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Abstract 
Process capability analysis is used to determine the process performance as capable or incapable 
within a specified tolerance. Basic indices Cp, Cpk, Cpm, Cpmk initially developed for normally distri-
buted processes showed inappropriate for processes with non-normal distributions. A number of 
authors worked on non-normal distributions which were most notably those of Clements, Pearn 
and Chen, Montgomery and Johnson-Kotz-Pearn (JKP). Obtaining PCIs based on the parameters of 
non-normal distributions are completely disregarded and ignored. However parameters of some 
non-normal distributions have significance for knowing the status of process as capable or incap-
able. In this article we intend to work on the shape parameter of Weibull distribution to calculate 
PCIs. We work on two data sets for verification and validation purpose. Efficacy of the technique is 
assessed by bootstrapping the results of estimate and standard error of shape parameter. 
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1. Introduction 
Process capability indices (PCIs) reflect the potential of a process performance by a unit-less measure. These in-
dices have been used to check a statistical controlled process capability of producing items that meets the quality 
condition predetermined by the product designer, basic indices as Cp by Juran [1], Cpk by Kane [2], Cpm by Chan 
et al. [3], and Cpmk by Pearn et al. [4]. For detailed description see Johnson and Kotz [5]. Vannman [6] con-
structed a superstructure for the generalization of these basic indices. These basic indices developed and de-
signed for normal processes give flawed results for non-normal processes. Gunter [7] presented a series of four 
papers based on non-normal indices; Boyles [8] worked for asymmetric tolerance; and Zwick [9] proposed a 
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hybrid method for fitting of distribution and many more methods are designed and modified for estimating PCIs 
for non-normal distributions. Most of the indices designed for non-normal processes are based on transformation 
or percentile method. Johnson [10] proposed Johnson transformation system based on moment method. Box and 
Cox [11] presented a family of power transformations for analysis of non-normal data. Clements’ [12] using 
Pearson family of curves proposed a percentile-based method. English and Taylor [13] discussed expected loss 
for process measurement arising from normal and non-normal distributions. Pearn and Kotz [14] worked on 
Clements method for calculating second and third generation process capability indices for non-normal Pearso-
nian populations. Schneider and Pruett [15] used the capability indices for the supplier certification process. 
Castagliola [16] approach is based on calculating the probability of non-conforming data using Burr distribution 
for non-normal population. Montgomery [17] discussed the indices for non-normal population. Kotz and Love-
lace [18] constructed tables of standardized tails of Pearson curves. Tong and Chen [19] discussed the lower 
confidence limit for non-normal distributions. Choi and Bai [20] developed a weighted variance (WV) method 
for skewed population. Liu and Chen [21] suggested that the accuracy of estimated PCI for non-normal data can 
be improved by using Burr distribution instead of Pearson curve percentiles. Chang, Chen and Hsieh [22] de-
veloped an index that could be used for non-normal populations efficiently and many more. We may note that 
work on parameters of non-normal distribution is always ignored by quality practitioners. The purpose of this 
article is to report the results of PCIs based on Weibull shape parameter using the regression method of two data 
sets and consider its shape parameter as a quality characteristic of a statistical controlled process. The proposed 
procedure reflects accurately the significance of Weibull shape parameter.  

This article is organized as follows. In Section 2, we describe few special features of Weibull distribution; 
propose procedure to obtain process parameters of Weibull shape parameter to estimate PCIs from earlier pro-
posed superstructure forms. In Section 3, we analyze the two data sets and observe the effect of shape parameter 
on PCIs. In Section 4, we conclude the proposed procedure and in Section 5, we discuss some applications of 
Weibull distribution. 

2. Research Methodology 
2.1. Weibull Distribution EV-III  
The Weibull distribution is first applied by Swedish Physicist W. Weibull in the 1930s in studying material 
strength in tension and fatigue. This distribution is extensively used in reliability and lifetime modeling fatigue 
and survival analysis and to model an extensive range of failure rates because of its flexible shape.  

The two parameter Weibull distribution has density function as; 

( )
1

exp , 0, 0, 0t tf t t
β ββ α β

α α α

−     = − > > >    
     

                      (1) 

where α  is the scale and β  is the shape parameter of Weibull distribution 
The cumulative distribution function of Weibull distribution is as 

( ) 1 exp tF t
β

α

  = − −  
   

                                (2) 

Equation (2) becomes the cumulative distribution function of exponential distribution for 1β = . Confidence 
limits on the value of β  for sample of size n can be determined as  

2
2

2
ˆn

nβχ
β

=                                      (3) 

If ( )
2
2 , 1

ˆ

2 nn α
β χ −  is greater than 1, the distribution is significantly different from the exponential.  

The different β  values are sensitive to the shape of the distribution and increasing β  reduces the skew-
ness of Weibull distribution. For 1β =  the distribution reduce to exponential, for 2β =  the distribution is 
Rayleigh and resemble to normal for 3.48β = . For higher values of β , the curves tends to become symme-
trical. Variety of scale parameter α  has no effect, for the fact the scale parameter α  set to 1, in simulation 
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studies. 
Figure 1 shows the behavior of various values of shape parameter β  for fixed value of scale parameter α .  
Aleksander and Thierry [23] developed the stress gradient effect on fatigue life of structural components. In 

their approach the shape coefficient of the Weibull distribution becomes a function of a local damage parameter. 
The function also observed relationship between the shape of the fatigue life distribution and the stress level. 
Zhang, Xie and Tang [24] used Weibull shape parameter as a measure of reliability and compared various esti-
mators based on different assumptions. The Weibull shape parameter has significance to determine the behavior 
of the failure rate of the product or system in measuring time to failure in any electrical or mechanical system. 
The log-normal shape parameter affects the skewness and kurtosis-increase (decrease) in this parameter results 
in larger (smaller) skewness and kurtosis values.  

We may thus conclude that the variation in shape parameter is sensitive for measuring the process capability. 

2.2. Sampling Distribution of Shape Parameter of Weibull Distribution 
There are many methods proposed for estimation of parameters of known theoretical distribution as maximum 
likelihood estimation method, method of moments, regression methods etc. For our capability index based on 
Weibull shape parameter we prefer regression method. This method is easy and straight forward even for ob-
taining the standard errors of the parameters without involving iterative procedures as required for other me-
thods of estimation see Ahmed and Safdar [25]. Once the sampling distribution (estimate and standard error) of 
parameter is recognized the behavior (normal or non-normal) of the parameter is easy to determine. 

The simple linear regression model with only one independent variable (regressor) is  

1i o i iy xβ β ε= + +                                      (4) 

This model has two regression parameters 0β  and 1β  and one random error component iε  that is as-
sumed to be independently and identically normally distributed with mean zero and constant variance 2σ . Or-
dinarily X’s are non-stochastic design values measured with negligible errors and Y is dependent (response) va-
riable. For the estimated linear regression model 1

ˆ ˆˆ o iy xβ β= + , the ordinary least square (OLS) estimator of 
0β  and 1β  are unbiased, efficient (minimum variance) and consistent 

0 1
ˆ ˆy xβ β= −                                        (5) 

 

  
Figure 1. Weibull probability density function. 
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Suppose that ( ) ( ) ( )1 2 nT T T< < <  are the order statistics of a random sample 1 2, , , nT T T  of size n of Wei-
bull distribution with unknown scale parameter α  and shape parameter β . The following regression equation 
can be obtained by taking the logarithm twice on both sides of Equation (2). 

( ) ( ) ( ){ }1ln ln ln ln 1i T it F tα
β

 = + − −                              (7) 

Taking ( )lni iz t=  and ( ){ }ln ln 1i T iw F t = − −   the function becomes the regression equation z on w; Ma-
thematically the following relationship obtain 

( )ln , 1, 2, ,i
i i

wz i nα ε
β

= + + =                                (8) 

For plotting position ( )T iF t , the Bernard median rank ( ) 0.35
0.4T i

iF t
n
−

=
+

 (the most widely recognized esti-  

mator) is used for an efficient approximation of complete samples. Here i is the rank of the data in ascending 
order, n is number of items in data and ε  is an error term of the regression.  

Comparing Equation (8) with Equation (4) we have ( )0 lnβ α=  and 1 1β β= . Now from these equalities 
from Equation (5) and Equation (6) we may get the estimates of α  and β  as ( )ˆˆ exp z wα β= −  and  
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One may note the estimator of β  has a closed form expression and independent of scale parameter (see 
Kottegoda [26]). The Standard errors were obtained using Delta method by Stuart and Ord [27] from following 
algebraic expression 

( )ˆ ˆˆ ,gθ α β=  
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    (10) 

The estimate and standard error for Weibull shape parameter using the above method are estimated using the 
nls function based on delta method in R-console version 3.0.1 [28]. 

2.3. PCIs for Shape Parameter of Weibull Distribution 
The sampling distribution of regression coefficients of a linear regression model follows t-distribution. The his-
togram and the box plot for the estimated parameter for different size (or bootstrap) showed the symmetrical 
behavior (see Figure 2 and Figure 3). In this present paper data sets has specification limits for the non-normal  
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n = 50 

  
n = 100 

Figure 2. Histogram and box plot of beta for boot parameters B = 20, 30, 40, 50, 100 
of annual minimum daily flow.  

 
processes but for parameters (shape and scale) we do not have any set specification limits. Based on the sam-
pling distribution of regression parameters we may estimate the limits by ( )ˆ ˆ3seβ β± , and therefore the PCIs 
based on the assumptions of normal distributions are always obtained 1 (see Table 1 and Table 2).  

We check the normality by histogram with density curve and box plot. We drew sample of size 50 to obtain 
the sampling distribution of shape parameter β  of Weibull distribution as discussed in Section 2.2. For valida-
tion purpose we boot the estimated results of β  for B = 20, 30, 40, 50 and 100. For each bootstrap sample of 
β  we construct the histogram and box plot. All computations are listed in R-script file containing step-by-step 
procedure to estimate PCIs for the shape parameter of any Weibull distribution. 

We have used the following superstructures earlier proposed by numerous authors for normal and non-normal 
populations to estimate PCIs for Weibull shape parameter  

(Normal) Vannman [5] superstructure assuming Normal ( )
( )22

,
3

p
d u m

C u v
v T

µ

σ µ

− −
=

+ −
        (11a) 

Clements [12] and Pearn and Chan [29] ( )
( )

2
299.865 0.135

,

3
6
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d u M m

C u v
X X v M T

− −
=

−  + − 
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       (11b) 
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n = 50 

  
n = 100 

Figure 3. Histogram and box plot of beta fir boot parameters B = 20, 30, 40, 50 and 
100 of Pearn and Chan measurements. 

 
(PC) Pearn and Chan [29] where estimates are based on sample percentiles, Chang and Lu [30] 

( )
( )
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                        (11c) 

(PKJ) Pearn and Kotz [14], and Pearn and Chen [31] applied Clements method [12] to estimate indices 
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Table 1. PCIs of Weibull shape parameter for annual minimum daily flow. 

B Methods Cp Cpk Cpm Cpmk 

20 

Normal 1.000 1.000 1.000 1.000 

Clement 1.607 1.509 1.542 1.447 

PC 1.607 1.495 1.524 1.418 

P-K-J 1.607 1.396 1.524 1.347 

30 

Normal 1.000 1.000 1.000 1.000 

Clement 1.543 1.495 1.527 1.479 

Pearn & 1.543 1.514 1.537 1.508 

P-K-J 1.543 1.311 1.537 1.307 

40 

Normal 1.000 1.000 1.000 1.000 

Clement 1.448 1.443 1.448 1.443 

Pearn 1.448 1.437 1.447 1.437 

P-K-J 1.448 1.370 1.447 1.369 

50 

Normal 1.000 1.000 1.000 1.000 

Clement 1.221 1.196 1.218 1.193 

Pearn 1.221 1.214 1.220 1.213 

P-K-J 1.221 1.128 1.220 1.128 

100 

Normal 1.000 1.000 1.000 1.000 

Clement 1.119 1.063 1.104 1.048 

Pearn 1.119 1.062 1.103 1.046 

P-K-J 1.119 0.932 1.103 0.923 

 
Table 2. PCIs of Weibull shape parameter for Pearn and Chan measurement.  

B Methods Cp Cpk Cpm Cpmk 

20 

Normal 1.00 1.00 1.00 1.00 

Clement 1.67 1.57 1.60 1.50 

PC 1.67 1.59 1.62 1.54 

P-K-J 1.67 1.50 1.62 1.47 

30 

Normal 1.00 1.00 1.00 1.00 

Clement 1.71 1.60 1.63 1.53 

Pearn & 1.71 1.60 1.62 1.52 

P-K-J 1.71 1.59 1.62 1.53 

40 

Normal 1.00 1.00 1.00 1.00 

Clement 1.41 1.36 1.39 1.34 

Pearn 1.41 1.37 1.40 1.36 

P-K-J 1.41 1.04 1.40 1.03 

50 

Normal 1.00 1.00 1.00 1.00 

Clement 1.37 1.34 1.36 1.34 

Pearn 1.37 1.34 1.36 1.34 

P-K-J 1.37 1.26 1.36 1.26 

100 

Normal 1.00 1.00 1.00 1.00 

Clement 1.29 1.26 1.29 1.26 

Pearn 1.29 1.25 1.28 1.24 

P-K-J 1.29 1.19 1.28 1.18 
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3. Data Sets from Weibull Distribution 
To illustrate how to calculate the PCIs based on shape parameter of Weibull distribution, we used two data sets 
and obtain the results of indices given in Equations (11a)-(11d). 

3.1. Annual Minimum Daily Flow  
The data consisting of 22 annual minimum mean daily flows, given in m3/s, were recorded at the proposed di-
version site in the Hasdo subcatchment of the Mahanadi basin in India pp-236 [26]. 
 

2.78 2.47 1.64 3.91 1.95 1.61 2.72 3.48 0.85 2.29 1.72 

2.41 1.84 2.52 4.45 1.93 5.32 2.55 1.36 1.47 1.02 1.73 

 
Assuming annual minimum flow follows two parameter Weibull distributions with shape parameter 2.29 and 

scale parameter 2.67. These parameters are estimated from the mean and variance of the given data sets. 
Table 1 comprises the results of PCIs of Weibull shape parameter based on four different superstructures with 

various sample sizes. 
The reason for estimating PCIs for annual minimum daily flow is the notice on the variation when we vary the 

magnitude of shape parameter in either direction. It is observed that the probability that an annual minimum low 
flow will be less than 2 m3/s over a two-year period is 0.40. This probability decreases by increasing the magni-
tude of the shape parameter from 2.29 and increases by decreasing the magnitude. So the stability of annual 
minimum low flow may analyzed by obtaining PCIs based on the shape parameter of the Weibull distribution. 

Figure 2 shows the graphical variation with sample size for each bootstrap sample of annual minimum low 
flow data. 

We may observe from the analysis a single conclusion that Weibull shape parameter may use in the place of 
measurements coming from Weibull distribution. So in any industrial or mechanical production of process fol-
lows Weibull distribution with known parameters, capability indices using the proposed procedures can be ob-
tained in a very straightforward way along with statistical process control tools.  

3.2. Pearn and Chan Used Rubber Edge Measurements [29] 
Pearn and Chan used rubber edge measurements to exemplify his proposed generalization of basic indices to 
cover non-normal distributions. Rubber edge of a speaker woofer driver is one of the key components which re-
flect the sound quality of the driver units, such as musical image and clarity of the sound. One characteristic of 
the rubber edge is weight which is considered here as a quality characteristic. Since the sound quality is time 
dependent for any life-time system so use of this data as Weibull distribution is justified. We used a sample of 
size 80 from Pearn and Chen measurements [29].  
 

8.67 8.65 8.59 8.63 8.69 8.64 8.76 8.62 8.65 8.71 8.64 8.63 8.66 8.75 8.67 8.57 

8.63 8.74 8.64 8.65 8.70 8.62 8.62 8.66 8.72 8.63 8.69 8.65 8.64 8.70 8.66 8.62 

8.68 8.69 8.58 8.78 8.65 8.76 8.66 8.57 8.76 8.66 8.73 8.62 8.66 8.59 8.56 8.73 

8.66 8.70 8.70 8.66 8.60 8.62 8.70 8.67 8.65 8.65 8.57 8.81 8.69 8.67 8.65 8.69 

8.70 8.73 8.61 8.68 8.59 8.57 8.70 8.67 8.65 8.62 8.64 8.74 8.68 8.66 8.66 8.65 

 
The shape and scale parameter based on mean and standard deviation are found 259.1926 and 8.681957. The 

probability that process produce the weight of rubber edge on target (T = 8.7) at these parameters is found to be 
0.819, if beta is increased by 10 the probability becomes 0.826 and 0.813 by decreasing the beta to 10. These 
variations in probabilities justified the use of PCIs for the shape parameter of the Weibull distribution. 

Table 2 comprises the results of PCIs of Weibull shape parameter on four superstructures with sample sizes. 
Figure 3 shows graphical variation of sample size for each bootstrap sample of Pearn and Chan measure-

ments. 
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For the data set of Pearn and edge measurements if shape parameter which should be the function of weight 
selected by process designer increases the chance that process producer the rubber edge of speaker woofer driver 
on target might be increases for this case.  

4. Concluding Remarks 
In this research paper we are the first who discussed the PCIs based on shape parameter of Weibull distribution 
that have been disregarded always. The importance of shape parameter cannot be ignored in making a process 
behavior symmetrical or skewed. Some other non-normal distributions as Gumbel (EVI) or fatigue reliability 
distribution can also be assessed using this technique. In studying of estimating the PCIs for the shape parameter 
of Weibull distribution for the data sets (discussed in Section 3.1 and 3.2), we noted that the process stability 
depended on the parameters of the distribution. One can show that the annual minimum low flow as stable or in-
stable and the quality of woofer speaker as good or bad might be the functions of the magnitude of the shape 
parameter. We also observed that the size of the sample has no one-to-one influence on capability of a process. 
We used the three popular generalizations by Clements [12], Pearn and Kotz [14] and Pearn and Chen [29] pro-
posed for non-normal distribution to estimate the PCIs. Our task is to estimate the PCIs of the shape parameter 
of the non-normal distribution, but not to propose modifying the developed procedures for estimating PCIs. 

In studying of estimating the PCIs for the shape parameter of Weibull distribution for two data sets, we noted 
that the process stability also depended on shape parameters of the distribution. We also observed that the size of 
the sample has no significant effect on capability of a process.  

5. Application for Weibull Distribution 
This distribution provides the close approximation to the probability laws of many natural phenomena as esti-
mation of low flows, time to failure for an electrical and mechanical system(s), earthquakes or floods breaking 
strengths in censored or truncated situations and many more. Few examples are Lieblein and Zelen [32] investi-
gated fatigue life of ball bearing. Kao [33] characterized lifetime of electron tubes. Milkolaj [34] suggested en-
vironmental application on Beach tar deposition process. Piotrovskii [35] used Weibull distribution for drug 
molecules in vivo absorption times. Padgett and Spurrier [36] used Shewhart type control charts for strength dis-
tributions. Bracho [37] discussed the application of Weibull Model to describe the vacuum pulse osmotic dehy-
dration of sardine sheets. Basu et al. [38] discussed the strength distribution of certain structural ceramic and 
glass material using Weibull distribution. Guo and Wang [39] constructed the control charts for monitoring the 
Weibull shape parameter based on Type II censored sample.  
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