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Abstract 
An electrically conducting fluid is driven by a stretching sheet, in the presence of a magnetic field 
that is strong enough to produce significant Hall current. The sheet is porous, allowing mass 
transfer through suction or injection. The limiting behavior of the flow is studied, as the magnetic 
field strength grows indefinitely. The flow variables are properly scaled, and uniformly valid as-
ymptotic expansions of the velocity components are obtained through parameter straining. The 
leading order approximations show sinusoidal behavior that is decaying exponentially, as we 
move away from the surface. The two-term expansions of the surface shear stress components, as 
well as the far field inflow speed, compare well with the corresponding finite difference solutions; 
even at moderate magnetic fields. 
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1. Introduction 
The flow due to a moving surface is an important field of fluid mechanics. It has several applications; for exam-
ple, in production of glass and paper sheets, drawing of plastic films, and extrusion of metals and polymers. 
Crane [1] obtained an exact solution for the two-dimensional flow of a Newtonian fluid due to a linearly 
stretching sheet. The velocity components in this case has simple forms; tending to their limits monotonically in 
an exponential manner as we move away from the surface. The simplicity of this solution invited several authors 
to consider different related problems, which exhibit the same behavior; e.g. [2]-[8].  

One such problem is when the fluid is electrically conducting and a magnetic field is applied normally to the 
surface. For weak magnetic fields, the flow remains two-dimensional and a closed-form solution is still possible 
to attain. The Lorentz force acts to restrain the flow; causing faster exponential tendency to the limits. When the 
magnetic field is strong enough to produce significant Hall current, the problem changes considerably. It be-
comes three-dimensional. The Hall current is associated with an electromagnetic force which derives a trans-
verse flow. A closed-form solution is no longer possible.  

It is interesting to explore the nature of this MHD flow in the presence of Hall current. To that end, the limit- 
ing behavior of the flow as the magnetic field grows indefinitely is studied. The straightforward perturbation 
analysis leads to secular behavior, which is removed by parameter straining [9]. Three-term uniformly valid asy- 
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mptotic expansions are, thus, obtained. The presence of the Hall current leads to an exponential tendency to the 
limits of sinusoidal nature. The flow involves alternating regions of forward and backward velocity components.  

Finite difference solutions are also obtained and show qualitative adherence to the predicted limiting behavior 
even for moderate magnetic fields. Quantitatively, the two term expansions show excellent agreement with the 
numerical results. 

2. Formulation of the Problem 
A totally ionized fluid is driven by an insulated sheet, which is symmetrically stretching with speed us that is 
proportional to the distance x from the axis of symmetry z. Specifically, us = ωx, where ω is a constant of pro- 
portionality. The sheet is porous; allowing a uniform fluid injection of speed ws in the z direction. Otherwise, the 
fluid would have been quiescent. A uniform magnetic field is applied in the z-direction. The magnetic Reynolds 
number is small, so that the induced magnetic field can be neglected; and the applied field maintains its uniform 
magnetic flux density B. On the other hand, the magnetic field is strong enough to produce significant curvature 
in the electrons trajectories; leading to considerable Hall current [10].  

The fluid is incompressible of density ρ, viscosity µ, electrical conductivity σ, Hall coefficient h (=1/ene); 
where ne is the number density for the electrons and -e is the electron charge. All these parameters are consi- 
dered constant.  

The velocity components: u in the x-direction, v in the transverse y-direction, and w in the z-direction, as well 
as the pressure p are dependent on x and z only. They are governed by the following continuity and Navier- 
Stokes equations, which include components of the Lorentz force corrected for the Hall current, 

0x zu w+ =                                         (1a) 

2

2( ) [ ] ( )
1x z xx zz x
σBρ uu wu μ u u p u mv

m
+ = + − − −

+
                          (1b) 

2

2( ) [ ] ( )
1x z xx zz
σBρ uv wv μ v v v mu

m
+ = + − +

+
                            (1c) 

( ) [ ]x z xx zz zρ uw ww μ w w p+ = + −                                (1d) 

where subscripts denote differentiation, m = σhB is the Hall parameter. Note that m may be positive or negative 
in accordance with the sign of B; i.e. depending on whether the magnetic field is directed away from or toward 
the sheet. However, as a simultaneous change of the signs of m and v leaves the problem unaltered, only 
non-negative values of m need to be considered.  

At the surface, z = 0, the adherence conditions u = ωx and v = 0 apply; together with the injection condition w 
= ws. Far from the sheet, as z~∞, the fluid has pressure p∞ and velocity components u~0 and v~0. 

The problem admits the similarity transformations z = (µ/ρω)½ζ, u = ωxF(ζ), v = ωxG(ζ), w = (ωµ/ρ)½H(ζ), 
and p = p∞+ ωµQ(ζ); leading to the following problem. 

0H F′ + =                                         (2a) 

2 ˆ ˆ ˆ( ) 0F HF F β nF mG′′ ′− − − − =                                (2b) 

ˆ ˆ ˆ( ) 0G HG FG β nG mF′′ ′− − − + =                                (2c) 

Q H HH′ ′′ ′= −                                      (2d) 

0 : 1, 0, sF G H Hζ = = = =                               (2e-g) 

~ : ~ 0, ~ 0, ~ 0F G Qζ ∞                               (2h-j) 

where 
2

( , ,1)ˆ ˆ ˆ( , , )
1

mm n
m

ββ =
+

, with 
2σBβ

ρω
=  being the magnetic interaction number; and a dash denotes differ- 

rentiation with respect to ζ. 
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3. Asymptotic Analysis 
We are interested in the limiting behavior of the flow as β~∞ with fixed m; i.e. as β̂ ~∞ with fixed m̂  and n̂ . 
That F (0) = 1 irrespective of the value of β̂  means that F = O ( β̂ 0). The leading term in Equation (2b) is β̂
n̂ F. It can be balanced by the diffusion term F ′′  in a contracting region in which z = O ( β̂ −1/2). Then, Equa-
tion (2a) gives H = O ( β̂ −1/2); consistent with which Hs must be O ( β̂ −1/2). Consequently, Equation (2d) gives 
Q = O ( β̂ 0). In Equation (2c), the driving force for the transverse flow is the Hall effect expressed by β̂ m̂ F. 
This requires G′′ ~ β̂ m̂ F; leading to G = O ( β̂ 0). 

New stretched variables 
1/2 1/2,ˆ ˆβ βV Hζη = =                                 (3a,b) 

are introduced; transforming Problem (2) to the form 
0V F′ + =                                      (4a) 
-1 2ˆˆ ˆ ( )F nF mG β VF F′′ ′− + = +                             (4b) 
-1ˆˆ ˆ ( )G nG mF β VG FG′′ ′− − = +                            (4c) 
-1ˆQ V β VV′ ′′ ′= −                                  (4d) 

( ) ( ) ( )0 1, 0 0, 0 sF G V V= = =                            (4e-g) 

( ) ( ) ( )~ 0, ~ 0, ~ 0F G Q∞ ∞ ∞                            (4h-j) 

where, now, the dashes denote differentiation with respect to η.  
We expand the flow variables in powers of β̂ −1 in the form 

-1 -2
0 1 2

ˆ ˆ~Z Z β Z β Z+ + +                                (5) 

where Z stands for F, G, V, and Q. The problems for Zn, n = 0,1,2,3,···, are lin.ear. For Z0, we get the basic flow 
solutions 0F =EC, 0G  = −ES, 2 2

0 s [ ( )]/( )V V α E αC γS α γ= + − + − + , and 0Q  = −EC, where α and γ satisfy 
α2 − γ2 = n̂  and 2αγ = m̂ ; with S = sinγη, C = cosγη and E = exp(−αη), for short. For Z1, the solutions in-
volve secular terms of the form ηES and ηEC, the removal of which is effected by straining the parameters m̂  
and n̂  in the form (5); and the procedure can be continued to higher orders.  

The following expansions up to O ( β̂ −2) are obtained 
2 2 -1 -2

0 1
ˆ ˆˆ~( )n α γ β αv β αv− + + +                                 (6a) 

-1 -2
0 1

ˆ ˆˆ ~2m αγ β γv β γv+ + +                                   (6b) 
-1 2 -2 2 3

1 1 1 2 2
ˆ ˆ~ [ ( ) ] [ ( ) ( )]F EC β E Cf Sg E f β E Cf Sg E c E Ca Sb+ + − + + + + + +              (6c) 

-1 2 -2 2 3
1 1 1 2 2

ˆ ˆ~ [ ( ) ] [ ( ) ( )]G ES β E Cg Sf E g β E Cg Sf E c E Ca Sb− + − − + − + + + +

 
             (6d) 

-1 2
0 1 1 1 1 1 1

-2 2 3
2 2 2 2 2

ˆ~[ ( S )] [ { ( ) ( )} / 2 ]
ˆ ˆˆ[ { ( ) ( )} / 2 ( )]

V v λE γ αC β v λE γg αf S αg γf E f α

β v λE C γg αf S αg γf E c α E Ca Sb

C+ − + + + + + − − +

+ + + − + + + +
              (6e) 

where symbols appearing on the right-hand sides are given in Appendix. 
Of interest are the longitudinal and transverse components of the shear stress at the surface, as well as the far- 

field speed. They are represented, respectively, by 
-1 -2

1 1 2 2
ˆ ˆ(0)~ ( ) ( 2 3 )F β f g β f g c a bα α γ α γ α α γ′ − + + + − + − − + +                  (7a) 

-1 -2
1 1 2 2

ˆ ˆ(0)~ ( ) ( 2 3 )G β g f β g f c a bγ α γ α γ α α γ′ − + − + − − − − + + 
                  (7b) 

-1 -2
0 1 2

ˆ ˆ( )~V v β v β v V∞∞ + + + =                                (7c) 

The expansion for the pressure can be obtained from 
-1 2 21

2
ˆ ( )Q F β V V∞= − + −                                   (7d) 
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which is the result of integrating Equation (4d) and the use of Equation (4a) and Condition (4j). This is not given 
here for brevity.  

The above expansions describe how the flow behaves as β~∞ with fixed m. They reveal a sinusoidal behavior 
that dies out exponentially as we move away from the surface. This behavior is solely due to the Hall effect, 
which is also responsible for the presence of the transverse velocity component G. When the Hall current is ne-
glected; i.e. m = 0, Expansion (6b) leads to γ = 0, Expansion (6d) gives G = 0, Expansions (6c) and (6e) reduce 
to F = E and s ( 1) /V V E α= + − , respectively, while Expansion (6a) translates to α satisfying 

2 -1
s

ˆ ( 1) 1β Vα α − =+ . These results coincide with the exact solutions of the degenerate cases of Gupta and Gup- 
ta [2] and Andersson [3].  

Expansions (6) describe the limiting case when β~∞ with m = O (β1/2), as well. All we need is to set γ = α. It 
should, however, be noted that, now, as β̂  = O (β1/2), the stretching (3) is weaker; being O (β1/4). Moreover, 
the perturbations to the basic flow proceed in powers of β−1/2. 

4. Results and Discussion 
The asymptotic expansions obtained above are tested against corresponding numerical results. The problem de- 
scribed by Equation (4) is solved numerically in double precision, using Keller’s two-point, second-order-accu- 
rate, finite-difference scheme  [11]. A uniform step size ∆η = 0.01 is used on a finite domain 0≤ η ≤ η∞. The 
value of η∞ is chosen sufficiently large in order to insure the asymptotic satisfaction of the farfield conditions 
(4h,j). (As pointed out by Pantokratoras [12], a small value of η∞ can lead to erroneous results.) The non-linear 
terms are quasi-linearized, and an iterative procedure is implemented; terminating when the maximum errors in 
F ′ (0), G′ (0), and H(∞) become less than 10−10. 

The numerical results exhibit the attenuating sinusoidal behavior predicted by the asymptotic analysis. This is 
clearly illustrated in Fig. 1 showing the longitudinal and transverse velocity profiles F(η) and G(η), when β = 20, 
m = 10, Vs = 20, and η∞ = 500. However, at such low value of β, a fixed period of oscillation is not sustained. 
When β is increased to100 the F and G profiles, respectively, cross the zero line first at η ≈ 7.79 and 15.44 then 
at η ≈ 23.15 and 30.87; thus sustaining the same period τ  ≈ 30.8. The two profiles cross the zero line several 
times later, but with much smaller magnitudes; maintaining the same period, though.  

How quantitatively useful the asymptotic expansions of the previous section can be, is next investigated. To 
generate numerical values, for given β, m and Vs, we need to determine the coefficientsα, γ, λ, v0, f1, g1, v1…, etc. 
To that end, we use Expansions (6a) and (6b) and the pertinent equations of Appendix A to obtain expansions of 
these coefficients in the form (5). In particular, the coefficients of the expansions which are involved to O ( β̂ −1)  

are found to be 2 2 1/2 1/2
0

1 ˆ ˆ ˆ[ { ( ) }]
2

α n m n= + + , 0 0ˆ / 2γ m α= , 2 2 1
0 0 0( )λ α γ −= + , 00 s 0 0v V λ α= − , 1 00

1
2

α v= − ,  

 

 
Figure 1. Velocity profiles; β  = 20, m = 10, Vs = 20. 
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1 0γ = , 2
1 0 0 1 0 12 ( )λ λ α α γ γ= − + , 01 0 1 1 0( )v λ α λ α= − + , 10 0 0 0 1 0 2 3f λ γ (γ θ α θ ) / θ= − + , 10 0 0 0 1 0 2 3g λ γ (α θ γ θ ) / θ= − , 

and 10 0 10 10 0ˆ ˆ 2v λ (nf mg ) / α= − + ; where 2 2
1 0 03θ α γ= + , 2 ˆθ m= , and 2 2

3 1 2θ θ θ= + . The following expansions 
are also obtained 

1 2
0 1 0 10 0 10

ˆ ˆ(0) ) ( )-F α β ( α α f γ g β−+′ = − + − + + O                             (8a) 
1 2

0 1 0 10 0 10
ˆ ˆ(0) ) ( )-G γ β ( γ α g γ f β−+′ = − + − + − O                             (8b) 

2-1
00 01 10

ˆ( ) ( ) ( )V v β v v β −∞ = + + + O                                    (8c) 

Results of the two-term asymptotic expansions (i.e., up to O ( β̂ -1) )are proved to be in close agreement with 
the numerical results, even at values of β as low as 20. This is illustrated in Figures 2 and 3 for F ′  (0) and 
G′ (0) with different values of m, and in Figure 4 for V(∞) with different values of Vs.  

The period of the sinusoidal oscillations τ = 2π/γ takes the form 
2 2 1/2 1/2 21 ˆˆ ˆ ˆ ˆ4 [ { ( ) }] / ( )

2
τ π n m n m β−= + + + O                              (9) 

For m = 2, 4, 6, 8, 10 Equation (9) gives τ = 17.87, 20.73, 23.97, 26.96, 29.68, respectively, which are close to 
the corresponding numerically predicted values τ ≈ 17.86, 20.75, 24.01, 27.01, 29.76 obtained with β = 100 and 
Vs = 0. That is, τ is independent of Vs to O ( β̂ −2), is also tested numerically. Varying Vs between −10 and 10, 
with β = 100 and m = 1, gives τ = 19.54 ± 0.04, as compared to the asymptotic value τ ≈ 19.53. 
 

 
Figure 2. Longitudinal surface shear (0)F ′  vs. β, with dif-
ferent values of m; Vs = 0. (Solid lines ≡ numerical, markers ≡ 
asymptotic). 

 

 
Figure 3. Transverse surface shear (0)G′  vs. β, with different 
values of m; Vs = 0. (Solid lines ≡ numerical, markers ≡ as-
ymptotic). 
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Figure 4. Farfield normal velocity V(∞) vs. β, with different 
values of Vs; m = 1. (Solid lines ≡ numerical, markers ≡ as-
ymptotic). 

5. Conclusion 
The limiting behavior of the MHD flow due to a porous stretching sheet has been studied, as the magnetic field 
grows indefinitely, taking into consideration the Hall current. Three-term uniformly-valid asymptotic expansions 
have been derived using parameter straining. The velocity components show sinusoidal behavior that attenuates 
exponentially, as we move away from the surface. (When the Hall current is neglected, the exponential decay 
becomes monotonic.) Finite difference solutions have also been calculated. The two-term asymptotic and the 
numerical solutions have shown excellent agreement both qualitatively and quantitatively. 
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Appendix 
Given below are the expressions and relations that define the different symbols appearing in Expansions (6). For 
conciseness, let 

2 2 1cos , s, ( )in ,aE e C S aη γη γη λ γ− −= = = = +                      (A1-4) 

then 

0 sv V λα= −                                     (A5) 

1f , 1g  and 1v  are obtained from 
2 2 2

1 1(3 2α )f αγg λγγ+ + = −                              (A6) 
2 2

1 12 3αγf ( α γ )g λαγ− + + =                             (A7) 

1 1 1 1 2v λ(γg αf ) f / α= − + +                             (A8) 

c  and c  satisfy 
2 2 2

0 1 11(3 2 2α γ )c αγc v (γg αf ) λγ f+ + = + +                       (A9) 

2 2
0 1 1 12 3 2αγc ( α γ )c v (αg γf ) λ αγf− + + = − −                     (A10) 

a , b , a , and b  satisfy 
2 2 2

18 6 2 3 / 2α a αγb αγa λ(α γ )f− + = −                         (A11) 
2 2 2

16 8 2 ( 3 ) / 2αγa α b αγb fγ α λ γ α+ + = −                         (A12) 
2 2 2

1 12 8 6 ( ) / 2αγa α a αγb g fα γ λ γ α− + − = − +

                       (A13) 
2

1 12 6 8 2 2αγb αγa α b f / λα gγ− + + = −

                         (A14) 

â  and b̂  satisfy 
ˆˆ3αa γb a− =                                    (A15) 

ˆˆ 3γa αb b+ =                                    (A16) 

and finally 2f , 2g , and 2v  are obtained from 

2f c a= − −                                     (A17) 

2g c a= − −                                      (A18) 

2 2 2 ˆ2v λ(γg αf ) c / α a= − + − −                              (A19) 
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