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Abstract 
We generalize a result on bifurcation from infinity of high order ordinary differential equations 
with multi-point boundary conditions. Our abstract setting represents a variant of Nonlinear 
Krein-Ruthman theorems. Furthermore, an analysis of this abstract setting raises an open ques- 
tion motivated by some misunderstanding and inconclusive proofs about the simplicity of prin- 
cipal eigenvalues in some articles in the literature. 
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1. Introduction 
In this paper, we generalize and improve a result of Coyle et al. [1] about the bifurcation from infinity after 
stating in the line of Nussbaum [2], Schmitt [3], etc., a type of nonlinear Krein-Rutman theorem for a class of 
positively 1 -homogeneous, compact and continuous operators in Banach spaces leaving invariant cones.  

Our method is motivated by the maximum principle of Degla [4] and a result on the principal eigenvalue of 
multi-point Boundary Value Problems (BVP’s) of Degla [5] which allow the use of cone theoretic arguments 
and of the well-known general result on bifurcation from infinity; see Coyle [1], Mawhin [6] and Rabinowitz 
[7].  

Furthermore, in our abstract setting, the nonlinear Krein-Rutman Theorem resets an important result on the 
simplicity of positive eigenvalues [8] by avoiding some inconclusive argument [8] (page 3086, lines 29-37) also 
misused in [9] (page 550, lines 15-27). However the gap in their arguments under their assumptions, remains an 
open question.  

http://www.scirp.org/journal/apm
http://dx.doi.org/10.4236/apm.2014.44018
http://dx.doi.org/10.4236/apm.2014.44018
http://www.scirp.org/
http://www.scirp.org/
http://www.scirp.org/
mailto:gadegla@yahoo.fr
http://creativecommons.org/licenses/by/4.0/


G. Degla 
 

 
109 

2. Preliminary Definitions and Notations 
We say that a nonempty subset   of a Banach space X  is a cone if it is closed and  

1) + ⊂   ,  
2) , 0λ λ⊂ ∀ ≥   and 
3) ( ) { }0 .− =    
In other words, the cones considered here are closed convex cones with vertex at 0.  
A cone   of a Banach space X  induces a partial ordering on X  by the relation  

   if and only if ,x y y x− ∈  

and it follows that  
0   if and only if .x x∈   

Therefore ( ),X   is called an ordered Banach space with   as the positive cone of X . Note that we 
write x y

 when x y  and x y≠ ; i.e.,  

{ }if and only if 0 .x y y x− ∈   

A cone   of a Banach space X  is said to be generating if X = −  , and total if X = −  .  
Given a Banach space X  with dual X ′ , if a cone   of X  is generating, then the set defined by  

{ }: / , 0,f X f u u′ ′= ∈ ≥ ∀ ∈   

is a cone of X ′  called the dual cone of  . 
The positive cone   of an ordered Banach space X  is said to be normal if there exists a positive constant 

1c ≥  such that  

, , .x y x y x c y∀ ∈ ⇒ ≤  

When 1c = , such an ordered Banach space is said to be monotone.  
Let ( ),X   be an ordered Banach space. Then  

● A linear operator :T X X→  is said to be positive if  

( ) ,T ⊂   

and strongly positive if  

{ }( )\ 0 .T ⊂
。

   

● An arbitrary operator :T X X→  is said to be increasing if  
, , ,x y X x y Tx Ty∀ ∈ ⇒   

strictly increasing if  
, , ,x y X x y Tx Ty∀ ∈ ⇒   

and strongly increasing if  

, , .x y X x y Ty Tx∀ ∈ ⇒ − ∈

。

  

We shall say that T  is increasing on   if  

, , .x y x y Tx Ty∀ ∈ ⇒   

Observe that if an operator T  is increasing on   and satisfies ( )0 0T = , then it leaves invariant  .  
Besides in our applications, we shall use the following terminology based on Degla [4] [5], Elias [10] and 

Coppel [11]. Given fixed positive integers ,n m  and 1, , mk k  such that 12 m
iim k n

=
≤ ≤ =∑ , and real num- 

bers 1 ma a a b= < < = , we shall denote by P  the Levin’s polynomial defined by ( ) ( )1
ikm

iiP t t a
=

= −∏  

and we shall deal with disconjugate thn  order differential operators on [ ],a b  of the form  
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( ) ( ) ( ) ( )1
1: n n

nLx x p t x p t x−= + + +  

where the coefficients 1, , np p  are given continuous functions on [ ],a b , that is, an thn -order differential 
linear operator L  such that every nontrivial solution of the differential equation 0Lx =  has less than n  
zeros counting their multiplicities. 

Recall that an thn -order differential linear operator L ;  
( ) ( ) ( ) ( )1

1
n n

nLx x p t x p t x−≡ + + +  

with [ ]( )1, , ,np p a b∈  , is disconjugate on [ ],a b  if and only if L  has a Polya factorization; that is, there 
exist n  smooth positive functions [ ]( )1 ,n i

iv a b− +∈ , 1 i n≤ ≤ , such that  

[ ]( )1
1

1 1 for every , ;n
n

n

Lx v v D D D x x a b
v v

= ∈    

where d
d

D
t

=   

cf. [11].  
Furthermore G  will denote the Green function associated to the Boundary Value Problems (in short BVP’s)  

( ) ( )
0,

0, 1 , 0 1,j
i i

Lx

x a i m j k

=


= ≤ ≤ ≤ ≤ −
 

and besides, given [ ]( ),f a b∈ , we shall adopt the notation ( )sup
a t b

f f t
∞

≤ ≤
=  and  

( ) ( )
( )

( )

( ) if 0
.

0 if 0
f

f t f t
f tS t

f t

 ≠
= 
 =

 

As in [5], we shall also consider the Banach space  

[ ]( ) ( ) ( ) ( ){ }, : , ; for a positive constantX u a b u t c P t a t b c c u= ∈ ≤ ≤ ≤ =  

equipped with the norm  

( )
( )1 , ,

sup
m

P
t a a

u t
u u

P t∞
≠

= +


 

and ordered by the cone  

( ) ( ){ }: 0, .Pu X S t u t a t b= ∈ ≥ ≤ ≤  

Now we are ready to state a variant of nonlinear Krein-Rutman theorems.  
Proposition 1.1. Let X  be a real Banach space,   a nontrivial cone in X  and assume that :T X X→  

is a positively 1-homogeneous, compact and continuous operator. 
a) If T  is increasing on   and there exist a positive vector 0u , a positive real number ω  and a 

positive integer m , such that  

,mT u uω                                        (i) 

then T  has a positive eigenvalue 
1
m

oλ ω
−

≥  with a positive eigenvector.  
In case that T  is linear, its spectral radius ( )r T  is such a positive eigenvalue and satisfies  

( )
1

max ; 0, 0, .mmr T v T v vα α α
−  = > ∃ 

  
   

b) If   has a nonempty interior 
。

  and 0T ≡/  with the property  

{ }1 2 2 1 2 1, , 0 ,x x x x Tx Tx∀ ∈ − ∈ ⇒ − ∈ 

。

                          (ii) 
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then T  has a unique positive eigenvalue and a unique positive normalized eigenvector.  
In case that T  is linear, this positive eigenvalue coincides with the spectral radius ( )r T  of T , is alge- 

braically simple and has the following variational characterization:  

( ) 1max ; 0, 0, .r T v Tv vα α
α

 = > ∃ 
 

   

Remark 1.1. For a linear operator T , the condition (ii) of b) is equivalent to  

{ }, 0 .x X x Tx∀ ∈ ∈ ⇒ ∈ 

。

                               (iii) 

Furthermore the conclusion of b) can be heuristically motivated by the application of the Krein-Rutman 
theorem to the quotient space ker/ TX .  

Remark 1.2. The above theorem is readily applicable to any positively 1 -homogeneous, compact and con- 
tinuous operators that are strongly positive on the cone of an ordered Banach space.  

Remark 1.3. The proof of Theorem 2 of [8] does not fully hold but is valid for strongly increasing operators. 
The reason is that its conclusion (2.9) is not correct and should be read 0λ λ≤  which does not contradict the 
inequality (2.10) therein; that is 0λ λ≥ .  

The fact is that for instance in the Banach space 2  ordered by the cone  

( ){ }2
1 2 1 2, : 0, 0 ,K x x x x+= = ≥ ≥  

we have  

( ) ( ): 2, 2 : 1,2u v= =
 

and so with 1 0α β= = >  it is clear that  
.u vα β α β>   

Likewise the inequality “ ( )
00 1 1xx x xδ− ” of the paragraph 4 of the proof of theorem 4.8 of [9] does not 

contradict the definition of “ ( )
0 1 1x x xδ ” as can be seen with ( )0 : 2, 2x =  and ( )1 : 1, 2x = −  for which 

( )
0 1 1x xδ =  by simply considering again the ordered Banach space ( )2 2, + 

.  

Therefore we are led to raise the following 
Open Question: Does there exist a strictly increasing and positively 1-homogeneous compact operator of 

which positive eigenvalue is not simple?  
Remark 1.4. For a positive compact linear operator T , the condition (i) of Part a) of Proposition 1.1 is 

equivalent to  

( ) 0.r T >                                       (iv) 

The following example illustrates Proposition 1.1.  
Example 1.5. Consider the system of boundary value problems:  

( )
( ) ( )

,

0 1 0,

x Q t x

x x

λ′′− =


= =
 

with λ  as a real parameter and  

1,1 1,2

2,1 2,2

q q
Q

q q
 

=  
 

 

where the ,i jq  are assumed to be nonnegative continuous functions on 1][0,  such that on the one hand 1,1q  
and 2,1q  have a common support 1 , and on the other hand 1,2q  and 2,2q  have a common support 2  such  

that 1 2 ≠ ∅  ; i.e. 0Q ≡/ , and where the unknown vector-valued function 1

2

x
x

x
 

=  
 

 is clearly searched in  

[ ]( )2 20,1 ;  with zero Dirichlet boundary condition.  
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Then this system has a unique normalized solution with positive component functions on the interval ( )0,1  
corresponding to a unique positive value of the parameter λ .  

Justification. We shall make use of Proposition 1.1 for the sake of illustration that may motivate other in- 
teresting works. Indeed it is immediately seen that for nontrivial solutions, we have 0λ ≠ , and the system of 
BVPs  

( ) ( )
,

0 1 0
x Qx

x x
λ′′− =

 = =
 

is equivalent to the integral equation  

( ) ( ) ( ) ( )1

0

1, d , 0 1;g t s Q s x s s x t t
λ

= ≤ ≤∫  

with  

( )
( )
( )
1 , 0 1,

,
1 , 0 1.

t s t s
g t s

s t s t

− ≤ ≤ ≤= 
− ≤ ≤ ≤

 

Moreover by considering the special space of continuous vector-valued functions  

[ ]( ) ( )
( ) ( )20,1 , : is bounded on the interval 0,1

1
u t

X u
t t

  = ∈ 
−  

  

endowed with the norm 
P⋅  defined for any ( )1 2,u u u X= ∈  by  

( )
( )

2

0 11
,sup

1
i

iP ti

u t
u u

t t∞
< <=

 
= +  − 
∑  

which contains all possible solutions of our eigenvalue problem, and by letting  

1

2

: 0; 1,2 ,i

u
u X u i

u
   = = ∈ ≥ =  
   

  

we see that ( ),X   is a normal ordered Banach space. Furthermore the non-zero linear operator :T X X→ ; 
u Tu  defined by  

( ) ( ) ( ) ( )1

0
, d , 0 1,Tu t g t s Q s u s s t= ≤ ≤∫  

is compact and satisfies  

( ) { }0 ;T ⊂ 

。

   

with  

( ) ( )
( )1 2 0 1

, : inf 0; 1,2 ,
1
i

t

u t
u u u X i

t t< <

  = = ∈ > = 
−  

。

  

by the strong classical maximum principle.  
The conclusion follows.   

3. Bifurcation from Infinity of Conjugate Multipoint BVPs 
This part can be considered as a more elaborated application of the main result of the previous section.  

In the sequel we shall make use of the notations mentioned in Section 2. According to this,  

[ ]( ) ( ) ( ) ( ){ }, : , ; for a positive constantX u a b u t c P t a t b c c u= ∈ ≤ ≤ ≤ =  

equipped with the norm  
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( )
( )1 , ,

: sup
m

P t a a

u t
u u

P t∞
≠

= +


 

and ordered by the cone  

( ) ( ){ }: 0,Pu X S t u t a t b= ∈ ≥ ≤ ≤  

is an ordered Banach space.  
Then the following theorem holds.  
Theorem 2.1. Let [ ]( ),q a b∈  satisfy  

( ) ( ) [ ]0 and 0, , .Pq S t q t t a b≡ ≥ ∀ ∈/  

Moreover let [ ]: ,h a b × →   be a continuous function such that  

( )
| |

,
lim 0 .
x

h t x
uniformly with respect to a t b

x→∞
= ≤ ≤  

Then there exists a continuum   of positive solutions of the BVPs  

( ) ( )
( ) ( )

, ,

0, 1 , 0 1,j
i i

Lx q t x h t x

x a i m j k

λ− =

= ≤ ≤ ≤ ≤ −
                          (Eλ) 

and 0oε >  such that  
1) For each 0 oε ε< < , there is a corresponding subcontinuum ε  contained in  

( ) ( )1
1, : , PU u q uε λ λ λ ε
ε

 = − < > 
 

 

which connects ( )( )1 ,qλ ∞  and Uε∂ . 
2) If ( ),

ol lx Uεµ ∈  with l Px →∞  as l →∞ , then 

( )1
l

l
l P

x
converges to q and converges uniformly

x
µ λ  

(in fact in PX ) to the unique normalized nontrivial solution of  

( )
( ) ( )

1 ,

0, 1 , 0 1;j
i i

Lu q t u

u a i m j k

λ =


= ≤ ≤ ≤ ≤ −
 

where ( )1 1: qλ λ= .  
Remark 2.2. An analogue version of Theorem 2.1 can be stated with ( )( )1 ,q a b∈L  satisfying the following 

property:  

( ) ( ) ( )0 on a set of positive measure and 0 for a.e. , .Pq S t q t t a b≠ ≥ ∈  

Remark 2.3. It is worth observing that Theorem 2.1 is a generalized version of a result of [1] since this 
Theorem 2.1 concerns multipoint conjugate boundary conditions and deals with a function q  that may vanish 
on subintervals of [ ], .a b   

For a proof of this Theorem 2.1, we need the lemma below which can also be deduced from Proposition 1.1.  
Lemma A. [5] 
If ( )( )1 ,q a b∈L  satisfies 0q ≠  on a set of positive measure and ( ) ( ) 0PS t q t ≥  for a.e. ( ),t a b∈ , then 

the eigenvalue BVPs  

( )
( ) ( )

, for almost every

0, 1 , 0 1j
i i

Lx q t x t

x a i m j k

λ =


= ≤ ≤ ≤ ≤ −
                          (Qλ) 

has a positive eigenvalue 1λ  which is simple with an eigenfunction 1u  such that ( )
( )

1inf 0
it a

u t
P t≠

> . 
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Now we recall a standard result on bifurcation theory which together with Lemma A will prove our Theorem 
2.1 which is about a bifurcation from infinity for conjugate multipoint BVPs.  

Lemma B. [1] [6] [7] [12] 
Let E  be a real Banach space with norm ⋅ . Assume that  

[ ]: ,T a b E E× →  

is such that for each [ ],a bλ ∈ , ( ),T λ ⋅  is a compact linear operator, and for each u E∈ , ( ),T u⋅  is 
differentiable on [ ],a b . Let E⊂  be a cone with nonempty interior, 

。

 .  
Moreover suppose that  

[ ]: ,H a b E E× →  

is a completely continuous map satisfying  
( ),

lim 0 uniformly in ,
u

H u
u
λ

λ
→∞

=  

and consider the equation  
( ) ( ), , .u T u H uλ λ= +  

If ] [1 ,a bλ ∈ , 1u ∈
。

  with 1 1u = ,  

( )( ) ( ) ( ) ( )( )1 1 1 1 1ker , span , and , R , ;TI T u u I Tλ λ λ
λ
∂

− ⋅ = ∉ − ⋅
∂

 

then there exist 0oε >  and a continuum [ ],a b⊂ ×   such that for any 0 oε ε< < , there exists a cor- 
responding subcontinuum ε ⊂   contained in  

( ) 1
1, : ,U u uε λ λ λ ε
ε

 = − < > 
 

 

which connects ( )1,λ ∞  and Uε∂ . Moreover if ( ),
ol lx Uεµ ∈  with lx →∞  as l →∞ ; then  

1 1and .l
l

l

x
u

x
µ λ→ →  

Proof of Theorem 2.1. First note that all possible solutions of the BVP’s (Eλ) lie in X  since they are of the 
form ( ) ( ), d ,

b

a
t G t s f s s a t b≤ ≤∫ ; where f  is continuous and G  is the Green function of the BVPs  

( ) ( )
0,

0, 1 , 0 1j
i i

Lx for almost every t

x a i m j k

=


= ≤ ≤ ≤ ≤ −
 

with the property that ( ) ( )
( )
,

,
G t s

t s
P t


 is bounded on ( ) [ ]1

11 , ,m
i ii a a a b−

+=
×



. 

Now (Eλ) is equivalent, by the properties of the Green function G , to the following equation:  
; .qu T u Hu u Xλ− = ∈  

where ( ) ( ) ( ) ( ), d ,
b

q a
T u t G t s q s u s s a t b= ≤ ≤∫  

and ( ) ( ) ( )( ), , d , .
b

a
Hu t G t s h s u s s a t b= ≤ ≤∫  

Moreover as seen in the proof of Lemma A [5], the operator :qT X X→  is a non-zero positive compact 
linear operator satisfying  

( ) { }0 ,qT ⊂ 

。

   

while :H X X→  is completely continuous and satisfies  

lim 0
Pu

P

Hu
u→∞

=  
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by the assumptions on h . Indeed:  
1) We show that :H X X→  is completely continuous.  
Step 1. H  maps bounded subsets into compact subsets. Let ( ) 1i i

u
≥

 be a sequence of elements of X  of 
which norms are bounded, say by a constant real number 0C > . Let  

( ) ( ){ }sup , : , .oM b a h a b Cθ ξ θ ξ= − ≤ ≤ ≤  

Then, on one hand,  

, ,iu C i
∞
≤ ∀  

and on the other hand, we have for all [ ]1 2, ,t t a b∈ :  

( ) ( ) ( ) ( ) ( )( )

( ) ( )

( ) ( )

2 1 2 1

2 1

2 1

, , , d

, , d

, , .sup

b
i i ia

bo
a

o
a s b

Hu t Hu t G t s G t s h s u s s

M
G t s G t s s

b a
M G t s G t s

≤ ≤

− ≤ −

≤ −
−

≤ −

∫

∫  

Hence for all i   

( ) ( ) ( )2 1 2 1 ;i i o GHu t Hu t M t tω− ≤ −  

where Gω  is the modulus of continuity of G . Moreover as a continuous function, G  is uniformly conti- 
nuous on the compact set [ ] [ ], ,a b a b× , and so ( )

0
lim 0G
δ

ω δ
+→

= . Therefore the Ascoli theorem implies the  

existence of a subsequence ( )li l
u  of ( )i i

u  such that  

[ ]uniformly on ,
li

Hu v a b→  

for some [ ]( ),v a b∈ .  
By applying again Ascoli theorem we see that there exists a subsequence of ( )li l

u , still denoted by ( )li l
u , 

such that  
( )
( ) ( )( ) ( )
,

, d
l

b
ia

G t s
h s u s s w t

P t
→∫  

uniformly on ( )1
11 ,m

i ii a a−
+=

 for a suitable [ ]( ),w a b∈ . Indeed, to realize this claim, let 0>  and choose 
( ) 0η η= >  satisfying  

( )
1

min , ;
2 8 o

b ab a
c M

η
− − <  

  


 

where 1c  is a finite upper-bound of the ratio ( )
( )
,G t s

P t
.  

Consider now on the compact [ ] [ ], ,a b a bη η× + −  the function gη  extending continuously the quotient 

function ( ) ( )
( )
,

,
G t s

t s
P t


. The function gη  is uniformly continuous on [ ] [ ], ,a b a bη η× + −  and so there 

exists ( ) 0δ δ= >  for which  

( ) ( )
;

2 1g
oMη

ω δ <
+


 

Therefore, denoting by lw  the continuous extension of li
Hu

P
 to [ ],a b , i.e.,  

( )
( ) ( )( ),

: , d
l

b
l ia

G t s
w x h s u s s

P t∫
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we have for all [ ]1 2, ,t t a b∈  satisfying 2 1t t δ− < :  

( ) ( ) ( ) ( )

( ) ( )

1
2 1 2 1

2 1

4
, , d

, ,sup
2

, .
2 2

bo o
l l a

h h o
a s b

c M M
w t w t g t s g t s s

b a b a

g t s g t s M

l

η
η ηη

η η

η
−

+

+ ≤ ≤ −

− ≤ + −
− −

≤ + −

≤ + ≤ ∀

∫


 


 

This shows that the sequence of functions ( )l l
w  is equicontinuous on [ ],a b  and proves the claim since the 

functions lw  are also uniformly bounded as  

1.
li

l o

Hu
w M c

P∞
∞

= ≤  

Now from the former convergence; i.e. 
li

Hu v→ , we deduce that for all 1, , mt a a≠  ,  

( )
( )

( )
( )

.li
Hu t v t

P t P t
→  

Thus ( ) ( )
( )

v t
w t

P t
=  for ( )1

11 ,m
i iit a a−

+=
∈


 and it follows that ( )li l
Hu  converges to v  in X . 

Step 2. If ( )i i
u  converges to some u  in ( ) ( ), ,PX X

∞
⋅ ⋅ , then the Lebesgue dominated convergence 

theorem implies that ( )( )i i
Hu t  converges to ( )Hu t  for each [ ],t a b∈ .  

It follows from the combination of Steps 1& 2  that H  is completely continuous; i.e., H  maps bounded 
sets into compact sets and is continuous.  

2) We show that ( )o PHu u=  as 
Pu →∞ .  

To this end, let 0ε >  be arbitrary. Then by assumption there exists 0A >  such that  

( )
( )( )1

, for all and ;
4

h t x x x A a t b
b a c G

ε

∞

≤ ≥ ≤ ≤
− +

 

where 1 0c >  is an upper-bound of ( )
( )
,G t s

P t
 on ( ) [ ]1

1=1 , ,m
i ii a a a b−

+ ×


. By setting  

( ){ }: max , : ,M h t x a t b x A= ≤ ≤ ≤ , we have at once  

( )
( )( )1

, for all and .
4

h t x M x a t b x
b a c G

ε

∞

≤ + ≤ ≤ ∈
− +

  

Therefore for every u X∈ , we have on one hand  

( ) ( ) ( )( ) ( ), , d , ,
4

b

a
Hu t G t s h s u s s M G b a u a t bε

∞ ∞
≤ ≤ − + ≤ ≤∫  

and on the other hand  

( )
( ) ( ) ] [1

1 11, , .
4

m
i ii

Hu t
Mc b a u t a a

P t
ε −

+=∞
≤ − + ∀ ∈



 

Thus  

( )( )1 .
2P

Hu M b a c G uε
∞ ∞

≤ − + +  

Now by putting  

( )( )1: 2 Mb a c Gα
ε∞

= − +  
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we see clearly that  

, .P
P

P

Hu
u X u

u
α ε∀ ∈ > ⇒ <  

That is  

lim 0.
P

P

u
P

Hu
u→∞

=  

The result follows by applying Lemma B.   
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