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Abstract

In this paper we construct optimal, in certain sense, estimates of values of linear functionals on
solutions to two-point boundary value problems (BVPs) for systems of linear first-order ordinary
differential equations from observations which are linear transformations of the same solutions
perturbed by additive random noises. It is assumed here that right-hand sides of equations and
boundary data as well as statistical characteristics of random noises in observations are not
known and belong to certain given sets in corresponding functional spaces. This leads to the ne-
cessity of introducing minimax statement of an estimation problem when optimal estimates are
defined as linear, with respect to observations, estimates for which the maximum of mean square
error of estimation taken over the above-mentioned sets attains minimal value. Such estimates
are called minimax mean square or guaranteed estimates. We establish that the minimax mean
square estimates are expressed via solutions of some systems of differential equations of special
type and determine estimation errors.
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1. Introduction

The theory of finding estimates of solutions to stochastic differential equations has been intensively developing
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since the classical works of Kalman and Bucy [1] [2]. This theory found numerous applications in the treatment
of the results of experiments in physics, biology, medicine, and many other areas of science and technology.
Such successful and broad applications are explained by the fact that Kalman-Bucy methods provide differential
equations for optimal mean square estimates which can be solved numerically in the real-time mode. At the
same time, it should be noted that Krasovskii and Kurzhanskii proposed in [3] [4] an alternative approach to es-
timating the solutions of differential equations where perturbations and inaccuracies of additional data about so-
lution were not known and the only thing given was that they belong to a certain domain.

Let us formulate a general approach to the problem of minimax estimation. If a state of a system is described
by a linear ordinary differential equation

dx(t)
dt

= AX(t)+Bv, (t), X(t))=X,,

and a function y(t) is observed in a time interval [t,,T], where y(t)=Hx(t)+v,(t), x(t)eR",
v, eR", yeR", and AB,H are known matrices, the minimax estimation problem consists in the most
accurate determination of a function x(t) at the “worst” realization of unknown quantities (X,,v(-),V, (-))
taken from a certain set. N.N. Krasovskii was the first who stated this problem in [3]. Under different constraints
imposed on function v, (t) and for known function v, (t) he proposed various methods of estimating inner
products (a, x(T)) , where aeR", inthe class of operations linear with respect to observations that minimize
the maximal error. Later these estimates were called minimax a priori or guaranteed estimates (see [3] [4]).

This theory was further developed in the works of Chernous’ko, Pshenichnyi, Kuntzevich, Nakonechnyi,
Kirichenko, Podilipenko, and their disciples; one may refer e.g. to [4]-[10] and the bibliography therein.

We note that the duality principle elaborated in [3] [4], and [5] proved its efficiency for the determination of
minimax estimates [5]. According to this principle, finding minimax a priori estimates can be reduced to a
certain problem of optimal control of a system; this approach enabled one to obtain, under certain restrictions,
recurrent equations, namely, the minimax Kalman-Bucy filter (see [5]).

The essential results within the frames of H_ -theory are obtained in [11].

In this paper, we study estimation of solutions of boundary value problems (BVPs) for ordinary differential
equations at fixed points of interval from additional data about their solutions. Such settings may be considered
as inverse problems when additional data are given with errors. We assume that these errors are random with
unknown correlation functions. Similar problems arise in data processing of observations of the objects or
processes described by BVPs for ordinary differential equations with unknown perturbations of the right-hand
sides or boundary conditions. We solve the estimation problems using guaranteed linear estimates that minimize
maximal mean square estimation errors. It is shown that optimal guaranteed estimates are expressed via solu-
tions to special BVPs for ordinary differential equations.

2. Preliminaries and Auxiliary Results

Assume that it is given a vector-function f (t) :(fl (t), f,(t),- f, (t))T with the components belonging to

m n-m

T T
space L*(0,T) and vectors f, :(fl(o), £0,..., f(o)) eR™ and f, :(fl(l), £, £ ) eR"™. Consider
the following BVP: find a vector-function ¢(t)=(g,(t).¢,(t)..¢, (t))T e(Hl(O,T))n that satisfies a sys-
tem of linear first-order ordinary differential equations

L;o(t)z(jj—f+A(p:f(t), te(O,T),L=%+A, (0.1)

almost everywhere on an interval (O,T) and the boundary conditions
BOgD(O): f,, Bl(p(T): f, 0.2

atthe pointsOand T.Here A=A(t) isan nxn matrix with the entries a; =a; (t) continuouson [0,T];



Y. Shestopalov et al.

T

dw(t):£d¢l(t) do, (t) dcon(t)], B, ={o%}, r=im s=in and B={o¥}, r=In-m

dt dt ' dt 7 dt

s=1n, are mxn and (n—m)xn matrices of rank m and n-m, respectively; upper index T denotes
transposition of a matrix or a vector and the upper bar throughout the whole text of the paper that e.g. index r

takes all values from1to n—-m; Hl(a,b) is a space of functions absolutely continuous on [a,b] for which

the derivative that exists almost everywhere on (a,b) belongs to space L (a,b); and
n times

(H*(0.T))" =H*(0.T)x---xH*(0,T).

The problem of finding a function ¢(t) that satisfieson (0,T) the equation

—d‘zgt) +Ap(t)=0 (0.3)

and the boundary conditions
By¢(0)=0, Bp(T)=0 0.4)

will be called the homogeneous BVP corresponding to BVP (0.1), (0.2).
The solution ¢(t) =0 to homogeneous BVP (0.3), (0.4) is called the trivial solution.

BVP (0.1), (0.2) can be written in a scalar form:

@ (t)"' a0, (t)+ a, 0, (t)+"'+ &Py (t) =1 (t)’
03 (1) + a0, (1) + 3,0, (t)+ - +a,e, (t) = f,(t),

(0.5)
01 (0)+ 201 (1) 250 1)+ 2,0, ()= 1, (1),

U, (p)= Y00, (0)= £, i=Tm, 06)

=

Ui (0)= Y00, (T)= 9, i=1n-m
o
Let

0" (0)=(o" (1). 4" ()0 (1) . i=1im (0.7)

be a fundamental system of solutions to (0.3) (for the definition, see e.g. [12] p. 179). Then the solutions to (0.3),
(0.4) have the form

p(t)= Cl(p(l) (t)+ ngo(z) (t)+-+ Cngo(") (1),
where, by virtue of (0.4), constants c,,c,,---,c, must be such that
cU, ((p(l) ) +c,U, (¢(2) ) +etc U, ((p(”) ) =0,

cU, (go(l) ) +c,U, (¢(2) ) +-+cU, ((o(n) ) =0, 08)

cU, ((p(l))+c2Un (40(2))+~-'+CnUn (¢<n>): 0

Thus, if the matrix
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(0.9)

06") o) - )

has rank n, the homogeneous BVP has only the trivial solution. The inverse statement is also valid: if the

homogeneous BVP has only the trivial solution then the rank of matrix (0.9) equals n (see, for example [13]).
Assume in what follows that homogeneous BVP (0.3), (0.4) corresponding to BVP (0.1), (0.2) has only the

trivial solution or what is the same that matrix (0.9) has rank n. As is known [13], under this assumption, ini-

tial BVP (0.1), (0.2) is uniquely solvable at any right-hand sides f(t)=(f,(t),f,(t),-,f, (t))T,
T T
fo=( £, 1% £0) eR™ and =17, £ 1) e R
Formulate the notion of a BVP conjugate to (0.1), (0.2). To this end, introduce the following designations:
E, is the kxk unit matrix; O, is the kxr null matrix; BOlz{b(.O)}, r=1m, k=1m, is a square

nondegenerate mxm submatrix of the matrix Boz{b(o)}, r=1m, s=1n; Bozz{b(o)}, r=1m,

rs ]

I=Ln-m, isan mx(n—m) submatrix of B, obtained as a result of deleting in B, all columns of matrix

By, (S0 that {ji,+, jom} =1L~ NP\ {ipse ey }); éoz(—Bgz(BOTl)_l,En_m) is an (n—m)xn matrix such

that its i, th column equals k th column of matrix —BOTZ(BOTl)_l (its size is (n—m)xn), k=1m, and jth

: -1 : .
column equals Ith column of matrix E,_,, I=1,n-m; B, :((BOTl) ,Om,nfm) isan mxn matrix such that

-1 -
its i, th column equals k-th column of matrix (BOTl) , k=1m, and j th column equals Ith column of

matrix O I=1Ln-m; B, :(Onfm,m,Enfm) isan (n—m)xn matrix such that its i, th column equals

m,n-m?

kth column of matrix O k=1,m, and j th column equals Ith column of matrix E, ., l=1n—-m.

Introduce more similar notations: Bllz{b,(ilg}, r=Ln-m, k=Ln-m, is a square nondegenerate
(n—m)x(n—m) submatrix of the matrix Bl={b(l)}, r=Ln-m, s=1n; Blz={b(l)}, r=1,n-m,

rs rjf

I=1m, isa (n—m)xm submatrix of the matrix B, obtained as a result of deleting in B, all columns of

matrix By, (so that {j/,--, jn}={L---,n}\{il,-- i, .} ); E@lz(—Bsz(BlTl)fl,Em) is an mxn matrix such

107 lhem
-1
that its i, th column equals kth column of matrix —BlTZ(BlTl) (the size of the latter is mx(n—m)),

k=1,n-m, and j th column equals Ith column of matrix E,, |=1m; Elz((BlTl)fl,Onfmym) is an

(n—m)xn matrix such that its i, th column equals kth column of matrix (Bfl) , k=Ln-m, and j/th

column equals Ith column of matrix O

n-m,m?

I=Lm; B =(0,,.E,) isan mxn matrix such that its i
th column equals kth column of matrix O k=1Ln-m, and j/th column equals Ith column of matrix

E, I=1m

m,n—-m?

m?

By
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we will denote the inner product of vectors u:(ul,m,uN)T and v=(vy,-,Vy )T in the Euclidean space R".

Then, if (t) = (v (t),.w, () €(H*(0.T)) we have
[ (Lo(t).w (1)), dt:jg(dgg—ft)Jr Ago(t),w(t)) dt
:E(d(ﬂ() ,,,(t)J dt+ [T (Ap(t).p (1)), dt

=(o(T)w (1)), ~(0(0).w(0)), + [ (0(0). L (1),
where the differential operator

L'=——+AT

will be called formally conjugate to operator L.
Let us show that the term (¢(T ),y (T)) —(¢(0

(v (T).e(T)), ~(v(0).0(0)), =(

), V’(O))n in (0.10) can be represented as
By (T).Bwp(T)), , +(Bw(T).Bip(T))

( Boy (0), Bo¢’(0)) _(éov/(o)'éo(/’(o))n_m-

m

Note first that
ZZ_lbf”% )] [Xi.b', (0)+ Z.l A )J
By (0) = : - = Bygl” (0) + Bpe” (0),
Zq =1 q ( ) Z::lbf(ﬂ?z(pik( )+Z|:1 mj|¢j|( )
where
¢, (0) ?,(0)
0= ¢ | (0=

2, (0) ?ir0 (0)

Then ¢ (0) = By Byp(0) - ByiBye!” (0), and
(v(0),9(0), = (L (0).4” (0)) +(v¥"(0).6"(0))
(V/ 0) 801180(0(0)) _(1//( )(O) Bos Boz¢zo)(0))m+(‘//

©) o)
1 m 2
= (B (0),B, ( (81) ) +(V,§0) 0).6(0)),

L (B1) O 9007 (0)] +((OrnamEva ) (007 (0)

oV/ n T
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where (0) and ) (0) are vectors composed of components of vector  (0) with the numbers equal
to the numbers of components of vectors ¢!”) (0) and o (0), respectively. Taking into account that

(_B(-)rz (B(;rl)_l 'On—m,n—m ) + (On—m,m' En—m ) = (_B(;I—Z (B(-Jrl)_l ’ En—m ) = éo!

we have

Analogously
(v (T)e(T)), =(Bw (T).Bio(T)), , +(Bw (T).Beo(T)) .
These two equalities yield representation (0.11); using the latter and (0.10), we obtain
[; (Lo(t)p (1), 6t =By (T).Bo(T)), , +(Bu (T).Bo(T))
~(Byw (0), Bye(0)), ~(Bow (0). By (0)) _+ ], (1), Ly (1)),

In order to write the sum of the first four terms on the right-hand side of (0.12) in a scalar form, introduce the
following notations:

(0.12)

Un+1 ((D) Z:zlﬁl(c?)q)q (O)
. |=Bw(0)= f ! 013
Uz () > B2, (0)
Uy (9) > B, (T)
o =Bems ) 049
U 2n ((D) Z:zlﬁrgl)qwq (T)
Von (‘/’) 22:15130)% (0)
- |=Bp@= 2| 015
V2n—m+l (l//) Zgzl Err(10t?)|!//q (O)
Varm (V) 22:151511)% (T)
N L UN 010
Vn+1 (l//) Zgzlan(f)m,ql/jq (T)
A (V/) 22:161(3)% (0)
e | 017
Vm+l (l//) 22:16&)"]&1//(] (0)
Vo)) b ()
=B 019
Vi(w) Zzzlbrgwl,)q'//q (T)

Then the Equality (0.12) can be written as
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I (Lo(t).p (1), de= ] (o(t). Ly (1)),
1 (q’)VZn (‘//) ((/’)Vanl (‘/’)_"’_Um (¢)V2n—m+l (‘//)
+Um+1(€0)V2n (¥)+Une2 (@)Varma (W) +-+U, (@) (v) (0.19)
“Uoa (0)Va () =Upz (0)Voa (w) =+ =Usn 1 (0)Vina (w)
+U 0 mi (‘P)Vm ( )+U2n—m+2 ((/))Vm—l ('//)+ Uy, ((/7)\/1 (‘//)

Now we can introduce the notion of the adjoint BVP.
Definition 2.1 The homogeneous BVP

Ly (t)=0, te(0,T), (0.20)

Bw (0)=0, By/(T)=0, (0.22)

is called adjoint to homogeneous BVP (0.3), (0.4).
Definition 2.2 The inhomogeneous BVP

Ly (t)=f(t), te(0,T), (0.22)
By (0)=f,, By (T)=1, (0.23)
where f e (L2 (O,T))n, f,eR™™, f e€R", is called adjoint to inhomogeneous BVP (0.1), (0.2).
The results contained in [13] [14] imply that the following statement is valid (for more detailed explanations
see [9], pp. 9-11).
Theorem 2.1 If homogeneous BVP (0.3), (0.4) has only the trivial solution, then the corresponding adjoint
BVP (0.20), (0.21) also has onIy the trivial solution ang mhomogeneous BVP (0.22), (0.23) has one and only
one solution y/e(H (OT)) atany f(t)e (LZ(O T)) , f,eR™, f eR".

3. Statement of the Minimax Estimation Problem and Its Reduction to an Optimal
Control Problem

Let a vector-function
y(t)=H(t)e(t)+&(1), (0.24)

with the values from the space R' be observed on aninterval («, )< (0,T); here H(t) isan Ixn matrix
with the entries that are continuous functions on [a, ﬁ], and f(t) eR' is an unknown random vector process
whose realizations enter observations (0.24).

Denote by V the set of random vector processes &(t) with zero expectation E§ (t) and second mo-
ments ch(t)2 integrable on («, ) such that their correlation matrices R(t,s)=EE(t)&"(s) satisfy the
inequality

{ :["sp[Q(1) tt)]dt<gl} (0.25)

where Q(t) is a positive definite matrix of dimension Ix1, the entries of Q(t) and Q*(t)
on [a,,B], g s agiven positive number, SpB = Z _b; denotes the trace of the matrix B =
Set

are continuous
{b},

i j=1"
G:{If:z(f f, f())eR’“xR"’"‘x(Lz(O,T))n:(Qo(fo—fo(o)),fo—fo(o))
" (0.26)
+(Q1( f, - fl(O)), f,—£© )n_m +J'0T(Qz (t)( f(t)- (t)) f(t)-© (t))n dt < 52},
where % eR™ £ eR"™™ are given vectors; f© e(LZ(O,T))n is a given vector-function; Q,, Q,
and Q, (t) are positive definite matrices of dimensions mxm, (n—m)x(n—m), and nxn, respectively,

the entries of Q,(t) and Q,*(t) are continuouson [0,T], &, isa given positive number.
Assume that the right-hand sides f() f,, and f of Equation (0.1) and boundary conditions (0.2) are
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not known exactly and it is known only that the element F = ( fo. i, f ()) belongs to aset G and, addition-
ally, §(t) eV. Further we also will assume, without loss of generality, that in (0.25) and (0.26) & =¢, =1.
Let a vector-function ¢(t) be a solution to BVP (0.1), (0.2).
We will look for an estimation of the inner product

(ao(s)), (0.27)

in the class of estimates linear with respect to observations that have the form
(2p(s)), = [ (u().y(1)), dt+c

(0.28)
= f,(ul (), y(1)), dt+jf(u2 (t),y(t)), dt+c,

u,=u| . ,and ¢ is

where se(a,f)' and a is a vector belonging to R", u e(Lz(a,ﬂ))l, u o)

1= u|(a,s) !
certain constant. Then u=(u;,u,)eH :=(L2 (o:,s))I x(L2 (s,ﬂ))I =(L2 (a,ﬂ))l :
Definition 3.1 An estimate

j dt +C
=j dt+j G, (t),y(t)), dt+¢
for which vector-function G(t)= (0, (t),d (t)) and constant ¢ are determined from the condition

inf_o(u,c)=0(0,¢),

ueH,ceR
where
2
o(uc)= sup Efa,@(s)) —(a(s)),| .
FeG feV

¢ isasolution to BVP (0.1), (0.2) at f(t)=f(t), f,=1f,, f, =1, and

(5‘/’@(5\))”:,[( ) I( ). y(t )dt+c
y(t)=H(®)o(t)+£(1),

will be called a minimax mean square estimate of inner product (a, (p(s))n . The quantity

o= [G(G,é)]w

will be called an error of the minimax estimation.

We see that the minimax mean square estimate of inner product (a go( )) is an estimate at which the
maximum mean square estimation error calculated for the worst realization of perturbatlons attains its minimum.

We will show that solution to the minimax estimation problem is reduced to the solution of a certain optimal
control problem. . .

For every fixed u:=(u,,u,)eH introduce vector-functions z, (u) eﬁHl(O,a)) . ,(su)e(HY(as))
z,(su)e ( (s ﬂ)) , and 24( u)e ( Y8, T)) as a solution to the following BVP:

“z,(tu)=0, O<t<ea, Byz(0;u)=0,

2(t,u)——H (Hu(t), a<t<s, z,(au)=z(a;u),
L'z (tu)=-H" (t)u,(t), s<t<p, zy(siu)=z,(s;u)-a,
L'z, (tu)=0, B<t<T, z,(Bu)=2z(Bu), Bz (T;u)=0.

Lemma 3.1 Determination of the minimax mean square estimate of inner product (a,(p(s))n. is equivalent

(0.29)

N ose (0,T)\(a,B) then the minimax estimation problem can be solved in a similar manner but somewhat simpler.

(=)
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to the problem of optimal control of the system described by BVP (0.29) with the cost function
I(u) =( b Byz, (Osu), §021(O;u))m +(Q1‘1I§1z4 (T;u),Byz, (T;u))nim
+J:(Q;1 (t)z (tu),z (t;u))n dt+j:(Q2’1 (t)z,(t;u),z, (t;u))n dt
+Lﬂ( ()25 (), 2 (t;u))n dt +j;( . (t)z, (tu),z, (t;u))n dt
F[2(Q* (D (1), (1)) dt+[7(Q7 (t)u, (1), u, (1)), dt.
Proof. Show first that BVP (0.29) is uniquely solvable under the condition that functions u,(t) and u, (t)

belong, respectively, to the spaces (L2 (oz,s))I and (L2 (s,ﬂ))I .
Since homogeneous BVP (0.3), (0.4) has only the trivial solution, the BVP

Ly (t)=g(t), 0<t<T, By (0)=0, By (T)=0 (0.31)

has, in line with Theorem 2.1, the unique solution for any right-hand side, in particular, at

(0.30)

0, O<t<a,
-HT(t)u,(t), a<t<s;
=g(tu)= 0.32
9(t)=a(tu) “HT (), (1),  s<t<p; 032
0, p<t<T.

s), (s.5), and (AT) b

Denote this solution by Z(t;u) and its restrictions on intervals (0,a), (a,
n Z(t;u) is absolutely contmuous

Z(tu), Z,(tu), Z(tu), and Z,(t;u), respectively. Note that functio
on [0,T] (see[15]).
Let us show that the problem
L'ZY(t)=0, 0<t<a, B,z"(0)=0,
LZ?(1)=0, a<t<s, 7% (a;u)=7"(a;u),
L7 (t1)=0, s<t<p, 79(su)=7"(s)-a,
LZW() =0, p<t<T, 79 (8)=7%(p), BZ"(T)=0

has one and only one solution at any vector aeR". L

Denote by Z(t), i=1n, j=L4, the coordinates of vector-function Z"(t), j=14. Let y,(t),
i,k =1,n be the fundamental system of solutions of the equation system L z( )= 0 on [O,T]. Then we can
represent functions Z.' )(t), i=1n, j=L14, intheform

(i) el
7" (t)=20" i (1),
k=1
where cl((") are constants. Taking into account the boundary conditions at the points t =0,T and transmission

conditions at t=e,s, 8 in (0.33), we see that the solution to BVP (0.33) is equivalent to the solution of the
following linear equation system with 4n unknowns cl((’), k=1n, j=14:

(0.33)

Zn:ai?(cﬁl) =0, i=Ln-m, (0.34)
k=1
anZYik (05)(0;51) _C;ﬁz)) =0, i=1n, (0.35)
=1
Vi (s)(c?-c”)=a, i=1n, (0.36)
k=1
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Sy (B)(c -c”)=0, i=1n, (0.37)
k=1
Yaic¥ =0, i=1m, (0.38)
k=1

where

a, i=1n, denote the coordinates of vector a, and b\”, i=Ln-m, r=Ln, and b, i=1m,
s=1,n, denote the entries of matrices B, and B, respectively.

Show that system (0.34)-(0.38) is uniquely solvable at any vector aeR". To this end, note that homo-
geneous system (0.34)-(0.38) (at a=0) has only the trivial solution.

Indeed, setting a=0 in Equations (0.35) and (0.36), taking into account (0.37) and the fact that
det{y, (a)}’,_ #0, det{y,(s)]’  #0, and det{y, ()}’  #0 because y, (t), ik=Ln is the fun-

damental system of solutions of the equation system L'z (t) =0 on [O,T], we obtain

¢ =c? =¢l® =c =,

Coefficients c, satisfy Equations (0.34) and (0.38); therefore vector-function x//(t) with the components

v (t)=, G Vi (t), i=1n isasolution to conjugate BVP (0.20), (0.21) which has only the trivial solution
w(t)=0 on [0,T] by Theorem 2.1. This implies ¢, =0, so the homogeneous linear equation system (0.34)-
(0.38) (at a=0) has only the trivial solution. Consequently, system (0.34)-(0.38) and therefore BVP (0.33)
which is equivalent to this system are uniquely solvable at any vector aeR". Then vector-functions

z,(tu)=7(t; u)+?(') (t), i=14, form the unique solution to BVP (0.29).

Show next that the determination of the minimax estimate of inner product (a (p( )) is equivalent to the
problem of optimal control of the system described by BVP (0.29) with the cost function (0 30).

Using the second and third equations in (0.29) and the fact that ¢ is a solution to BVP (0.1), (0.2) at
f(t)=f(t), f,="f, and f, =f, we easily obtain the relationships

SAGH o(1)), dt=(z, (@u).6(a)), (2 (s:0).9(5)), + [} (2 (tu). T (1)), o,
—Jf(HT(t)w(t)@(t))ndt=(z3<s;u>,¢<s>)n—(zzw:u),@(ﬂ))n+If(z3<t;u>,f(t))ndt-
Taking into account the equalities
2 (au) =2, (@u), z,(su)-z(su)=a, z(fu)=2(B),
(z(@u).6(a), = (2 (t0).6(1)), +(2 (0:0).5(0)),.
<z4<ﬁ;u),¢<ﬂ>)n =—I;d(24 (). 6 (1)), +(2(T:u). (7)),

and that

m

(we refer to the reasoning on p. 4) we obtain

()
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(2.6(5), ~(2.6(5)) =(z(su), ¢<s>)n—(z3(s-u) #(s)),-(a0(s))
= (2, (@su),@(a)), + [ (HT (D)u, (t),6(1)) dt+j(zztu) f(t)), dt

~(z(Bu).9(9)), +Iﬂ< () (£),6(1), dt+ [ (23 (tu), F (1)), ot
—f:(w(t),v(t)).d -[ ( y ()
0

(1)) dt-c
= [;a(z (6u).(1)), +(=( )+I(HT<t ¢(t)) dt
+, (Zz (tu ) d”f d(z, (t),@(1)), ~(2(T:u).5(T)),
+L'”(HT(t)u2(t) @t )dt+j (23 ), (1)) dt (HTt Ju (1), 4(1)) dt
~J1(w(0.6(), de= [ (HT (@, (0. 0(1) de- [ (v )) dt—c
=J:£dzl$ Y) 5 ]dt+f0( t+(Byz (Ou

d
d

)
)

n

t+jﬁ[d(gf )’24(“”)1 dt

[ (2 (t0), 7 (1), o J[dz4
(a0 (10, €(1) dt— [ (u; (1), (1)) ct—c.

(BzATu )

F(1),at

Taking into notice that

dzlétt;u)=AT(t)Zl(tiU) on (0,a), L= AT(t)z,(t;u) on (AT)

and therefore

(08

=L (N <tu> o), 0+ [} (n(t0), (1)~ AW (1)),
= [M(z(tu), f (1)) d

Jﬂ[—dz“g:'”)@(t)]nd‘*ﬁ(di?)’“(““)ldt:JZ(Zzt(““)’”t))n‘“’

we use the last equality to obtain

(20), —(a@(S))fs(Eol o). ).+, (2(t). (1)) 039
~(Bizy (Tsu), ) [ (w(1).&(t)) dt—["(u, (t), &(t ))I dt-c =17,
where
z(tu), O0<t<e;
o |z(tu),  a<t<s
2(tu)= z,(tu), s<t<pg
z,(tu), B<t<T.
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Recalling that & ( ) is a vector process with zero expectation, we use condition (0.25) and the known
relationship Dn:Enz—(En) that couples the dispersion Dz ::]E[n—]Er]]2 of random variable 7 with its
expectation K, to obtain

En =(Byz (0:u), 0) +j( )dt (Bz4(T;u),fl)nm—c,
n-En=-[(u (t),f(t))l dt— [ (u, (t).£(1)), dt,
O = 8[n-Bn]" = B[ [ (w (1) £(0) dt+ [ (1, 0. £ (0) et |

Enzqu+(Eq)2:ED( (1), £(1)), dt+ [ (u, ( t),£(t)) d T
[(B z,(0u) ) +I ((t;u) t)) dt— (Blz4(T;u),fl)n7m—c:|2,

which yields

:Q@::EEVEU ), -(a@(s»)j
- sup[ (B (00, )+ ) (2(6).  (0), @~ (B, (7). ), ]
+§gva[J:< (). £(0) [ o (). £(0), et ]

In order to calculate the supremum on the right-hand side of (0.40) we apply the generalized Cauchy-
Bunyakovsky inequality [16] and write this inequality in the form convenient for further analysis: for any

(0.40)

fo(l) f( eR", f f eR"™ 1, f, e(LZ(O T)) the generalized Cauchy-Bunyakovsky inequality holds

‘(f(}1>,f0<2>)m+( N dt‘

{(Q0 ) (Y f1<l>)n7m + jOT (Q* (1) (1), . (1)) dt};
x{(QO 19,10) +(@f2.67) +[ ()50, (1), dt}i

in which the equality is attained at

= Q" ), = Q" ), f, (t)=AQ2‘1fl(t).
Setting in the generalized Cauchy-Bunyakovsky inequality

fo(l) = gozl(O;U)' fl(l) =-Byz, (T;u)' fl(t) = Z(t;u)’
(O _f g0 g0 _f

and denoting

V= (B (o), fy - 17) (B (), - 1)+ [ (2(tw), T (1)~ 1O (1) ot

we obtain, in line with (2.7), the inequality
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|Y|s{(Qo’lﬁozl(o;u),§Ozl(0;u)) +(Q1’1E_3124(T;u),I§lz4(T;u))

+IJ(Q;1 (t)z(t;u), z(t;u))n dt}; x{(QO ( fi— fo(o))’ - fo(o))
a1 6100100 0 10) af

<{(%'Bo (0:0). Bz (0 u))m+(QllB 2,(Tiu). Bz, (Tow))

[0 (@ ()2(tu),2(tu)), dt}

where the equality is attained at

m

Thus,

iQfls.lip[(gozl(O;“)’ fO)m +J'0T(z(t;u), f(t)) dt—(§1z4 (T;u), fl)n i _CT

=ianl§up (Eozl(o;u), fo_fo(o))m (Bz (T;u) )n m+J' ( (0)(t))n dt
+(I§Ozl(0;u),fO(O))m_(EIZA(T;u),f( ) +j (2 (tu), f© ()) dt - CT (0.41)
!n: ?(lirq)[Y +(B z,(0;u), fO(O))m—(glz4 u), f) ) +j ( ), 1€ ) dt— CT =q°

:(Qo’lBozl(O;u),E_Bozl(O;u)) +(Q "Bz, (Tsu), Bz, (T; u))nim+_L)T(Q2’1(t)z(t;u),z(t;u))n dt

at c=<|§021(0;u),f0(°))rn (B z,(T;u) )n m+j ( ) dt.

Calculate the second term on the rlght -hand side of (0. 40) Applying the generalized Cauchy-Bunyakovsky
inequality, we have

[ 1(0.(0.£0), 6t (e (0.£0) &t | =5[]/ (u(0).£(0), ]
<B|[/(Q*(Bu(t).u(), & J(()()(» t] 042)
=[1(Q* Mu(n).u(m),dt-[BQE(1).£(1)),dt

_Here E can be placed under the integral sign according to the Fubini theorem because we assume that
§(t) is a random process of the integrable second moment. Transform the last factor on the right-hand side of
(0.42):

=5E(%:(Q(t)§(t))i§i()j - (;kZ_lquk() ()]
- /Y3 0B (4 (04 ()t = ['sp[Q()R (1)

i=1k=1

Taking into account that (0.25) holds, we see that (0.42) yields
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sup | [*(u(0). (1)) dt+ (v (). £(0), ot |

EeV

< [1(Q* (D) (1), (1)), de+ [T (Q (D), (¢),u, (1)), dt.

It is not difficult to check that here, the equality sign is attained at the element

(0.43)

nQ " (t)uy (t) — actes
[ w0 0) e (@ (s (0.0, 1)
£(t)=
" () () 77 s<t<p,
(@ (0. (0) ot (@7 (00, (0.0, (1) ot

where 7 is a random variable such that E» =0 and Ezn’=1. We conclude that statement of the lemma
follows now from (0.40), (0.41), and (0.43).

4. Representations for Minimax Mean Square Estimates of Functionals from
Solutions to Two-Point Boundary Value Problems and Estimation Errors

In this section we prove the theorem concerning general form of minimax mean square estimates. Solving op-
timal control problem (0.29), (0.30), we arrive at the following result.
Theorem 4.1 The minimax mean square estimate of expression (a (p(S)) has the form

m [ (1), y(t dt+f (1), y(1)) dt

where
4, (1) =Q(t)H (t)p,(t), G,(t)=Q(t)H (t) P, (t) (0.44)
5=('§ozl(0),fo(°))m—(§1 (T), ° )nm+j( )dt,
z(t), 0<t<g;
7,(t), a<t<s;
2(t)= ,(t), s<t<p (0.49)
z,(t), B<t<T,
and vector-functions pl() and z(t) =1,4, are determined from the solution to the problem
L'zt=0, O<t<a, B,z(0)=0,
L'z, (t)=—H" ()Q(t)H (t) p,(t), a<t<s, z,(a)=7(a),
L'z, (t)=—HT (t)Q(t)H (t) ps(t), s<t<pB, 1z;(s)=2,(s)-a,
L'z, (t)=0, B<t<T, z,(8)=2(B), Bz(T)=0,
Lp, () =Q, ()2 (1), O<t<a, Byp(0)=Qs'Byz(0), (0.46)

P (@)= p(a),

Lp, (t)=Q;"(t)z,(t), a<t<s
Lp; (1) =Q,* (t)z5(t), s<t<pB, py(s)=p,(s).
Lp, (1)=Q,' ()2 (1), A<t<T, p(B)=ps(B)
B.p, (T)=-Q'Biz,(T).

1(0.’

n
Here z,p e(H'(0,@)), 2, p,<(H
minimax estimation error

,s))n, 23,p3e(H1(s,ﬁ))n, and 24,p4€(H1(ﬁ,T))n. The

o=(ap,(s))" (0.47)

&)
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Problem (0.46) is uniquely solvable. o

Proof. We will solve optimal control problem (0.29), (0.30). Represent solutions zi(x;u , i=1,4, of
problem (0.29) as z;(t;u)=7(t;u)+Z(t), where Z(tu), Z(tu), Z(tu), Z,(tu) and Z(t),
Z,(t), Z(t), Z(t) denote the solutions to this problem at a=0 and u, =0, u, =0, respectively. Then
function (0.30) can be represented in the form

where

+L (Q;1 (t 73(t),73 (t ) dt+jﬂ(Q;1 1)z, (t),Z(t))n dt.

Since solution Z(t;u) of BVP (0.31) is continuous” with respect to right-hand side g(t;u) defined by
(0.32), the function u— Z(-;u) is a linear bounded operator mapping the space H = (L2 (e, s))I ><(L2 (s,p’))I
to

H, =(H'(0.a)) x(H* (a,5)) x(H(s.8)) x(H*(B.T)) -
Thus, f(u) is a continuous quadratic form corresponding to a symmetric continuous bilinear form
z(uv)= (Qo’1§071 (0;u), B,z (O;V))m +(Q1’1§174 (T;u),Bz, (T;v))mm
+[1(Q! (07 (tu),z(5v)) dt +[ (@ (V)z(tu). 7, (t;v))n dt
(@ (17, (tu), % (6v)), dt+jT(Q;1 ()7 (5U),Z,(tv)) dt
+_.':(Q’l(t)ul( ) dt+f ( t)u, (t),v, (t))I dt,

L(u) is a linear continuous functional definedon H, and A is a constant independent of u.We have
F(u) =T ()= [(Q7 (D), (1), uy (1)), de+ [7(Q7* (), (1), u, (1)), dit
>culf,, c=const.
Using Theorem 1.1 from [17], we conclude that there is one and only one element G =(0,,0,)eH such that

[(G)=1(0,0,)= inf 1(ug,u,).

(ug,Up)eH

2This continuous dependence follows from the representation of function Z(t;u) interms of Green's matrix G (t,&) of BVP (0.31) (see
[13], p. 115):

= [[6 (LEHT (O (&)de - ['G" (LEHT (£)u, (£)de

()
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Therefore
dil (G +7v,,0, +7v,)|,, =0 Wv=(v,v,)eH.
T

Taking into consideration the latter equality, (0.30), and designations on p. 11, we obtain

1d|(u+rv

0=2— | 0_j(Ql(t)u )dt+f( ()d,.v, ) dt
+(Q By ( (0v) +(Q*Biz, (T;0),BZ,(Twv)) 048)
+I (Q2 (t)z tv)dt+J'(Q2 )z, (t;0), zz(tv))
+I (Q2 (t)z,(t;0) 3(t v)) dt+j (Q2 z,(t,0),7,(t;v ))ndt.
Introduce functions p; € H! ( ) ; P, e(H1 ) p; € ( (s,

a)
). and p,e(H*(AT)) asa

unique solution to the following problem®:

Lp, (t)=Q;*(t)z,(t;0), O<t<a, B,p,(0)=Q;'B,z (0;0d),

Lp, (t)=Q,' (t)z,(t:0), a<t<s, p,(a)=p(a),

Lps (1) = Q' (1) (60), s<t<p, py(s)=p,(s), (0.49)
Lp, (t)=Q,' (t)z,(t:0), B<t<T,

p4(,3) P (B), 1p4( ):_Ql_l§124(T;0)'

Now transform the sum of the last for terms on the right-hand side of (0.48) taking into notice that

(Z.(0:v), p,(0)), =(BsZ (0:v),Byp,(0)) and (Z,(T:v), P, (T)), =(BZi(T:v),Bp,(T)) . We have
J ( H(t)z(60).7 (tv) dt+,[ (Qz )z, (t0). 7, (t; V))ndt
()2 (k0 (), (tv)) dt+j (Q2 (t)z, (t:0),Z, (tv)) dt

= [(Lpy (1), 7 (t:v)), dt+ ] (Lp, (¢ (t v)) dt

+[7(Lps (1), (tv), dt+j Lp, (1), 7 (t;v)) dt

=, (P.(0).L7 (t)), dt+(Z (av), p a) -(z.(0). n.(0)),
+I§(Dz(t

(0.50)

*The unique solvability of problem (0.49) can be proved similarly to problem (0.29).

)
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From Equalities (0.48)-(0.50) it follows that
[(Q ‘1(t)a )\ )dt+j (Q7* ()G, (1), v, (1)), dt
—_[ )P, (1) |dt+_|.s t)ps(), 2())|

so that

Q™ (06, (1)=H(1)p. (1), (13, (1)=H (1) ). 051
Gy (1) =Q(t)H (t) p (1), G, (t)=Q(t)H (t) ps (t).
Functions p;(t), p,(t), ps(t), and p,(t) are absolutely continuous on segments [0,«], [a,s],

[s,8]. and [B,T], respectively, as solutions to BVP (0.49); therefore, functions 0, (t) and G, (t) that per-

form optimal control are continuous on [e,s] and [s,8]. Replacing in (0.29) functions u,(t) and u,(t) by
G,(t) and ,(t) defined by formulas (0.51) and denoting z (t)=z (t;d), i=14, we arrive at problem
(0.46) and equalities (0.44).

Taking into consideration the way this problem was formulated we can state that its unique solvability follows
from the fact that functional (0.30) has one minimum point G.

Now let us prove representation (0.47). Substituting into formula o = | (0) expressions (0.44) for U, (t)

and 0, (t), we have

o” =(Q'Boz.(0),Boz, (0) +(Q*Biz (T), Bz, (T))
(@M D)z (1), (1)), dt+[ (Q2 2, (t).2,(1)) dt
QM O7(8). 2 (1)), der [ (7 (1)24(1) 2 (1)), e (0.52)
HQWH ) P (). H (1) p, (1), ot
+[T(QUOH (1) s (1), H (1) ps (1),

Next, we can apply the reasoning similar to that on p. 4 and use (0.46) to obtain

(zl(o), pl(O))n :(Eozl(o)' B, pl(O))m = (5021(0)’Q51§ozl(0))m ;

which yields
o (@ (D) z(t).z(t) )ndt+f H(t)p() (t) P, (1)),
= (e (1), 2 (1)), dt = [ (L2, (1), p, (1)) dt
=J, (R(0). L2 (1)), dt+(z(a). pi(«), - (2(0 10)

(0.53)

),

[ (z(t) Lp (1)), dt~(2, (@), P, (@), +(2:(5),
=~(2(0).1,(0), - [}(z().Q <> (t))ndw(zz(s) P (5)),
=L (D2(1).2: (1)), dt— (B (0).Qs B (

In a similar manner, using the equality
(2o(T),pa(T)), =(Biza(T).Bipy(T)) = ~(Biz,(T).Q "Bz, (T))nim

we obtain
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I (@ (020(0),24 (1)), 8t [ (QUIH (1) (1) H (1) s 1),
T (L. (0), 8 <Lz3 0.5y (0),
=3 (P (). U2, (1)), dt+(py(T (T))n (p: (). 2:(P))

n

(0.54)
—I 2,(t), Lps (1)) dt+(z3 05 (B)), - ( s), ps s)

:(p4( )’ZA(T))H_Lﬂ( t)z,(t) )ndt zy(
:_Lﬁ(QQl(t)Z3(t)’z3(t)) (824(T) B.z,(T) )n m (23 (s)),-

Relationships (0.52)-(0.54) yield

U)
'C
N
—~
[%2]
~—
>

o =(a, P, (5))n,
which is to be proved.
It is easy to see that function z(t) defined by (0.45) and the function

p(t), 0<t<a;
(), a<t<s;
ps(t), s<t<p;
p,(t), B<t<T,

p(t)=

(0.55)

satisfy the following uniquely solvable BVP
L'z(t)= Kiap) (OHT(H)Q(t)H (t)p,(t), 0<t<T,

(0.56)

where

2] €(H'(05))" 2., e(H (sT)),

and y(t) isthe characteristic function of interval («, 3).
Now Theorem 4.1 can be restated as follows:
Theorem 4.1' The minimax estimate of expression ( (p( )) has the form

n

(ap(s)), = J' (A(t),y(t)), dt+¢,

where
(t)=Q(t)H (1) p(t), (0.57)
:(Eoz(o),f0(°>) (Bz 0) +_[ ( ) dt,

and vector-functions z(t) and p(t) are determined from the solution to problem 0.56.
Obtain now another representation for the minimax mean square estimate of quantity (a,qo(s))n which is

independent of a and s. To this end, introduce vector-functions ﬁl,gﬁle(Hl(O,a))n, f)z,(?)ze(Hl(a,S))n,

()
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ﬁ3,(ﬁ3e(H1(s,ﬁ))n, and ﬁA,(Z)Ae(Hl(ﬁ,T))n as solutions to the problem

L', (t)=0, O<t<a, By, (0)=0,

L'p, (1) =HT(DQ()(Y()-H (1)e: (1)), a<t<s p(a)=p(a).

L'p, (1) = HT(Q()(y()-H (1)@ (1)), s<t<B, Ba(s)=B.(s),

L', (t)=0, B<t<T, B,(B)=0:(B), B (T)=0,

Lé, (1) =Q;* (1) B, () + F (1), O<t<a, By (0)=0Q;*B,p, (0)+ f,”, (0.58)
Lo, (1)=Q;* (1) B, (t)+ F (1), a<t<s, §,(a)=¢(a),

Lo, (1) = Q2 (1) B, (1) + £ (1), s<t<p, @,(s)=p,(5),

Lo, (1)=Q;* (t) P, (t)+ F (1), B<t<T,

0:(P)=9:(B). B (T)=-Q "B (T)- 1"

|
at realizations y that belong with probability 1 to space (L2 (a,/?)) .
Note that unique solvability of problem (0.58) at every realization can be proved similarly to the case of
(0.46). Namely, one can show that solutions to the problem of optimal control of the system

L' (tv)=0, O<t<a, B,p (0;v)=0,
L', (tv)=d(t)-H (t)v,(t), a<t<s,
By (ar;v) =D, (a;v),
L'Ps(tv)=d(t)-HT(t)v,(t), s<t<p,
B, (siv) = B (s;v),

L'p, (t;v)=0, B<t<T,

B, (B:v) =By (Siv), Bipy(Tiv)=0

with the cost function

QOB (V) +Q (0) 1) <t>), By () +Q, (1) (1) dt
1@ OB (69 +Q () 1 (1)), B2 (6) + @, (1) 1 (1)
+[2(Q (OB (6v)+ Qu (6) 1 (1), By () +Qu (1) (1) it
+ [ Q2 () B (6v) + Q: () 1 (1)), B (6v)+Qu (1) (1) it
QW (1) (1), de+ Q7 (1), (1) (1)) dt

— min , d(t)=H"()Q(t)y(t), a<t<p,

v=(vy,vp)eH

can be reduced to the solution of problem (0.58) where the optimal control V= (\71,\72) is expressed in terms of
the solution to this problem as ¥, =Q(t)H (t)¢,(t), V¥, =Q(t)H(t)@,(t); the unique solvability of the
problem follows from the existence of the unique minimum point vV of functional J (v)
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Considering system (0.58) at realizations Y it is easy to see that its solution is continuous with respect to the
right-hand side. This property enables us to conclude, using the general theory of linear continuous transforma-
tions of random processes, that the functions f; (t), @ (t), i=14, considered as random fields have finite

second moments.
Theorem 4.2 The following representation is valid

(2.0(9)), =(a.%,(s)),-

Proof. By virtue of (0.44) and (0.58),

m f(ul()y dt+f (G, (t) y()) dt+¢

= (@ , (1), y(t) Idt+j )H (1) ps (1), y (1)), dt+¢
_L(p2 , )Q(1)y(t) )ndtJrL(p3 ) HT()Q(t)y(t)) dt+E.
Next,
[o(p(1). HT()Q(1) y(1)), dt
= (P2 (1), LB, (1)) dt+ [ (p, (1), HT ()Q()H (1), (1)) dt
= J(Lp: (1), B, (1)), dt+(p; (@), B2 (), ~(p2(5). B2 (5))
+[J(HT()Q()H (1) p, (1). 5, (1)) dt
= L(Qzl(t)zz (). B, (t))n dt+( P, (a). B, (0‘))
~(Po(5): B2 (), =, (L2 (1). 2 (1)), o
=[1(2:(1).L, (1)), dt+(p, (@), B, (), = (P (5). B2 (5))
[ (2(0).L6, (1)), dt +(2,(5). 6, (5))
~(z(a).9,(a), = [(2(). 1 (1)) dt
=(p2 (@), B, (), = (P2 (5). B2 (5)), +(2(5). 9 (5))
~(%(a). @, (a)), ~[(2 (1), 10 (1)) dt
Similarly,

p
~(25(s). %, (S))n _Lﬂ(ZB (), £ (t))n dt
From (0.59), (0.60), and (0.61) it follows
(2,0(s)) = (Pu(@), Bu(@)), = J:(2(0). 1 (1)) ot =] (2 (1), 1 (1)), ot
~(a(a).¢:(@)), (P (B). B (8)), +(2(8). 2 (B)), +(a. 5, (9)), +E

However,

0=J7 (@ (1), L'z (1)) dt=[ (L4 (1).2: (1)), dt=(z (@), @i (), +(2(0).4:(0)),

= I, (@(0).Q (1) Bu (1)), dt+ [ (2.(1). £ (1)) dt~(z(a).61(a), +(2(0).41(0)),.

)

(0.59)

(0.60)

(0.61)

(0.62)

(0.63)



Y. Shestopalov et al.

0= _[:(L* Pi(t) Py (t))n dt = f:( P (). Lp, (t))n dt _( P (a), pl(a))n +( P, (0), pl(O))n
= [ (B:(1).Q ()2, (t), dt= (B, («). pi(2)), +(B:(0). P (0)), -
Subtracting from (0.63) equality (0.64), we obtain

0=(i(a). (@), ~(a(a).é:(a), ~(B.(0). p.(0)), +(z(0).64(0)), + [, (a (t). f* (1)) dt

(0.64)

(20, 10), dt+ (B (@), (@), - (z(2).61(a)), =(8:(0), . (0)), ~(2(0).4(0)), - (069)
Since
(2(0),4:(0)), =(B,2(0),By; (0)) = (By2(0),Q,"B, |al(o))rn +(§0z1(0), fo“”)m,
(8.(0). p,(0)), = (Bo 1 (0). B,y (0)), =(Bo 1 (0).Q: By (0)) .

we can use the latter equalities, (0.65), and the fact that Q, 'isa symmetric matrix to obtain

(By(). pu(@)), ~(z( ), == (2(6), 1O (1)) dt—(Byz(0), £”) . (0.66)
Performing a similar analysis, one can prove that
~(pa(B). Ba(B)), +(z,(B - j (2(1), 1 (1)) dt+(Ba(T), fﬁ‘”)nim. (0.67)

From (0.66), (0.67), and (0.62) and the expression for ¢, it follows

(2.0(9)), =(a.%,(5)), -

The theorem is proved.

As is easily seen from (0.58), the functions f)e(Hl(O,T))n and (ﬁe(Hl(O,T))n defined by
(1), O0<t<a;
. 2, (t), a<t<s;
t):=4""
ot (1), s<t<p
2, (1), B<t<T;
and
p(t), 0<t<a;
R p,(t), a<t<s;
p= e
Py (t), s<t<p
p,(t), B<t<T;

satisfy the following uniquely solvable BVP:
LB (t) = Zay (DHT(OQ)(y ()~ H (1) 5(1)), 0<t<T,
B,p(0)=0, B/p(T)=0
Lp(t)= Q" (1) B(t)+ £ (), 0<t<T, (0.68)
By(0) = Q5 "By B(0)+ f3",
Bo(T)=-QB,p(T)- "
at realizations y that belong with probability 1 to space (L2 (oc,/i'))I .
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Thus, Theorem 4.2 can be restated in the following form.
Theorem 4.2" The minimax mean square estimate of expression (a,qp(s))n has the form

(a.0(5), = (a.6(s)),.

where vector-function gB(t) is determined from the solution to problem (0.68).

Remark. Function ¢(t) can be taken as a good, in certain sense, estimate of solution ¢(t) of initial BVP
(0.1), (0.2) on [0,T].

As an example, consider the case when a vector-function y(t)=H (t)¢(t)+£&(t) is observed on an interval
(0,T), where a vector-function ¢(t) with valuesin R" is a solution to the BVP

Lo=1(t), ¢(0)=fo, o(T)=*, (0.69)

and operator L, is defined by the relation
Lo (t) =—¢"(t)+a(t)e(t).

where q(t) is a positive definite nxn -matrix whose entries are continuous functions on [O,T].

Note that this problem has the unique classical solution if f(t) is continuous on [O,T] and the unique
generalized solution if f e (L2 (O,T))n.

Assume that, as well as in the previous case, H (t) isan Ixn matrix with the entries that are continuous
functions on [, ] and &(t) is a random vector process with zero expectation E&(t) and unknown IxI
correlation matrix R(t,s)=E&(t)&T (s). Assume also that domains V' and G are given in the form (0.25)
and (O.(%)G) where matrices Q,, Q,, and Q, (t) entering (0.26) have dimensions nxn, fo(o) =0, fl(o) =0,
and Y (t)=0.

Write I(Eq)uation (0.69) as a first-order system by setting ¢, (t)=¢'(t), ¢,(t)=¢(t) and introducing a
vector-function

O w0 |

. o (t ot d

‘”“):(%(t)} & 7| da(t)
dt

EVURSHERH

with 2n components, a vector &=(0,a) with 2n components, a 2nx2n-matrix

matrices B, =B, =8, =8 =(0,,.E,), and B, =B, =(E,0,,). Then system (0.69) can be written as

E@(t)::di—ft)+ Aj(t)=f(t), B,@(0)=f,, (0.70)

>

B (T)= .. (0.71)

Applying Theorems 1 and 2 and performing necessary transformations in the resulting equations that are
similar to (0.46) and (0.58) (in terms of the designations introduced above) we prove the following
Theorem 4.3 The minimax mean square estimate of expression (a,w(s))n has the form

(2.0(5)), = [[(6.(6), (1)), de+ [ (0, (£), (1)), dt = (2. (5)),

where
ol = (a, P, (S))n ,
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G () =Q(t)H(t)p,(t), G, (t)=Q(t)H(t)p,(t), and vector-functions p,(t), ps(t) and ¢,(t) are
determined from the solutions to the problems

Lz, (t)=-H"(t)Q(t)H (t) p,(t), O<t<s,z,(0)=0,
Lzy(t)=—HT(1)Q(t)H (t) p;(t), s<t<T,
2, (s)-2(s)=2a 2(T)=0,
Lp, (t)=Q;'(t)z,(t), O<t<s, p,(0)=0Qy'z,(0),
Lp; (1) =Q (t)z;(t), s<t<T,
P.(s)=ps(s), Pa(T)=-Qz(T),
and

respectively.

5. Minimax Mean Square Estimates of Solutions Subject to Incomplete Restrictions
on Unknown Parameters

Assume again that observations have form (0.24) and unknown parameters f,, f,,and f (t) belong to the

domain
G ={F =(fo i F): [} (O T (1), T (1))de <1}, (0.72)
where Q, (t) is given in (0.26). The correlation function of process &(t) belongs to domain (0.25). Introduce
the set
U ={u(-):Byz,(0,u)=0,B,7,(T,u) =0} (0.73)
u(t), a<t<s, o )
here u(t)= where 7z (t,u),i=14, is the solution to BVP (0.29).
u(t), s<t<p,
Lemmab5.1
, ueU,
o(uc)= {oo
Gl(u,c), ueU,
where

oy (u,0)= [ (@ 2(tu), Z(t,u))dt+ [ (Q (t)u(t),u(t))dt +c* = J (u) +c2 (0.74)

This lemma can be proved using formula (0.39).

Lemma5.2 U isa convex closed set in the space (L2 (a,ﬂ))l )

Proof. The convexity of set U is obvious. Let us prove that this set is closed.
Note that functions z,(0,u) and z,(T,u) can be represented as
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2,(0.u)=a,+[ @, (t)u(t)dt, 075
24(T,u)=az+j:d>2(t)u(t)dt, '

where @, (t) and ®,(t) are known matrix functions with the elements from L,(«,f) and a and a,
are vectors. Expression (0.75) can be obtained if we introduce a vector z, such that zl(O,u):zo. Then
z(a,u)=0(a,0)z,
Z,(s,u)=d(s,a)z,(a,u)
:(I)(S,a)zl(a,u)+_[j®(s,z')HT(T)ul(r)dr
:<D(s,0)zo+j:®(s,r)HT(r)u1(r)dr,
where d)(t,r) is a solution to the equation
[}
#:—A*(t)d)(t,r), (D(T,r):E
and E is the unit matrix. Next,
2,(T,U)=®(T,0)z,+ ['®(T,7)H" (r)u(r)dr + (T s)a

Since BVP (0.29) is uniquely solvable, there exists one and only one vector z, satisfying the system of
algebraic equations

B,z, =0,
{B@(T,O)zo =—["B@(t,r)H" (r)u(r)dz -Bd(T 5)a
Solving this system we determine z, in the form
z,=b +j:®o (z)u(r)dr,

where @ (7) is a known matrix function continuous on [, ] and b is a known vector. Taking into
account this equality, we obtain expressions (0.75). From these relationships, it follows that if a sequence u, (t)
convergesin L,(a, /) toafunction u,(t), then

lim Byz, (0,u,) = Byz, (0,u),
limB,z, (0,u,)=B,z,(0,u,),

which proves that U is a closed set.

Assume now that U is nonempty. Then the following statement is valid.

Theorem 5.1 There exists the unique minimax mean square estimate of expression (a,go(s)) which can be
represented in the form (0.44) at ¢=0, where vector-functions p,(t) and p;(t) solve the equations

L'z, (t)=0, 0<t<ea, Byz(0)=0,

Bz (T)=0, Byz(0), Bz(T)=0, (0.76)

)

Lp, (t)=Q,'tz,(t), a<t<s, p,(a)=p(a),
)=Q (1) z5(t), s<t<B, p;(s)=p,(s),
) (

Lp, (1) =Q,' (t)z,(t), s<t<p.



Y. Shestopalov et al.

Proof. Similarly to Theorem 4.1 one can show that for ueU the following equality holds
o(uc)=J(u)+c?,
where
3= (& Oz (tu). (L)) do+ Q7 (12 (tu), 2, (Lu)) de
+Iﬁ( 2 (1) 2, (), 24 (tu)) dt+jT( (1) 2 (tu), 2, (tu)) dt
+[1(Q (0 ().u ()t (@ (1) (1) v, ()t

and z(t,u),i=14, are solutions to Equations (0.29) at B,z (0,u)=0 and Bz, (T,u)=0. J(u) is a
strictly convex lower semicontinuous functional on a closed convex set U and limy, ,, J (u)=o0. Therefore
there exists one and only one vector G such that min,_, J(u)=J(0). This vector can be determined from
the relationship

d R .
EJ”(ul+rv1,u2+rv2)

=0, Ww=(v,v,)eH,

7=0

where
3, (u) =3 (U, )+ (44, Bz, (0,)) + (1, Bz, (T 0)),

pu=(. 1), weR", and u, eR"™ are Lagrange multipliers. o
Further analysis is similar to the proof of Theorem 4.1. Let vector-functions f, (t) and ¢ (t), i=14, be
solutions to the system

L'p(t)=0, O<t<a,

L'f, (1) =HT ()Q(t)[ y(t)- o, ()], a<t<s,

L'y () =HT()Q()[ y(t)-H ()& (t)], s<t<p,

L'p, (t)=0, B<t<T,

Lo (1) =Q. (1) By (t), O<t<a,

Lo, (1) =Q (1) B (1), a<t<s, o
Lo; (1) =Q, () B (1), s<t<p,

Lo, (1) =Q (1) P (1), B<t<T

By (0)=0. P, (a)=pi(a),

B,(5)= B.(s), B.(8)= 5 (0),

(32 (a):(ﬁl a): D3 (s):(ﬁz (S)’ (24 (ﬁ):¢3(ﬂ)
Theorem 5.2 Assume that for any vector aeR" set U is nonempty. Then system (0.77) is uniquely
solvable and the equality

(ae(s))=(a.g:(s))

holds
Proof. Introduce functions f; (t,v), i=14, asa solution to the BVP

LA (t,v)=0, O<t<a,
L'p, (tv)=d(t)-H (t)v,(t), a<t<s,

L', (tv)=d(t)-HT (t)v,(t), s<t<p,
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where d(t)=HT(t)Q(t)y(t). Defineaset
U, ={v:Byp,(0,v)=0,B,p,(T.v)=0}.

Since U is nonempty, the same is valid for U, for any vector a. Similarly to the case of U one can
show that U, is a convex closed set. Denote by J,(v) the functional of the form

1 ()=[(Q V) ) Bu (tv))dt+ [*(Q" (1) By (t.v), B, (t.v))dt
('), ) By (t.v))dt+ [ (Qz ) B (), By (t,v) )t
Qv () v (1))dt+ [ (Q (v, (t).v, (1))t

One can show, following Theorem 5.1, that on set U, there is one and only one point of minimum of
functional J,(v), namely,

U(1)=Q ()H (1), (1), (1) =Q7 ()H (1) (1),
where functions ¢, (t) and @, (t) are determined from system (0.77). The proof of the equality

(a.0(5)), = (0.6, (5),

is similar to that in Theorem 4.2.

6. Conclusions

For a system described by a one-dimensional two-point BVP with decoupling boundary conditions at the
endpoints of the interval and quadratic restrictions imposed on the unknown deterministic data and the second
moments of observation noise, we have obtained guaranteed mean square estimates of inner product (a,qp(s)),
where go(s) is the unknown solution of the BVP at a point se (O,T) and aeR". Guaranteed estimates are
obtained using the duality of the problems of estimation and optimal control. We have shown that guaranteed
mean square estimates and estimation errors are expressed via solutions to special optimal control problems for
conjugate BVPs. The solutions to these optimal control problems enable one to find explicit expressions for
estimates and estimation errors both for distributed and point observations.

The obtained results are applied to minimax estimation of solutions of two-point BVPs for linear ordinary
second-order differential equations.

Methods and results of the paper may be used for estimation under uncertainties of the states of the systems
described by more general linear BVPs for different classes of functional--differential equations; in particular,
for systems of differential equations with impulse perturbations, differential equations with multipoint condi-
tions, and in several other cases.

7. Results of Numerical Experiments
Let realizations of the random variables
= [0 (X)o(x)dx+&, k=1-N, (0.78)

be observed. Here &, are independent random variables for which E¢&, = O,Eff = rk2 ; go(x) is a solution of
the BVP

—9"(X)+ @’ p(x) = f(x), (0.79)
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?(0)=¢(1)=0 (0.80)
and
g (X)=V2sinknx, k=12,

2
are eigenfunctions of the operator —;?: HS (O,l) -7 (0,1) , Where

H3 (0,1) = {ueH?(0,2):u(0)=u(1)=0}.
We assume that function f (x) is not known exactly and is chosen arbitrarily from the set
G= { f(x): _[;f (x)dx < qz} , Where @ is a certain constant.

Applying the technique similar to the estimation methods developed in Section 4, it is possible to obtain
expressions for the minimax mean square estimates in the case when observations have the form (0.78). In
particular, in this case the function ¢ which approximates the solution ¢ of BVP (0.79)-(0.80) on the in-
terval [0,1] is determined from the system

The exact solution ¢ and its estimate ¢ (bold curves) calculated on the basis of the modelled observations
are presented in Figure 1 and Figure 2. Calculations are performed at q=1, w=1,and N=5 for k=1,---,5

0.020 -
0.015 -
0.010

0.005 -

-0.005

~0.010
Figure 1. Exact solution ¢ and its estimate ¢ (bold curve) calculated at q =1, w=1, N =5,

r=r —i(k =1,..,5),and f(x) =Lsin nx+£sin 2nx+lsin3nx+sin4nx .
2000 2 2

"~ 100



Y. Shestopalov et al.

Figure 2. Exact solution ¢ and its estimate ¢ (bold curve) calculated at =1, w=1, N =5,

1

f=r=—
« 500

(k=1..,5),and f(x) =%cos(10x+%] :

using the parameters r, :r:i and f(x):isinnx+lsin2nx+lsin3nx+sin4nx (Figure 1) and
100 2000 2 2

1 1 1 .
r =r=—— and f(x)=—=cos|10x+—| (Figure 2).
: 500 () 2 ( 2) (Flgure 2)

As can be seen from these figures, parameter r plays the crucial role as far as the estimation quality is
concerned. In fact, this parameter directly influences the signal-to-noise ratio.
The calculations were performed using Wolfram Mathematica.
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