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Abstract 

Using KRİPKE semantics, we have identified and reduced an epistemic incompleteness in the me-
taphor commonly employed in Social Networks Analysis (SNA), which basically compares infor-
mation flows with current flows in advanced centrality measures. Our theoretical approach de-
fines a new paradigm for the semantic and dynamic analysis of social networks including shared 
content. Based on our theoretical findings, we define a semantic and predictive model of dynamic 
SNA for Enterprises Social Networks (ESN), and experiment it on a real dataset.  
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1. Introduction 

Social Networks Analysis (SNA) is an approach of graph-mining based on sociology and applied to social 
graphs, i.e. some graphs representing people and their social relationships, such as MORENO’s sociograms [1]. It 
integrates dynamic models based on the comparison of information flows to electric flows [2] [3], in order to 
improve SNA standard centralities introduced in [4] [5], for instance. As an example, the betweenness centrality 
of a node u  is a topological measure comparing the number of shortest paths connecting each pair of nodes (i, 
j) including u in a graph, to the total number of shortest paths in the graph. It is calculated for each node of a so-
cial network and the higher betweenness values indicate the leaders in terms of information sharing, within the 
studied social network [4]. Newer definitions of betweenness in [2] [3] are based on the idea that information 
doesn’t necessarily follow the shortest path between people, within a social network. These well-known defini-
tions in SNA are flow-based measures which compare the value of an edge to a resistance and compare a node 
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to an interconnection of resistances respecting the KIRCHHOFF’s point law and KIRCHHOFF’s mesh law. They use 
the point law to calculate the current output, based on the current input for each connected node, and so on fol-
lowing a random walk within social networks. [2] [3] centralities are implemented in most of the SNA applica-
tions and libraries (e.g., Pajek, NetMiner, Gephi—http://gephi.org) and recognized for the results they provide. 
However, 1) these models force all the resistances to be equivalent within the studied network, and 2) they omit 
the OHM’s law in the simulation of current flow distribution they entail, although KIRCHOFF’s laws are based on 
the OHM’s law. 

Since information flows and information sharing are recognized as key indicators in SNA, the semantics in-
trinsic to the shared content related to social networks (i.e., the endogenous content) has been studied, resulting 
in semantic SNA models. Semantic SNA attempts are sustained since a few years, with important contributions 
such as [6] and [7].  

While we were defining new semantic SNA models in line with the SOCIOPRISE project, funded by the French 
State Secretariat at the prospective and development of the digital economy [8], we had to accept various resis-
tances values within our model of social networks analysis. It has led us to identify a semantic incoherence in 
the interdisciplinary bridge-building between graph analysis and electrophysics commonly accepted in SNA. 
Our findings might also concern other application domains-e.g., traffic networks.  

This paper presents: (a) the demonstration of a semantic incoherence and its resolution in current SNA; (b) a 
socio-semantic graph structure based on (a) and entailing a metric of semantic tension for a social network; (c) a 
semantic and predictive model of dynamic SNA (patented model), dedicated to Enterprises Social Networks 
(ESNs). 

Our theoretical work is based on KRIPKE semantics. Our applicative work is dedicated to economic perfor-
mance and social climate optimization, and experimented in line with the SOCIOPRISE project. SOCIOPRISE was 
realized in partnership with the OpenPortal Software company, which provides French leading software solu-
tions for human capital management. 

In this paper, the Section 2 presents the principles and methods related to our contributions, encountered in 
SNA. Section 3 introduces our theoretical and epistemic contribution. Section 4 sums up the purpose of the 
SOCIOPRISE project and defines a skills network structure as a base for the experimentation of our theoretical 
contribution. Section 5 presents the predictive model of recommendations we define, based on knowledge engi-
neering and on the natural balance of electronic flows. Section 6 presents the results obtained with a real dataset 
in the context of the SOCIOPRISE project. Lastly, Section 7 presents the conclusions and perspectives of our 
work. 

2. Interdisciplinary Semantics 

The section sums up the main semantic principles and methods encountered in SNA models, from the socio-
grams presented in [1], to the latest outcomes in SNA for the Semantic Web presented in [9]. 

2.1. Graphs Analysis and Interdisciplinarity 

In [1], some social graphs named sociograms were introduced in sociology for the analysis of dynamic behavior 
in people groups. The graph theory and sociology were intuitively associated yet. Then in another domain, as 
electrophysics and graph theory evoked an epistemic equivalence, their interdisciplinary study enabled outcomes 
such as the demonstration of current flows unity and continuity in large graphs, established in [10]. 

Introducing electro-physical phenomenons in Social Networks Analysis, [2] [3] betweenness centralities im-
proves the standard betweenness centrality defined in [4]. Interdisciplinary bridge-building between SNA and 
electromagnetic force1 is useful to SNA models, but also to physics. For instance, in [11] physicians have re-
course to centrality measures so as to prevent defaults in electric power grids. Our theoretical work defines and 
experiments a semantic completion of the electro-physic metaphor commonly employed in SNA. 

2.2. Semantics of Endogenous Content 

An ontology is an explicit specification of a shared formalization. It represents the concepts, objects and other 
entities supposed to exist in an interest area, with their relationships [12]. Semantic SNA studies the conceptual 

 

 

1In modern physics, the electromagnetic force is one of the 4 forces enabling the creation of Universe. The 3 others forces are: gravitation, 
weak nuclear force and strong nuclear force. 

http://gephi.org/
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aspects of social networks. It is based on knowledge and ontology engineering coupled with SNA principles, 
and concerns the Social and Semantic Web [6]. Since [7], more and more works are published in the domain and 
various domains are waiting for innovative applications resorting to semantic SNA—e.g., collaborative enter-
prises, marketing, mobile and social apps.  

Basically, text analysis and mining produce a set of statistical models which provide a gateway between syn-
tactic and semantic levels in text analysis. The JACCARD index refinement defined in [13], improves the 
JACCARD’s measure of semantic similarity between terms and corpora. The standard Term Frequency (TF) 
measure introduced in [14], and the Inverse Document Frequency (IDF) defined in [15] are frequently improved 
as refinements of TF.IDF measures or so called, such as in [16]. Semantic SNA and ontology building benefit 
each other, as defined in [17] with a three-dimensional model crossing social graphs, annotations (tags) and 
consensual ontologies. The latest works in semantic SNA aim at making operational the outlines of SNA using 
ontologies and Semantic Web languages, and pave the way for statistical and semantic analysis of the Social 
Web [9] [18]. Our applicative work defines and experiments a structure of social graph based on the semantics 
of the endogenous content and dedicated to semantic SNA. It enables 1) to retrieve the communities and indi-
viduals sharing knowledge denoted by keywords, 2) to rank people activities within communities sharing com-
mon knowledge, and 3) to detect and to balance stress at work, based on the collective/individual knowledge use 
and on the knowledge commonly developed within an enterprise social network. 

3. Epistemic Equivalence 

Based on KRIPKE semantics [19], we have detected and resolved a semantic incoherence due to an incomplete-
ness of the electro-physic metaphor introduced in SNA to represent the information behavior in social networks 
[2] [3]2. 

Definition 1. In a KRIPKE model , ,M W R h= , W  is a set of worlds w , R  is a binary relationship of ac-
cessibility in W , and h  is a function representing all the propositions p  such as ( )h p true=  in all worlds 
w . The formalism 

w
M p⇒  means p  is true in the world 𝑤𝑤 of the model M .  

Definition 2. Some propositions are Kripke-satisfiable if it exists at least one world of a model in which they 
are true. A proposition is Kripke-valid if it is true in every world of every KRIPKE model, or in every world of a 
unique KRIPKE model. 

Definition 3. A proposition p is Kripke-equivalent to p′  if p p′⇔  in every world of every defined 
KRIPKE model, or in every world of a unique KRIPKE model. 

Let a proposition :Ω Ohm s law true=’   
and a proposition : Kirchhoff true Kirchhoff s lawsΚ Ω= ∧ ⇒’ ’s laws .  
Ω  means OHM’s law is respected and Κ  means KIRCHHOFF’s laws are respected and imply OHM’s law is 

respected. In the common world as in electro-physics, Κ  is true because KIRCHHOFF’s laws are based on the 
OHM’s law. 

Let e , possible world restricted to electrophysics and g , possible world restricted to graph theory. We de-
fine the KRIPKE model based on the electrophysical metaphor employed in SNA [3], such as , ,M W R h=  with 

{ },W e g= , ( ) ( ){ }; , ;R e g g e= . In this model, the propositions Ω  and Κ  are true in the world e , because 
OHM’s law and KIRCHHOFF’s laws are respected and dependant in electro-physics. 

In the world g , Ω  is false because OHM’s law is not respected in graph theory with M  based on [3], 
and Κ  is false because it implies Ω . 

We obtain the Equation (1), meaning Ω  and Κ  are true in the world e  of the model M , and (2) 
meaning Ω  and Κ  are not true in the world g  of the model M : 

,
e

M Ω Κ⇒                                    (1) 

! ,
g

M Ω Κ⇒                                    (2) 

Rightfully observing KRIPKE semantics, Ω  and Κ  are Kripke-satisfiable thanks to (1), but they are not 
Kripke-valid because of (2).  
Furthermore, releasing constraints by replacing Κ  with: 

 

 

2Our findings concern all graph analysis models entailing the Kirchhoff’s laws (not only SNA models). 
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: Kirchhoff s laws trueΚ =’  

is not sufficient to make it Kripke-valid, as long as Ω remains false in !
g

g M Ω ⇒ 
 

.  

Therefore, according to KRIPKE semantics, the demonstration of a semantic incoherence within the electro-
physical metaphor commonly employed in SNA is established.  

Finally, we introduce an epistemic completion resolving the semantic incoherence we have demonstrated.  
Making Κ  Kripke-valid comes to modify any h = ∅  in , ,M W R h= , such as ( ) ( ){ },h h hΩ Κ= . 

Pragmatically, making Κ  Kripke-valid only needs Ω  to be true in g . Once we have ( ) ( ){ },h h hΩ Κ=  
in our KRIPKE model, we have a Kripke-equivalence with Ω Κ⇔ , when Ω Κ⇒  is true3. 

3.1. Shared Knowledge and Stress at Work 

The linguistic Term Frequency metric TF is defined in [14] as the number of occurrences of a term t  divided 
by the number of terms in a document D . 

term TermsTF D D= ⊂ ⊂  

Regarding people within a social network platform/database, TF  quantifies the relative pregnancy of con-
sumed and/or produced knowledge, based on the written and/or read terms denoting knowledge in documents4. 
It provides a knowledge use intensity weighing the relationship(s) of people with knowledge. We name it se-
mantic intensity. The rarity of a term denoting knowledge is usually given by the linguistic Inverse Document 
Frequency metric IDF . 

TF  and IDF  are generally combined as a standard .TF IDF  metric. IDF  is defined in [15] as the 
number of documents divided by the number of documents containing a given term, in a corpus5. 

Corpus term CorpusIDF Doc Doc= ⊂ ⊂ ⊂  
We use IDF  to calculate the rarity of the terms denoting knowledge within the endogenous content of so-

cial networks. In our model of SNA, IDF  is coupled to TF  in order to weigh the connections between indi-
viduals and knowledge within social networks. 

In the context of the Socioprise project, we are interested in Enterprises Social Networks Analysis (ESNA). 
For a person in an ESN, we state stress at work increases in proportion to the knowledge use intensity and to the 
knowledge rarity. In other words, the semantic intensity metric combined to the rarity metric IDF  in a 

.TF IDF  factor provides an indicator of stress at work for ESNA. We are conscious of the triviality of such a 
simple factor compared to all the quantifiable or undefined causes of stress at work. However, it represents a 
plausible stress metric in the context of models respecting the epistemic equivalence that we have defined in 
section 3. Therefore, our model integrates an implementation of the BM25 formula defined in [16], considered 
as a state-of-the-art refinement of the TF.IDF based formulas according to [20]. 

3.2. Semantic Coherence 

Respecting our epistemic equivalence, we introduce the OHM’s law6 in , ,M W R h= . The semantic intensity we 
have defined in the world g , representing information/knowledge flows intensity based on TF , is equivalent 
to electronic flows intensity in the world e . 
THEOREM 1.  
Let  Ω Κ⇒ ,  

: .   in  U I R eΩ = ,  
stress .   in  TF IDF g≡ , 
then 

( ) ( ). .   in  TF I IDF R U TF R I IDF g≡ ⇔ ≡ ∧ ≡ ≡  

and 

 

 

3The Kripke model entails Ω Κ⇒  when Ω  is true in g . 
4We compare a digital resource within the social network to a document. 
5We do not consider noise words and stop words as terms denoting knowledge. 
6 .U I R= , meaning tension Intensity.Resistance= . 



C. Thovex, F. Trichet 
 

 
163 

. . stressTF IDF I R U≡ ⇔ ≡                    (3) 
Based on KRIPKE semantics, theorem 1 defines knowledge use intensity (i.e., the semantic intensity) coupled 

to knowledge rarity as a factor of stress in g  (possible world restricted to graph theory), and defines tension in 
e  (possible world restricted to electrophysics) as an equivalence to stress in g . 

Equation (3) represents the semantic equivalence between stress and electrophysical tension for interdiscipli-
nary graph analysis. 

PROOF.  
Introducing equation (3) in , ,M W R h=  as a new proposition such as : . . stressTF IDF I R Uϒ ≡ ⇔ ≡ , with g

M ⇒ϒ , we implicitly define 
g

M Ω⇒  (i.e., Ω  becomes true in g ). 
( ) ( ) ( ){ }, ,h h h hΩ Κ= ϒ , and equations (1) and (2) respectively turn into (4) and (5)7. 

, ,
e

M Ω Κ⇒ϒ                                  (4) 

, ,
g

M Ω Κ⇒ϒ                                   (5) 
ϒ , Ω  and Κ  are Kripke-satisfiable and Kripke-valid in M  thanks to h . Ω  and Κ  are 

Kripke-equivalent. 
Introducing the OHM’s law in the world g  thanks to ϒ , our theoretical approach defines (1) an epistemic 

equivalence resolving the semantic incoherence found in the electrophysical metaphor commonly employed in 
SNA; (2) a demonstration based on Kripke semantics, of the semantic equivalence between tension/intensity as 
electro-physic flows metrics, and stress related to information/knowledge flows in ESNs.  

Introducing the OHM’s law prior to the KIRCHHOFF’s point law in SNA, our epistemic paradigm improves the 
interdisciplinary bridge-building between information flows behavior and electronic flows behavior previously 
introduced in [2] and [3]. This theoretical contribution paves the way for graph-based applications taking ad-
vantage of electronic flow-based rules in graph theory, so as to discover further heuristics merging knowledge 
engineering and electrophysics in SNA. 

4. Socio-Semantic Networks 

We experiment our improvement of the interdisciplinary bridge-building between electro-physics and SNA. Our 
theoretical approach is applicable to various social graph structures. We apply it to a socio-semantic structure of 
social network. This structure that we name skills network, facilitates our applicative approach in order to make 
our theoretical contributions easier to perceive. It is defined below, after the presentation of our applicative pur-
pose. 

Our applicative objective is to define an innovative and decisional model based on dynamic and semantic 
SNA, which purpose is to foster the performance and to improve the social climate within workgroups. This 
model produces some visual indications and predictive recommendations for the performance optimization and 
the reduction of psychosocial risk, fostering the agile and skills-based work organization defined in [21]. Our 
experimentations aim at the discovery of multidimensional synergies between knowledge engineering and phys-
ical aspects of the analysis of Collaborative Enterprises Social Networks (CESN). We define a CESN as a hete-
rogeneous graphic structure, based on the numerical marks and contents available in enterprises information 
systems and representing collaborative relationships within enterprises. 

We define a hybrid graph structure, named skills network, which represents the studied CESN and the seman-
tic network induced by its endogenous dataset. The nodes of the semantic network represent the meaningful 
terms found in the endogenous content and indexed. The arcs of the semantic network represent some semantic 
relationships, such as synonymy and/or hyponymy, defined in a thesaurus or an ontology. In the context of the 
Socioprise project, we solely represent synonyms found in a predefined thesaurus, for each term denoting 
knowledge found in the endogenous content. Our theoretical findings provides a new heuristic for defining co-
herent semantic weighs within skills networks, which is going to be presented in Section 5.  

We have developed a skills network research system enabling the automatic building of skills networks based 
on keywords researches. These restricted networks are named skills networks on demand. They make know-
ledge communities and noticeable individuals accurately identifiable regarding seized keywords, with the help 
of SNA metrics. The Figure 1 shows an example of skills network on demand. 

 

 

7We do not study the possible uses of Equation (4), which semantics is coherent in e . 
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                       Figure 1. Basic structure of skills network on demand.            
 

The Figure 1 illustrates the result of a query on “Configuration, Server, Database”. It returns a skill networks 
entailing 31 individuals producing and/or consuming the 3 keywords and/or their respective related knowledge.  
For instance, John produces and/or consumes content in the domain “database configuration and settings”, while 
Mary produces and/or consumes content in the domain of “parameterizing server”. The figure only shows the 
skills network structure, and how it represents a part of the competencies of John and Mary related to the know-
ledge domain denoted by the keywords. 

In our current experimentations as in Figure 1, a skills network on demand comprises three types of nodes 
and four types of relationships8. The nodes are either of a type (1) keyword-Key knowledge (Kk), (2) term asso-
ciated to keyword-Relative knowledge (Rk) or (3) People (Pkr).  

The relationships are either of a type (1) Key knowledge/Key-knowledge, (2) Key knowledge / Relative know-
ledge, (3) People/Key knowledge or (4) People/Relative knowledge. 

The set of arcs ( ),akk Kki Kkj , making a unique circuit is named aKk . The relative knowledge makes a 
star-network around the nodes Kki  (Key knowledge), by the set of arcs 

( ), , ,aRk ark Rki Kkj aRk Rki Rk Kkj Kk∀ ∈ ∈ ∈ .  
An individual is associated to the key and/or relative knowledge present in the endogenous content with 

which he interacts. His interactions within the CESN are typed by two generic roles, production (P) and con-
sumption (C). The role P represents information flows produced by individuals and the role C represents infor-
mation flows consumed by individuals. An individual Pkr  is associated to a knowledge ( )Kki Rkj  if he pro-
duces and/or consumes a resource indexed by ( )Kki Rkj —e.g., document, annotation. 

5. A Graph Weighing Paradigm 

Within skills networks on demand, individuals act as flow producers and/or consumers, whilst keywords act as 
flow collectors. Our keywords-based and automatic process of skills networks building stands on a lexico-se- 
mantic indexation of the endogenous resources associated to individuals—i.e., the resources produced and con-
sumed by the enterprise members, through the collaborative software environment.  

First, we apply our theoretical approach thanks to a process propagating initial values calculated by the BM25 
formula, in respect to the OHM’s law and KIRCHHOFF’s laws. Our process enables to calculate values of seman-
tic tension/stress, semantic intensity and resistance for each element of a skills network, respecting the epistemic 

 

 

8Types and number of relationships can change depending on the semantic referential used for skills graph automatic building. 
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paradigm we introduce. Then, we define a predictive recommendation model based on a retro-propagation 
process and on the natural balance of electronic flows. 

5.1. Lexico-Semantic Research 

Skills networks on demand are automatically built depending on keywords. They use a lexico-semantic research 
service requiring indexation of the endogenous content. The enterprises corpora being usually consequent, for 
their semantic indexing, we momentarily reject the hypothesis of rich (and time-consuming) ontologies built by 
the experts. The software architecture deployed in the context of Socioprise comprises 1) lexical analysers for 
French and English language, 2) noise words lists, 3) French and/or English thesaurus, and 4) some multilingual 
full-text indexing-search services. It supports about 50 languages and remains quickly adaptable to various da-
tasets.  

In our main experimentation with a French corpus, the noise words list and the thesaurus are simply built us-
ing French lexicons and synonyms dictionaries. This part of our indexation and research process could be im-
proved with specialized dictionaries, ontologies and/or domain-specific thesauri such as SKOS thesauri9, in or-
der to provide more relevant skills networks on demand. 

Thanks to the BM25 formula integrated in our experimental architecture, we are in measure to calculate val-
ues of production Pv  and/or consumption Cv  for each triplet (term; document; individual) within a skills 
network. Each pair (term; individual) is represented by a pair of symmetric arcs within skills networks, which 
are respectively weighed with the sum of Pv  and the sum or Cv  calculated for all the documents produced 
and/or consumed by the individual. Costs and execution times are distributed between indexation phase and re-
search phase, in order to meet the general performance and scalability requirements imposed in the context of 
the SOCIOPRISE project.  

5.2. Interdisciplinary Rules of Flow Distribution 

The Kripke model defined in Section 3 provides an epistemic equivalence between graph theory and electro-
physics, based on the coherence of OHM’s law and the KIRCHHOFF,’s point law and represented in Equation (3). 
It introduces a rational improvement of the interdisciplinary paradigm defined in [2] [3] and commonly accepted 
in SNA. 

Within skills networks, a person kPkr  produces and/or consumes knowledge in several documents. For a 
same term, each relation of the person to a single document owns a .TF IDF  value, calculated with the BM25 
formula [16] [20]. The sum of all the .TF IDF  values gives the production and consumption weighs respec-
tively to the pair of symmetric arcs connecting an individual to a term, denoting produced/consumed knowledge. 
According to our epistemic paradigm, this weigh is named semantic tension Ts . 

For a same term denoting knowledge, the IDF  part of the semantic tension Ts  is constant in the endo-
genous content, due to the definition of Inverse Document Frequency. According to Equation (3), IDF  is 
equivalent to R  that we name semantic resistance, and TF  is equivalent to the semantic intensity Is intro-
duced in Section 3.1. 

Based on the values Ts U≡ , Is I≡  and IDF R≡  weighing the arcs connecting individuals to knowledge, 
we define a propagation process respecting the OHM’s law and the KIRCHHOFF’s point law. Pragmatically, our 
process respects the rules corresponding to current distribution in parallel and/or serial group of resistances. 

For instance, the total resistance TR  of a group of n  parallel resistances R  is formalized by the equation 
(6). Equation (7) formalizes the generic Equation (6) applied to the arcs connecting individuals ( )k nPkr Pkr  

to a single term denoting relative knowledge jRk  , such as illustrated in Figure 2 (cf. Section 4): 

1

1
1n

kk

TRpa
R

=

=
∑

                           (6) 

( ) ( )1

1,
1 ,

k j n
k k jk

TR Pkr Rk
Rapkr Pkr Rk

=

=
∑

                       (7) 

 

 

9Simple Knowledge Organization System (SKOS) is a re-quest for comments (W3C) specific to multilingual thesaurus management. 
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                                 Figure 2. Graphic component as parallel resistances. 
 

Let ( ),k k jIapkr Pkr Rk , semantic intensity in an arc connecting an individual kPkr  to a term denoting rela-

tive knowledge jRk . Resistances in serial groups add each other, hence the local tension 

( )( ),j iLT akr Rk Kk  in an arc connecting jRk  to a keyword iKk  is defined by the Formula (8). 

( ) ( ) ( )( )1 , . , ,n
k k j k j j ik Iapkr Pkr Rk TR Pkr Rk Rakr Rk Kk

=
+∑    (8)  

Formula (8) defines how the intensity produced and/or consumed in a group of parallel resistances is collected 
and converted to tension in a serial-parallel component such as illustrated in Figure 3. 

 

 
                           Figure 3. Serial-parallel component.               
 
( )iI Kk , total intensity collected by a keyword, depends on the distribution of intensity in a hierarchy of 

groups of serial-parallel resistances which depth is 1 or 2, such as illustrated in Figure 4. 
 

 
                          Figure 4. Parallel hierarchy of components.           
 
For m  arcs ( ),j iark Rk m Kk , ( )iI Kk  is defined by the Formula 9. Let ( ),k k jTI Iapkr Pkr Rk= : 

( ) ( )
( )1

,
,

,
j im

j ij
j i

TR Rk m Kk
LT Rk Kk

R Rk Kk=

 
 
 
 

∑


                       (9) 

In the Formula (9), all the arcs connected to a node iKk  are processed as a group of parallel resistances, in 
which the intensity of an arc depends on the inverse proportion of its resistance compared to the total resistance 
of the group. Formulas (8) and (9) enable to weigh skills networks on demand based on semantic hierarchies 
endowed with varying depth. 
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5.3. Balanced Tension Core Values 

THEOREM 2. 
KIRCHHOFF’s mesh law: 
Let a mesh defined by the points ( ), ,A B C , then 

( ) ( ) ( ) 0U AB U BC U CA+ + =  

Within skills networks on demand resulting from multiple keywords queries, we note ( ),iGC Kk aKk  the 
mesh representing the core of the network, where aKk  represents the set of symmetric pair of arcs connecting 
the nodes iKk cf−  (Figure 1 and Figure 5). In order to verify the mathematical validity of our model, we 
calculate the semantic tension within a mesh ( ),iGC Kk aKk  of n  nodes. With 1n > , based on the produced 
and consumed tension of each node, ( )U AB  is the difference of potential between the produced tension Tps  
and the consumed tension Tcs  of the pair of nodes ( ),A B . 

We state the arcs in aKk  have the same resistance, in order to simplify the calculus and to define, in accor-
dance with electrophysics: 

( ) ( )( ) ( )( ) ( )( ) ( )( )1 1 1 1U AB Tps A n Tcs B n Tps B n Tcs A n= − − − + − − −  
All the meshes we have experimented with skills networks comprising up to 5 nodes rightfully observe the 

Kirchhoff’s mesh law and confirm the accuracy of our propagation process. 

5.4. Balanced Intensity Core Values 

THEOREM 3. 
KIRCHHOFF’s point law 

The sum of incoming current intensities in a node is equal to the sum of outgoing current intensities. 
  Each node iKk  of the mesh ( ),iGC Kk i aKk  verifies the KIRCHHOFF’s laws by the produced flow or the 
consumed flow it collects. However, produced flows are not necessarily equal to consumed flows. Regarding 
our epistemic paradigm, the balance between produced and consumed tension within skills networks represents 
an optimal state, in terms of performance and stress at work. Smoothing the difference between produced and 
consumed tension without changing the total intensity (i.e., the collaborative activity) within skills networks 
comes to optimize the stress and activity distribution, in respect to individual knowledge and knowledge com-
munities. In the paradigm we define, tension value depends on knowledge use intensity (i.e., semantic intensity) 
and on knowledge rarity (i.e., semantic resistance). Respecting our paradigm, we don’t act on semantic resis-
tance, because it represents a factor difficult to control and to manage in an enterprise. Semantic resistance is 
constant for each arc of a given skills network. Therefore, semantic intensity enables to indirectly act on tension 
(i.e., on stress at work, in respect to our paradigm). Semantic intensity represents a factor easy to manage in an 
enterprise. 

Thus, we define a principle for smoothing tension, based on the average intensity value within 
( ),iGC Kk i aKk . It produces Ip Tc= , where Ip  is the total produced intensity and Ic  is the total consumed 

tension. In Figure 5, we present a simulation of produced/consumed tension balanced in a three-keywords mesh.  

 

 
                Figure 5. Balancing a three-keywords mesh.                              
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Figure 5 shows how balanced values Ip  and Ic  are calculated, thanks to the average intensity deduced 
from the initial values iIps  and iIcs . The balance conserves the total intensity within the mesh (i.e., 1450 + 
1380 = 1415 × 2) and still respects the KIRCHHOFF’s mesh law. We use the balanced values to initialize a 
process of retro-propagation rightfully respecting the theoretical model implemented for propagation-cf. Section 
5.2. 

5.5. A Natural Load-Balancing Recommendation 

We use a propagation process to collect semantic values produced and/or consumed within skills networks on 
demand. The process respects the epistemic paradigm we define in dynamic Social Networks Analysis, and im-
plements the OHM’s law and KIRCHHOFF’s laws. Semantic values are collected by the keywords representing the 
core of skills networks on demand, and production/consumption flows are balanced depending on an average 
value, respecting our epistemic paradigm.  

The retro-propagation of new balanced values, from the core to the extremities of the studied skills network, 
produces balanced semantic values to be compared to the initial values, for each element within the network. 
Theoretically, the balanced values represent the optimal stress and activity distribution, in respect to individual 
knowledge and knowledge communities-i.e., a dynamic and predictive recommendation. 

Figure 6 presents a simulation of our process, showing initial and balanced values calculated thanks to our 
model. The electric circuit at bottom-left in the figure shows the corresponding circuit implemented in an elec-
tronic solver, so as to verify the accuracy of our model.  

 

 
Figure 6. Initial and balanced semantic weights.                                                        

 
Our retro-propagation process isolates dependant sources of intensity, to avoid a useless recursive complexity. 

Excepting this, it rightfully respects the electronic distribution rules in serial/parallel circuits. This represents a 
significant improvement of the analogy between networks flows and current flows, since the works of [2] and 
[3]. 
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6. Predictive Recommendation 

The corpus we use in line with the Socioprise project stems from a real business process, supported by a 
workflow application running over a relational database. The studied dataset comprises about 250 000 com-
mented steps, regarding 33,000 entries-i.e., some initial actions of entry in the workflow. These entries comes 
from about 540 persons and are carried through issues by 80 collaborators. Entries and steps comprise various 
textual metadata and comments.  

We generate skills networks automatically built from a research with the French keywords “validation, mes-
sage, erreur”. In Figure 7, we present our predictive model of recommendations with 4 illustrations in which the 
networks are disposed in space thanks to the same algorithm (i.e., a Force Atlas 2 spatialization algorithm). The 
color gradient at the center of the picture represents the values amplitude, from blue to red for minimum to 
maximum values.  

In Figure 7, the graphs at the left are coloured and dimensioned depending on the difference of produced mi-
nus consumed semantic intensity, at the top, and of produced minus consumed tension, at the bottom. The graphs 
at the right of the picture are colourised and dimensioned depending on the difference of balanced intensities 
produced minus consumed, at the top of the picture, and of balanced tension produced minus consumed, at the 
bottom10. 

Figure 9 presents the distribution of the balanced values of the arcs of our experimental skills networks, for 
the graphs at the left of the picture 7. 

Figure 8 presents the distribution of the balanced values for the arcs of the studied network. Visualizing the 
weighed networks illustrated in Figures 7-9, we note that: 

1) intensities are stronger than tensions, for both the initial and the balanced values—i.e., warmest colours in 
Figure 7 and level of the mean values in Figure 9; 

2) initial values are more sparse than balanced values—i.e., less population in initial mean values, cf. Figure 
9 and colour temperature in Figure 7; 

 

 
  Figure 7. Predictive recommendation—real dataset.                                                         

 

 

10The calculated values are normalized in ℝ so as to be loaded in a graph visualization software—i.e., Gephi, http://gephi.org  

http://gephi.org/
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Figure 8. Initial values distribution.                                                                        
 

 
Figure 9. Initial values distribution.                                                                         
 

3) the balanced tension values don’t present hot spot (cf. node“Utilitaire Compile”) and are strongly 
redistributed around the average level-cf. nodes colour and dimension in the graph Predictive 𝑇𝑇𝑇𝑇 − 𝑇𝑇𝑇𝑇, 
Figure 7 and curve at the center of Figure 8. 

4) maximums are lower for balanced values than for initial values, about 5 times lower for the intensity 
values and 60 times lower for the tension values-cf. vertical scales and curves in Figure 8 and Figure 9; 
average values are lower for the balanced values than for the initial values, about 2,5 times lower for the 
intensity values and 14 times lower for the tension values-cf. vertical scales and curves in Figure 8 and 
Figure 9. 

5) average values are lower for the balanced values than for the initial values, about 2,5 times lower for the 
intensity values and 14 times lower for the tension values-cf. vertical scales and curves in Figure 8 and 
Figure 9. 

Studying the skills networks presented in Figure 7, we have begun to identify visual and interesting 
particularities. For instance, within the initial networks, the keywords “erreur” and “message” appear as main 
activity and tension sources whilst “erreur” concerns much more collaborators than “message”-cf., Figure 7. 
The overall recommendation exhibited by the balanced networks seems to make sense, whilst it foresees 
intensity increasement about “message”, and it foresees the tension decreasement of the electronic account 
“Utilitaire Compile”, counterbalanced by the increased number of collaborators working about “message”.  

Concerning the biggest “hot” spot appearing in the initial weighed networks, which corresponds with a 
generic account shared by various collaborators (i.e., node Utilitaire Compile), we observe an unexpected 
particularity. The spot disappears in the predictive recommendation and a new red coloured group appears, 
related to the keyword “message”.  

We have been positively surprised when retrieving most of the individuals who used the shared account 
within the new recommended group, although there was absolutely no explicit information associating these 
individuals to the shared account in the studied database. We also have noticed two related knowledge exhibited 
by the initial tensions weighs and denoted by the terms “lettre, faute”-trad., “letter, fault or default”. The 
relevance of synonyms in our example could be improved using better semantic referentials (cf. Section 5.1), 
however these terms possibly represent a recommendation for social capital management within the studied 
workgroup.  

 

 

11We have not yet proofed this particularity as a result of the regular behavior of the model. 
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Our experimentation shows that at constant total intensity, predictive recommendation decreases the tension 
values within the studied skills network. According to our epistemic paradigm, the recommendation resulting 
from our predictive model is susceptible to foster the performance of workgroups and the amelioration of social 
climate. 

According to the experts, the dynamic model of predictive SNA we have defined produces 1) a principle of 
reduction of the tension/stress at work, 2) some precise indications for training management (training plan), and 
3) some recommendations for human and social capital management—e.g., employs and careers management 
and development. The validity of these outcomes is confirmed by the experts in Human Resources Management 
(HRM) and in Human Capital Management (HCM) involved in the SOCIOPRISE project12. The first results 
presented reveal numerous indications and recommendations looking propitious to the amelioration of perfor- 
mance and social climate, but they still need to be studied in order to release more easy-to-understand in- 
dications. 

Future applications of the SOCIOPRISE project have been presented in a large professional event (Human 
Resources 2012, Paris-France), and a new project has been studied. It is based on the development of spanning- 
tree and graph factorization models aiming at the production of innovative end-user software. 

7. Conclusion and Perspectives 

Based on KRIPKE semantics [19], we have detected and reduced a semantic incoherence due to an incomplete-
ness of the electro-physic metaphor commonly employed in Social Network Analysis. Our theoretical approach 
defines an epistemic paradigm applicable to various social graph structures. We apply it to a socio-semantic 
structure of social network named skills network on demand, which contributes to semantic and dynamic SNA 
and makes our theoretical findings easier to perceive.  

From an applicative standpoint, our epistemic paradigm produces first a metric of stress at work based on in-
dividual/collective knowledge and on spontaneous numerical activity, which bias might be lower than ques-
tions-based surveys. Based on our epistemic paradigm, we define a semantic and predictive model of dynamic 
SNA for Enterprises Social Networks, experimented with a professional dataset (patent). Its application to social 
capital management helps in fostering psychosocial risk reduction, professional well-being and overall, peaceful 
social climate. 

From a theoretical standpoint, the metaphysic approach we develop paves the way for electrodynamics and 
thermo-dynamics metaphors in graph models, possibly resulting in future dynamic SNA measures. The applica-
tive perspective of our findings can extend to various interdisciplinary applications based on graph theory. 

Categories and Subject Descriptors 

H.1.0 [Information Systems Applications]: Models and Principles, General; M.4 [Knowledge Management]: 
Knowledge Modeling; K.4.2 [Computing Milieux]: Computers and Society, Social Issues. 

General Terms  

Social Networks Analysis, Semantics, Modal Logic, Knowledge Engineering. 
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