-C5, n-C5 and Cyclo-pentane in crude oil 
represented respectively as I1, I2, I3, I4, I5, I6, I7, I8, I9, I10, I11, I12, I13 and I14. The outputs from the NN 
architecture are temperatures at which 100% (T100) of Kerosene, 90% (T90) of Diesel and 10% (T10) of AGO are 
distilled; and naphtha, kerosene, diesel and AGO flow rates represented respectively as O1, O2, O3, O4, O5, O6 
and O7. For the neural networks based Monte Carlo controller, the inputs to the networks are feed flow rate, 
feed temperature, top temperature, bottom temperature, reflux temperatures 1, 2 and 3; bottom flow, distillate 
flow 1 (Naphthalene), distillate flow 2 (kerosene), distillate flow 3 (Light Diesel Oil), distillate flow 4 (Heavy 
Diesel Oil) and top pressure represented as i1, i2, i3, i4, i5, i6, i7, i8, i9, i10, i11, i12 and i13 respectively. The outputs 
are stripping steam to main column, LDO stripper, HDO stripper, reflux flow 1 (Top Pump around), reflux flow 
2 (Kerosene Pump around) and reflux flow 3 (Light Diesel Oil Pump around) represented as o1, o2, o3, o4, o5 and 
o6 respectively. The architecture for the neural networks based Monte Carlo controller becomes thirteen (13) 
inputs with one hidden layer (nine nodes) and six (6) outputs (13-1-6) with a total of 28 nodes distributed over 
the layers. Figure 3 and Figure 4 show the neural network architecture for the design and control of CODC re-
spectively. 

4. Results 
In this research work, artificial neural networks (ANN) model and artificial neural networks based Monte Carlo 
 

 
Figure 3. Architecture for the design of crude oil distillation column [25]. 

 

 
Figure 4. Architecture for crude oil distillation column controller [25].  
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(ANNBMC) simulation were developed separately for both the design and controller of the crude oil distillation 
column (CODC) to check for the accuracies and differences in their outputs from the network architectures used. 
They were both validated using experimental data obtained from functioning crude oil distillation column of 
Port-Harcourt Refinery, Nigeria. Out of the one-hundred and thirty (130) experimental data sets obtained, ninety 
percent (90%) were used for training the network while the remaining ten percent (10%) were used for testing 
the network to determine its prediction accuracy. MATLAB program was written for the neural networks model 
and artificial neural networks based Monte Carlo simulation. Table 1(a), Table 1(b) and Table 1(c) show the 
test comparison results obtained between the values from the trained ANN and ANNBMC networks for the de- 
sign of CODC while Table 2(a) and Table 2(b) show the results obtained for the controller of the CODC com- 
pared with the experimental data of the CODC obtained from the Port-Harcourt Refinery, Nigeria. Figure 5 and 
Figure 6 represent the plots of the training error against the iteration number when ANN models and ANNBMC  
 

 
Figure 5. Training error vs iteration number for CODC design using ANN 
with 10 hidden neurons.                                          

 

 
Figure 6. Training error vs iteration number for CODC design using ANNBMC 
with 10 hidden neurons.                                               
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Table 1. (a) Test results obtained using ANN and ANNBMC for crude oil distillation column design compared with experi-
mental data from the refinery; (b) Test results obtained using ANN and ANNBMC for crude oil distillation column design 
compared with experimental data from the refinery; (c) Test results obtained using ANN and ANNBMC for crude oil distil-
lation column design compared with experimental data from the refinery.                                           

(a) 

Test 
No 

T10 of AGO (˚C) T90 of Diesel (˚C) T100 of Kerosene (˚C) 

Compa Exp1 Erra 
(%) Compb Errb 

(%) Compa Exp1 Erra 

(%) Compb Errb 

(%) Compa Exp1 Erra 

(%) Compb Errb 

(%) 
1 261 263 0.76 262.8 0.076 379 374 1.34 373.3 0.187 255 253 0.79 253.0 0 
2 257 256 0.39 256.0 0 362 365 0.82 364.8 0.055 267 263 1.52 264.5 0.570 
3 261 259 0.77 259.2 0.077 258 253 1.98 252.2 0.316 261 263 0.76 263.2 0.076 
4 265 267 0.75 266.4 0.225 360 367 1.91 367.6 0.164 258 256 0.78 255.6 0.156 
5 263 264 0.38 263.3 0.265 353 354 0.28 354.0 0 266 269 1.12 269.0 0 
6 259 259 0.00 259.1 0.039 358 358 0.00 358.1 0.028 258 259 0.39 258.9 0.039 
7 261 261 0.00 260.7 0.115 371 369 0.54 369.5 0.136 278 278 0.00 278.0 0 
8 268 269 0.37 269.0 0 371 371 0.00 371.0 0 272 271 0.37 271.3 0.111 
9 270 270 0.00 270.0 0 368 365 0.82 364.9 0.027 247 243 1.65 243.7 0.288 

10 266 268 0.75 268.6 0.224 355 354 0.28 354.0 0 268 266 0.75 266.0 0 
11 256 258 0.78 257.8 0.078 381 378 0.79 378.0 0 253 249 1.61 248.5 0.201 
12 267 266 0.38 265.9 0.038 378 376 0.53 377.0 0.266 254 254 0.00 254.0 0 
13 272 272 0.00 272.1 0.037 372 368 1.09 368.0 0 273 275 0.73 273.9 0.40 

(b) 

Test 
No 

Naphtha Flow Rate (m3/hr) Kerosene Flow Rate (m3/hr) Diesel Flow Rate (m3/hr) 

Compa Exp1 Erra 
(%) Compb Errb 

(%) Compa Exp1 Erra 
(%) Compb Errb 

(%) Compa Exp1 Erra 
(%) Compb Errb 

(%) 
1 205.2 205.6 0.20 205.5 0.049 142.8 143.9 0.76 143.8 0.070 42.7 42.9 0.47 42.9 0 
2 210.0 209.8 0.10 209.5 0.143 139.3 138.9 0.29 138.9 0 42.0 41.8 0.48 41.9 0.239 
3 201.9 201.3 0.30 201.7 0.199 142.9 142.3 0.42 142.1 0.141 45.5 45.6 0.22 45.5 0.219 
4 203.1 203.5 0.20 203.0 0.246 138.4 139.8 1.00 139.9 0.072 42.6 42.3 0.71 42.2 0.236 
5 207.1 206.8 0.15 207.0 0.097 143.8 142.4 0.98 142.1 0.211 44.3 44.3 0.00 44.3 0 
6 203.5 203.8 0.15 203.7 0.049 141.1 141.9 0.56 142.0 0.071 41.9 41.8 0.24 41.8 0 
7 201.5 201.3 0.10 201.3 0 142.8 142.9 0.07 143.0 0.070 43.1 42.8 0.70 42.9 0.234 
8 204.3 204.6 0.15 204.6 0 138.7 138.7 0.00 139.1 0.288 41.6 41.9 0.72 41.8 0.239 
9 202.0 201.7 0.15 201.7 0 142.9 143.3 0.28 143.1 0.140 43.8 43.9 0.23 43.9 0 

10 203.8 203.8 0.00 203.9 0.049 143.9 145.6 1.17 145.8 0.137 42.2 42.8 1.40 42.7 0.234 
11 204.8 203.6 0.59 203.6 0 145.1 144.9 0.14 144.2 0.483 44.6 44.6 0.00 44.4 0.448 
12 202.9 202.9 0.00 202.8 0.049 144.1 144.2 0.07 144.2 0 42.5 42.3 0.47 42.3 0 
13 205.7 204.3 0.69 203.9 0.196 143.7 142.5 0.84 142.4 0.070 43.5 43.8 0.69 43.8 0 

(c) 

AGO Flow Rate (m3/hr) 
Compa Exp1 Erra (%) Compb Errb (%) 
237.0 236.8 0.09 236.7 0.042 
235.6 235.8 0.09 235.9 0.042 
233.8 233.8 0.00 233.6 0.086 
235.4 235.4 0.00 235.5 0.043 
232.1 231.3 0.35 231.3 0 
232.9 231.7 0.52 231.7 0 
231.9 231.9 0.00 231.8 0.043 
233.9 233.6 0.13 233.6 0 
232.3 233.6 0.56 233.5 0.043 
233.9 232.5 0.60 232.5 0 
239.3 238.9 0.17 238.8 0.042 
231.8 231.8 0.00 231.8 0 
234.5 234.8 0.13 234.4 0.170 

Hint: Compa = Computed Values for the CODC Design using Artificial Neural Networks (ANN); Compb = Computed Values for the CODC Design 
using Artificial Neural Networks Based Monte Carlo Simulation (ANNBMC); Exp1 = Experimental Values of the CODC Design; Erra (%) = Error 
Percent between Exp1 and Compa. Errb (%) = Error Percent between Exp1 and Compb. 
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Table 2. (a) Test results obtained using ANN and ANNBMC for crude oil distillation column controller compared with ex-
perimental data from the refinery; (b) Test results obtained using ANN and ANNBMC for crude oil distillation column con-
troller compared with experimental data from the refinery.                                                       

(a) 

Test 
No 

Stripping Steam to main column (kg/hr) LDO Stripper (kg/hr) HDO Stripper (kg/hr) 

Compc Exp2 Errc (%) Compb Errd 

(%) Compc Exp2 Errc (%) Compb Errd 

(%) Compc Exp2 Errc (%) Compb Errd 

(%) 

1 6631 6632 0.015 6632 0 5603 5603 0 5602.5 0.009 796.1 795.8 0.038 795.2 0.075 

2 6631 6632 0.015 6632 0 5603 5603 0 5603 0 795.9 795.7 0.025 795.2 0.063 

3 6630 6630 0 6630 0 5603 5604 0.018 5603.5 0.009 796.7 796.2 0.063 795.9 0.038 

4 6631 6631 0 6631 0 5605 5605 0 5605.2 0.004 797.5 797.7 0.025 797.7 0 

5 6636 6635 0.015 6635 0 5613 5614 0.018 5613.9 0.002 800.9 800.6 0.038 801.1 0.063 

6 6637 6637 0 6637 0 5613 5614 0.018 5614 0 800.8 800.7 0.013 800.9 0.025 

7 6641 6640 0.015 6640 0 5614 5614 0 5614 0 802.8 802.4 0.050 802.4 0 

8 6641 6640 0.015 6640 0 5616 5616 0 5616 0 804.2 804.4 0.025 803.9 0.062 

9 6641 6640 0.015 6639 0.015 5616 5617 0.018 5617.6 0.011 804.1 804.3 0.025 804.3 0 

10 6645 6644 0.015 6644 0 5622 5621 0.018 5622 0.018 804.9 804.7 0.025 804.8 0.012 

11 6649 6648 0.015 6647 0.015 5622 5622 0 5622 0 806.1 806.8 0.087 807.1 0.037 

12 6650 6649 0.015 6648 0.015 5622 5622 0 5621.7 0.005 809.6 809.7 0.012 809.4 0.037 

13 6650 6649 0.015 6649 0 5623 5624 0.018 5623.8 0.004 809.0 809.8 0.099 808.8 0.124 

(b) 

Test 
No 

Reflux Flow 1 (m3/hr) Reflux Flow 2 (m3/hr) Reflux Flow 3 (m3/hr) 

Compc Exp2 Errc (%) Compb Errd 

(%) Compc Exp2 Errc (%) Compb Errd 

(%) Compc Exp2 Errc (%) Compb Errd 

(%) 

1 374.6 374.2 0.107 374.1 0.027 801.5 801.8 0.037 801.7 0.013 374.1 374.2 0.027 374.2 0 

2 374.1 374.1 0 374.1 0 801.5 801.8 0.037 801.8 0 372.3 372.8 0.134 372.9 0.026 

3 374.7 374.3 0.107 374.3 0 801.3 801.8 0.063 801.6 0.025 370.4 370.4 0 370.5 0.0270 

4 375.1 375.6 0.133 375.5 0.027 802.1 802.3 0.025 802.5 0.024 370.1 370.4 0.081 370.4 0 

5 376.2 376.4 0.053 376.3 0.027 802.7 802.6 0.013 802.5 0.013 370.6 370.4 0.054 370.3 0.027 

6 376.4 376.2 0.053 376.2 0 803.9 803.7 0.024 803.4 0.037 370.4 370.1 0.081 369.9 0.054 

7 376.9 376.6 0.080 376.4 0.053 803.7 803.7 0 803.7 0 374.0 373.6 0.107 373.9 0.080 

8 377.9 377.9 0 377.9 0 803.2 803.7 0.062 803.9 0.025 373.5 373.8 0.080 373.8 0 

9 376.8 376.8 0 376.5 0.079 805.3 805.1 0.025 805.0 0.012 376.9 376.8 0.027 376.4 0.106 

10 376.6 376.7 0.027 376.7 0 805.4 805.5 0.012 805.5 0 376.6 376.8 0.053 376.9 0.027 

11 376.9 376.5 0.106 376.5 0 805.7 805.5 0.025 805.5 0 376.7 376.9 0.053 376.8 0.027 

12 376.6 376.3 0.079 376.2 0.026 807.6 807.0 0.074 807.2 0.025 376.7 376.9 0.053 376.9 0 

13 376.4 376.8 0.106 376.9 0.027 807.6 806.9 0.087 807.2 0.038 376.9 375.6 0.346 375.2 0.107 

Hint: Compc = Computed Values for the CODC Controller using Artificial Neural Networks (ANN); Compd = Computed Values for the CODC Con-
troller using Artificial Neural Networks Based Monte Carlo Simulation (ANNBMC); Exp2 = Experimental Values of the CODC Controller; Errc (%) 
= Error Percent between Exp and Compc. Errd (%) = Error Percent between Exp and Compd. 
 
were used for the design of the CODC with neural network architectures of 10 hidden neurons respectively. 
Figure 7 and Figure 8 depict the plots of the training error against the iteration number when ANN models and 
ANNBMC were used for the CODC controller prediction with neural network architectures of 10 hidden neu- 
rons respectively. Figures 9-15 represent the comparative test results for the prediction of T10 of AGO, T90 of 
Diesel, T100 of Kerosene, Naphtha, Kerosene, Diesel and AGO flow rates respectively as part of CODC design 
using ANN and ANNBMC. Figures 16-21 show the comparative test results for the prediction of stripping 
steam to main column, LDO stripper, HDO stripper, reflux flows 1, 2 and 3 respectively as part of the CODC  
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Figure 7. Training error vs iteration number for CODC controller 
using ANN with 10 hidden neurons.                         

 

 
Figure 8. Training error vs iteration number for CODC controller 
using ANNBMC with 10 hidden neurons.                     
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Figure 9. Comparative test results for the prediction of T10 of 
AGO using ANN and ANNBMC.                          
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Figure 10. Comparative test results for the prediction of T90 of 
AGO using ANN and ANNBMC.                          
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Figure 11. Comparative test results for the prediction of T100 of 
AGO using ANN and ANNBMC.                           
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Figure 12. Comparative test results for the prediction of naph-
tha flow rate using ANN and ANNBMC.                    
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Figure 13. Comparative test results for the prediction of kerosene 
flow rate using ANN and ANNBMC.                        
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Figure 14. Comparative test results for the prediction of diesel 
flow rate using ANN and ANNBMC.                          
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Figure 15. Comparative test results for the prediction of naphtha 
flow rate using ANN and ANNBMC.                         
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Figure 16. Comparative test results for the prediction of strip-
ping steam to main column using ANN and ANNBMC.      

 

 
Figure 17. Comparative test results for the prediction of LDO 
stripper using ANN and ANNBMC.                       

 

 
Figure 18. Comparative test results for the prediction of HDO 
stripper using ANN and ANNBMC.                       
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Figure 19. Comparative test results for the prediction of reflux 
flow 1 using ANN and ANNBMC.                          
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Figure 20. Comparative test results for the prediction of reflux 
flow 2 using ANN and ANNBMC.                          
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Figure 21. Comparative test results for the prediction of reflux 
flow 3 using ANN and ANNBMC.                          
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controller prediction using ANN and ANNBMC. 

5. Discussion of Results 
The maximum training error obtained when artificial neural networks (ANN) model with architecture of 10 
hidden neurons was used for the crude oil distillation column (CODC) design was below 6 while convergence 
was achieved below 400 iterations as shown in Figure 5. For the CODC design using ANNBMC, the training 
network converged to less than 10−6 below 2500 iterations with training error of less than 1.6 as shown in 
Figure 6. A maximum training error of less than 1.5 was achieved with convergence of below 700 iterations for 
the CODC controller using ANN only while the maximum training error was less than 1.2 and converged to a 
value of less than 10−7 after about 5000 iterations for the CODC controller using ANNBMC as depicted in 
Figure 7 and Figure 8 respectively. The prediction error decreases with increasing iteration number during the 
network training in all the plots of training errors against iteration numbers. Although larger number of iteration 
steps was required to achieve convergence of less than 10−7 when ANNBMC was used for both the design of the 
CODC and controller than when ANN only was used, lesser values of training errors were exhibited by the net-
work architecture. The maximum relative errors between the experimental data and the calculated data obtained 
from the output variables of the neural network for CODC design were 1.98 error % and 0.57 error % when 
ANN only and ANNBMC were used respectively. For the CODC controller, the maximum relative errors be-
tween the experimental data and the calculated data obtained from the output variables of the network architec-
ture were 0.346 error % and 0.124 error % when ANN only and ANNBMC were used respectively. This is an 
indication that minimum errors were achieved when ANNBMC was used for both the CODC design and con-
troller prediction which corresponds to its training network architecture having lesser training error values with 
higher number of iteration steps in both task. Thus, using ANNBMC shows that a better training of the network 
with higher number of iteration steps reduces the relative error between the experimental data and calculated 
data. 

The linear regression analysis performed between the experimental data obtained from the refinery and the 
calculated data obtained from the neural network architecture for the comparative test results for the prediction 
of T10 of AGO, T90 of Diesel, T100 of Kerosene, Naphtha, Kerosene, Diesel and AGO flow rates using ANN and 
ANNBMC are shown in Figures 9-15 respectively. The correlation coefficients obtained for T100 of Kerosene, 
T90 of Diesel, T10 of AGO, naphtha, kerosene, diesel and AGO flow rates were 0.9387, 0.9879, 0.9236, 0.9315, 
0.8065, 0.9499 and 0.9010 respectively when ANN only was used for the CODC design. The correlation coeffi-
cients obtained for T100 of Kerosene, T90 of Diesel, T10 of AGO, naphtha, kerosene, diesel and AGO flow rates 
were 0.9965, 0.9998, 0.9954, 0.9888, 0.9838, 0.9942 and 0.9958 respectively when ANNBMC was used for the 
CODC design. This analysis performed shows that the prediction accuracies for the CODC design were better 
when ANNBMC was used. The minimum and maximum prediction accuracies were 80.65% and 98.79%; and 
98.38% and 99.98% when ANN and ANNBMC were used for the CODC design respectively. This is an indica-
tion that the network architecture for the ANNBMC was rigorously trained for better prediction accuracies and 
thus can be used to predict design variables (output variables) of the crude oil distillation column than using on-
ly ANN. 

The linear regression analysis performed between the experimental data obtained from the refinery and the 
calculated data obtained from the neural network architecture for the comparative test results for the prediction 
of stripping steam to main column, LDO stripper, HDO stripper, reflux flows 1, 2 and 3 using ANN and 
ANNBMC are shown in Figures 16-21 respectively. The regression coefficients executed between the experi-
mental and calculated data were 0.9825, 0.9916, 0.9934, 0.9283, 0.9600 and 0.9717 for the stripping steam to 
main column, LDO stripper, HDO stripper, reflux flow 1 (Top Pump around), reflux flow 2 (Kerosene Pump 
around) and reflux flow 3 (Light Diesel Oil Pump around) respectively when ANN only was used for the CODC 
controller design. When ANNBMC was used for the CODC controller design, the regression coefficients were 
0.9948, 0.9971, 0.9918, 0.9889, 0.9913 and 0.9944 for the stripping steam to main column, LDO stripper, HDO 
stripper, reflux flow 1 (Top Pump around), reflux flow 2 (Kerosene Pump around) and reflux flow 3 (Light Di-
esel Oil Pump around) respectively. The minimum and maximum prediction accuracies were 92.83% and 
99.34%; and 98.89% and 99.71% when ANN and ANNBMC were used for the CODC controller respectively as 
both have excellent predictions. However, using ANNBMC for the CODC controller still predicts excellently 
well than ANN. These results also reflected in the minimal difference between the training error (<1.6 and <1.2)  
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of each of the network architecture for both the ANN and ANNBMC respectively for the CODC controller as 
shown in Figure 7 and Figure 8. Excellent predictions for both methodologies resulted from their maintenance 
at particular values for various inputs of the network architecture. The little deviations between their output va- 
riables and that of the PID controller from the refinery resulted from their excessive usage by the PID controller 
to meet the product specifications (T100 of Kerosene, T90 of Diesel and T10 of AGO, naphtha, kerosene, diesel 
and AGO flow rates). Thus, the artificial neural networks based Monte Carlo simulation controller is effective 
for the predictions of the output variables and maximally relating the non-linear behaviour existing among vari-
ous variables of the process. 

6. Conclusions and Recommendation 
The expert system design and control of crude oil distillation column using artificial neural networks (ANN) 
model and artificial neural networks based Monte Carlo (ANNBMC) simulation of random processes had been 
done. MATLAB computer program had been written to simulate the artificial neural networks back-propagation 
algorithm of both methodologies for both the design and control of crude oil distillation column using experi-
mental data of Port-Harcourt refinery, Nigeria. The design of the crude oil distillation column and its controller 
gave effective accuracies with minima error percent for their various output variables when ANNBMC was used 
than when ANN only was used. The ANNBMC controller is effective for the predictions of the output variables 
and maximally relating the non-linear behaviour existing among various variables of the process than ANN con-
troller. Hence, artificial neural networks based Monte Carlo simulation is an effective tool for the design and 
control of crude oil distillation column. 

It is highly recommended that computational complexity of both methodologies should be reduced as the 
training requires using many data for its accurate prediction. Also, there is need for the improvement in the net-
work architecture used for the ANNBMC in order to give lesser training error with larger reduction in the itera-
tion number as the training process requires a lot of time before convergence can be achieved. 
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