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Abstract 
The newsvendor model is the cornerstone of most periodic inventory models; however, it distorts 
the correct timing of inventory costs and thus misses the optimal solution of the inventory system. 
This work presents a modification of the classical newsvendor model that considers the holding 
cost according to the stock-levels within the selling period rather than according to the stock-level 
at the end of it. The selling period (for example, a season) is divided into equal-time epochs (for 
example, one-day epochs), where demands are not necessarily identical across epochs or inde- 
pendently distributed. A mathematical model is formulated to find the optimal order quantity 
which maximizes the expected profit. We show: 1) that the profit function is concave; 2) that the 
structure of the optimality equation is similar to that of the classical newsvendor model; 3) how to 
attain the real tradeoff between the expected profit and the service level. Finally, we propose 
three heuristics to approximate the optimal order quantity and two bounds on its value, which are 
easy to implement in practice, and evaluate their performances using extensive numerical exam- 
ples in a factorial experimental design. 
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1. Introduction 
In contrast to deterministic demand models, such as the economic order quantity (EOQ), which assume conti- 
nuous accounting of inventory costs, most stochastic periodic-review inventory models assume that inventory 
costs are calculated according to the inventory level at the end of the replenishment period. For example, the 
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newsvendor problem assumes only overage and underage costs (denoted co and cu, respectively) and the optimal 
policy is obtained when the probability of not stocking out in a review cycle (a probability referred to as the type 
1 service level) is equal to ( )u o uc c c+ . It seems that developers of stochastic models use this cost accounting 
approach as a means of increasing their models’ mathematical tractability. However, when the period is not 
short, this accounting approach might lead to substantial loss, as is shown by Rudi et al. [1].  

Only recently have stochastic periodic review models been modified to consider the real times at which in- 
ventory costs occur within each period. Rao [2] analyzed the long-run average cost in a periodic review ( ),R T  
model with backlogging, in which inventory-related costs accrue in continuous time. Rudi et al. [1] dealt with a 
similar problem and suggested an approximation formula for the optimal order-up-to level when the period 
length is given and demand is a Brownian motion process. Shang and Zhou [3] and Shang et al. [4] analyzed a 
full backlogging serial inventory system with inventory costs that accrue at evenly-spaced points within the pe- 
riod. To minimize the average cost per period they suggest a heuristic procedure based on calculating lower and 
upper bounds for the cost function. 

The four papers above deal with a multi-period model and share few underlying assumptions: full backlog- 
ging of unsatisfied demand and no spoilage; holding and shortage costs that are only duration-dependent; and 
stationary demand process within the period. For example, Rudi et al. [1] show that, in a full backlogging sys- 
tem in which both holding and shortage costs are accounted for continuously, the optimal policy is obtained 
when the fill rate (referred to as the type 2 service level) is equal to ( )u o uc c c+ . However, this result does not 
hold in the case of lost sales, in which only the holding cost is duration dependent, whereas the cost of a 
stock-out predominantly depends on the stock-out quantity. This case is applicable to perishable items such as 
fresh food and fashion items, which are mostly analyzed under the assumptions of deterministic demand and 
forbidden shortages (see, e.g., Avinadav and Arponen [5]; Avinadav et al. [6], Avinadav et al. [7]; Herbon [8]; 
Dash et al. [9]).  

The current research seeks to explore how the two different approaches to inventory cost accounting affect the 
solution of a periodic review model with stochastic demand. To this end, we use the classical newsvendor prob- 
lem as a benchmark (Arrow et al. [10], Hadley and Whitin [11]), reformulate it, and solve it according to the 
real-time holding cost accounting within the period. Our approach, which is demonstrated in the following sec- 
tions, can be extended to more elaborate periodic review inventory models, such as multi-period models with 
partial backlogging and spoilage, and to include lead time, duration-dependent shortage cost, fixed order cost 
and non-stationary inventory costs within the selling period.  

The selling period is split into several equal-time epochs (see also [3] and [4]) according to the minimal dura- 
tion in which holding costs accrue (e.g., a business day, a week, etc.). The approach of splitting the selling pe- 
riod into epochs was previously suggested by Sen and Zhang [12] as a means of considering multiple demand 
classes, and by Chung et al. [13] as a means of allowing for in-season price adjustments. A common assumption, 
which is also assumed here, is that unsatisfied demand is lost, so that shortage leads to a loss of profits, which 
depends only on the stock-out quantity (and not on the duration). Actually, such a model was suggested as a di- 
rection for future research by Rudi et al. [1], who analyzed a full backlogging inventory system, and it is appli- 
cable to many inventory systems of perishable items, such as supermarkets and fashion stores.  

Although the selling period is divided into epochs to handle holding costs correctly, we assume that inventory 
cannot be replenished within the period, even when inventory is exhausted. This assumption is fundamental in 
all periodic review models and is valid for several reasons, such as fixed replenishment dates dictated by the 
supplier/producer (e.g., in food products) and lead-time (including production time) that is equal to or greater 
than the selling period (e.g., in fashion stores). In contrast to the models in [1] [4], in which an assumption of 
stationary demand process is essential, our model allows for non-stationary demand. Relaxation of the assump- 
tion of stationary demand is important in order for our model to be applicable to the case of perishable items, 
which are characterized by deteriorating demand within their selling period due to loss of freshness and custom- 
ers’ preference for fresh items (see, e.g., [5]-[8]). Typically, in order to free up space for new or fresh items, 
vendors of perishable items sell all leftover units at salvage value at the end of the selling period or even distri- 
bute them for free to save scrap costs (see, e.g., Cachon and Kök [14]). Accordingly, we analyze examples in 
which the expected demand in each epoch is not greater than that of its predecessor epoch. This is an extension 
of the deterministic negative time-effect within the selling period, used in [5].  

The main achievements of this study are 1) formulating the expected profit function for real-time holding cost 
accounting (in Section 2); 2) showing that the expected profit function is concave, formulating the optimality 



T. Avinadav 
 

 
79 

equation as the classical newsvendor formula with modified demand distribution and cost parameters, and sug- 
gesting a search algorithm to obtain the optimal order quantity (in Section 3); and 3) suggesting simple heuris- 
tics to obtain the optimal order quantity and bounds on its value (in Section 4), and evaluating their performance 
(in Section 5). 

2. Model Formulation 
We assume the standard assumptions of the newsvendor problem, where unsatisfied demand results only in loss 
of profit, and overage units are sold at salvage value to a secondary market. Regarding the main feature of the 
model, division of the selling period into epochs, we assume that the cost of holding a single item in stock is 
constant across epochs. On the other hand, we do not assume that demands across epochs are independent or 
identical. We develop the model for discrete demand to allow a point mass probability of zero demand (which 
characterizes inventory systems with small demand rates), and to support our numerical examples (Section 5), 
which assume a Poisson demand process (as is common in the literature). Extension to more elaborate models of 
the newsvendor problem is not complicated, and is specifically simple for models with continuous demand and 
with duration-dependent shortage costs. 

In the rest of this paper we use the following notations: 
n = the number of epochs in which holding costs are accounted for during the selling period. 
dk = the demand in the kth epoch. 

kD  = the cumulative demand in the first k  epochs ( 1
k

k iiD d
=

= ∑ ). 
( )kP ⋅  = the probability function of kD . 
( )kF ⋅  = the cumulative distribution function (CDF) of kD . 

µk = the mean of kD . 
σk = the standard deviation of kD . 
Q  = the quantity of an order, which is the decision variable. 

kI  = the stock level after the first k  epochs ( ( ) { }max ,0k kI Q Q D= − ). 
I  = the total stock during the selling period stored for an epoch ( 1( ) ( )n

kkI Q I Q
=

= ∑ ). 
h = the holding cost of an item for an epoch. 
c = the purchasing cost of an item from the supplier. 
r = the retail price of an item within the selling period (r > c). 
s = the salvage value of an item at the end of the selling period (0 ≤ s < c). 
π  = the expected net profit, which is the objective function. 
The expected profit from selling units is a function of three elements: purchase cost, revenue, and stock hold- 

ing costs. Our formulations of the first two elements do not diverge from those of the standard newsvendor 
model: the purchase cost is cQ, and the expected revenue, which includes revenue from units that are sold within 
the selling period, as well as the salvage value of the remaining units, is 

( ) ( )( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( )( )
0 1 0 0 1

Q Q Q

n n n n n
j j Q j j j Q

n n

REV Q rj s Q j P j rQ P j r s jP j sQ P j rQ P j

sQ r s Qµ η

∞ ∞

= = + = = = +

= + − + = − + +

= + − −

∑ ∑ ∑ ∑ ∑
    (1) 

where  

( ) ( ) ( )
1

k k
j Q

Q j Q P jη
∞

= +

= −∑                              (2)  

is the expected shortage during the first k  epochs. The expression on the right-hand side of Equation (1) can 
be explained as follows: all purchased units yield a guaranteed revenue per unit that is equal to the salvage value 
s , where the expected sales volume during the entire period (expected demand less expected shortage) yields 
additional revenue per unit beyond the salvage value ( )r S− .  

The expected total stock over the whole period is  

( ) ( ) ( ) ( )
1 0 1

Qn n

k k k
k j k

E I Q Q j P j Q Qµ η
= = =

 
= − = − +       

 
∑ ∑ ∑ .                   (3) 
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Note that ( )E I Q    replaces the commonly used “end-of-period” stock calculation, according to which the 
expected total stock is ( )nE I Q   . Finally,  

( ) ( ) ( ) ( ) ( )( ) ( ) ( )( )
1

π
n

n n k k
k

Q REV Q cQ hE I Q r s Q c s Q h Q Qµ η µ η
=

= − − = − − − − − − +   ∑ .     (4) 

Equation (4) fits also the continuous demand case, and as shown in Appendix A, it is a generalization of the 
classical newsvendor profit function, which is obtained by substituting n = 1 and s = 0.  

3. The Optimal Order Quantity 
The profit function in the classical newsvendor problem is known to be concave (Hadley and Whitin [11], p. 
299). The following lemma shows that this property is also valid in our model. Let ( ) ( ) ( )π π 1 πQ Q Q∆ ≡ + −  
be the difference equation of the profit.  

Lemma 1. ( )π Q∆  is non-increasing in Q . 
Proof. By Equation (2),  

( ) ( ) ( ) ( )
1

1 1k k k k
j Q

Q Q P j F Qη η
∞

= +

+ − = − = −∑ , 

so that, by Equation (4),  

( ) ( ) ( ) ( )
1

π
n

n k
k

Q r c r s F Q h F Q
=

∆ = − − − − ∑ .                          (5) 

Since ( )kF Q  is non-decreasing in Q , then ( )π Q∆  is non-increasing in Q .  
Let *Q  be the optimal order quantity. Then, by Lemma 1, we state 
Theorem 1. ( )π Q  is concave and *Q  is the smallest integer Q  that satisfies 

( ) ( ) ( )
1

n

n k
k

r s F Q h F Q r c
=

− + ≥ −∑ .                           (6) 

Dividing Equation (6) by r s nh− + , *Q  is the smallest integer Q  that satisfies  

( ) u
X

o u

c
F Q

c c
≥

+
,                                 (7) 

where ( ) ( )
1

n

X k k
k

F Q w F Q
=

≡ ∑ , 0k
hw

r s nh
= >

− +
, 1, 2, , 1k n= − , n

r s hw
r s nh
− +

=
− +

, uc r c= −  and  

oc c s nh= − + . Since 
1

1
n

k
k

w
=

=∑  then, according to Chatfield and Theobald [15], XF  is the CDF of a mixture  

(of random variables). 
Actually, the random variable X can be considered as the demand over a subinterval of the selling period; this 

subinterval starts at the first epoch, and its length (in epochs) is a random variable over the support [ ]1,n  with 
probabilities that correspond to the cost ratios kw , 1, 2, ,k n=  . Thus, by Equation (7), we conclude that con- 
sidering the real-time holding cost accounting within the selling period results in the classical newsvendor opti- 
mality condition (Nahmias [16], p. 244) with modified demand distribution and cost parameters. Specifically, 
the mixture X  replaces the demand over the entire period, nD ; uc  denotes now the maximal loss of profit 
due to lost sales (as if all sales take place immediately at the start of the selling period such that sold stock does 
not accumulate holding costs); and oc  denotes the loss due to selling a unit at salvage value plus the holding 
cost incurred from holding the unit in inventory for the entire selling period.  

Analytical extraction of *Q  is intractable for most demand processes, including stationary ones. This situa- 
tion is not uncommon in the classical newsvendor problem as in many cases there is no analytical expression for 
the inverse CDF of the demand over the entire selling period (e.g., for the Poisson distribution). Due to the mo- 
notonicity of any CDF, the value of *Q  can be found using efficient line-search algorithms, such as the bisec- 
tion search (Bazaraa et al. [17]) adjusted to integers. 

Since demand is a nonnegative random variable, it is clear that ( ) ( )1k kP D Q P D Q+> ≤ > , 1, 2, , 1k n= − , 
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for all Q  (i.e., the probability that demand exceeds a certain value during a given interval of time is not greater 
than the probability that it will exceed that value during a longer interval of time). According to Whitmore and 
Findlay [18], 1kD +  stochastically dominates kD , denoted by 1k kD D + . Then, by the definition of ( )XF Q , 
we state  

Theorem 2. nX D  (i.e., ( ) ( )X nF Q F Q≥ ).  
Since the optimal order quantity in the classical end-of-period accounting approach is ( )( )1

n u o uF c c c− +  and 
that under the real-time accounting is ( )( )1

X u o uF c c c− + , then, by Theorem 2. 
Corollary 1. Disregarding the real-time of holding cost accounting leads to a higher-than-optimal order quan- 

tity. 

The Relation between the Expected Profit and the Service Level 
Disregarding the real-time of inventory cost accounting can also affect firms in which the service level is im- 
portant. Examples for such firms are non-profit organizations, which operate on the basis of budget, and firms in 
which stock-out may cause long term reduction of demand. The relation between the expected profit and the 
service level is illustrated in Figure 1. The expected profit is a concave function of the quantity ordered, attain- 
ing its maximum at ( )( )* 1

X u o uQ F c c c−= + , whereas the service level is an increasing function of the quantity 
ordered. Specifically, any attempt to increase the type 1 service level above ( )*

nF Q  causes a decrease in the 
expected profit. Accordingly, the firm decides on the order quantity while considering the tradeoff between de- 
creasing the expected profit and increasing the service level. Using the classical end-of-period accounting, the 
firm does not observe the real tradeoff (due to incorrect profit function). For each given service level the firm 
observes an expected profit that is higher than the real one, so that a wrong decision on the quantity ordered 
might be inevitable. 

4. Heuristic Order Quantities 
For practitioners, a search procedure to obtain the optimal order quantity in each replenishment period might not 
be an efficient option, given that inventory systems may hold numerous items, whose cost and demand parame- 
ters are likely to change across periods. For such cases we develop heuristic solutions that can be calculated with 
a simple formula. These heuristic solutions are based on the classical newsvendor formula with adjusted demand 
distribution or inventory costs. Moreover, these heuristics are also applicable when only partial information on 
the demand process is available, as discussed in 4.3. 

4.1. Bounds of Q*  

Simple and intuitive upper and lower bounds on the optimal order quantity can be based on concentrating the 
entire demand in the first epoch and in the last epoch, respectively. When the entire demand is concentrated in  
 

 
Figure 1. Illustration of the relation between the expected profit and the service 
level (DSL denotes the desired service level).                                      
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the first epoch, ( ) ( )k nF Q F Q=  for 1, 2, , 1k n= − , and the optimality condition in Equation (6) is adjusted 
to the smallest integer Q , denoted by *

UQ , that satisfies  

( ) ( )nr s nh F Q r c− + ≥ − .                             (8) 

When the entire demand is concentrated in the last epoch, ( ) 1kF Q =  for 1, 2, , 1k n= − , and the optimal- 
ity condition in Equation (6) is adjusted to the smallest integer Q , denoted by *

LQ , that satisfies  

( ) ( ) ( )1nr s h F Q n h r c− + + − ≥ − .                          (9) 

Comparing Equation (8), (9) and (6) yields 
Theorem 3. * * *

L UQ Q Q≤ ≤ .  
Using algebraic manipulations, Equation (8) can be written as the smallest integer Q  that satisfies 
( ) ( )n u o uF Q c c c≥ + . Thus, *

UQ  is the solution of the classical newsvendor problem with underage and over- 
age costs of the exact optimality condition in Equation (7). Actually, *

UQ  is the solution of the classical news- 
vendor problem where the holding costs of units sold within the selling period are neglected, but the holding 
cost of units that are left over at the end of the period are considered (Nahmias [16], p. 284). 

Similarly, using algebraic manipulations, Equation (9) can be written as the smallest integer Q  that satisfies 
( ) ( )L L

n u o uF Q c c c≥ + , where ( )1L
uc r c n h= − − − . Thus, *

LQ  is the solution of the classical newsvendor 
problem with an exact overage cost and a reduced underage cost. The adjustment of the underage cost reflects a 
case in which all units are held in inventory for 1n −  epochs, until demand occurs in the last epoch, so that the 
unit purchase cost actually includes an additional component, ( )1n h− , which is the fixed holding cost in this 
scenario before the sale begins. 

4.2. Approximations of Q*  

A naïve heuristic to approximate *Q  is using the floor function (i.e., the largest integer from below) on the av- 
erage of the bounds, * * *0.5A L UQ Q Q = +  . It is clear that relative to other values of ( )* *,L UQ Q Q∈ , *

AQ  mini- 
mizes the worst deviation from *Q . However, the actual performance of *

AQ  should be further investigated 
(see Subsection 5.1). 

We continue with more sophisticated approximations, which are based on additional information on the de- 
mand process. Although it is difficult to find a closed-form expression of the inverse CDF of X (i.e., its quantile 
function), it is easy to find the expectation and variance of X . By the properties of mixtures (Chatfield and 
Theobald [15]): 

[ ]
1

n

k k
k

E X w µ
=

= ∑                                 (10) 

[ ] ( ) [ ]2 2 2

1

n

k k k
k

V X w E Xσ µ
=

= + −∑ .                           (11) 

Thus, the inverse CDF of X  can be approximated by the inverse CDF of another distribution with the same 
expectation and variance (i.e., a two-moment approximation), which has a closed-form expression. Rudi et al. [1] 
suggest using the normal distribution, and Gallego [19] suggests both the normal and the log-normal distribu- 
tions according to the coefficient of variation of X . 

Accordingly, after substituting uc  and oc  and rounding the result to the closest integer, the optimal order 
quantity obtained with the two-moment normal approximation is:  

[ ] [ ]* 10.5N
r cQ E X V X

r s nh
− −  = + + Φ   − +  

,                     (12) 

and the quantity obtained with the two-moment lognormal approximation is: 

[ ]( ) [ ]
[ ]

[ ]
[ ]

* 1
2 20.5 exp ln 0.5ln 1 ln 1LN

V X V X r cQ E X
r s nhE X E X

−
      −   = + − + + + Φ         − +       

,          (13) 

where 1−Φ  is the standard normal inverse CDF function. Although these approximations use additional infor- 
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mation on the demand process, their accuracy levels depend on the extent to which the exact distribution of 
mixture X  is close to the normal or lognormal distributions, respectively (see Subsection 5.1). 

4.3. Practical Merit and Limitations of the Heuristic Solutions 
In some cases, the distribution of the demand in each epoch is known, but it is difficult to analytically calculate 
the distribution of the cumulative demand over the first k  epochs (i.e., ( )kF ⋅ ). This might occur, for example, 
when demand in each epoch is uniformly distributed or when epochs’ demands are mutually dependent. In such 
cases, the CDFs ( )kF ⋅ , 1, 2, ,k n=  , can be estimated by various statistical methods (e.g., Monte-Carlo si- 
mulation). Alternatively, the two-moment approximations can be used, as they require only the expectation and 
variance of kD . When epochs’ demands are independent [ ] [ ]1

n
k kkE D E d

=
= ∑  and [ ] [ ]1

n
k kkV D V d

=
= ∑ . 

These approximations are also useful in cases where information regarding the expectation and variance of de- 
mand is gathered over time, but not the exact distribution. Unfortunately, these approximations have no useful 
bounds on their potential deviations from the optimal order quantity and from the maximal expected profit. 

Another case in which heuristic solutions are useful is when only partial information on the demand process 
across the epochs is available, e.g., when we know the demand distribution over the entire selling period (as is 
common in the newsvendor problem), but not the distribution in each epoch. In such cases, *

LQ  and *
UQ  can 

be used to estimate the value of full information on the demand process, as described in Theorem 4. Clearly, the 
uncertainty regarding the optimal order quantity is limited to * *

U LQ Qδ ≡ − . Consequently, the uncertainty re- 
garding the maximal profit can be limited according to: 

Theorem 4. ( ) ( ) ( ) { }* * *π π max ,U LQ Q Q Q c s nh r c− ≤ Λ ≡ − − + −  for * *,L UQ Q Q ∈   . 

Proof. Since * * *,L UQ Q Q ∈   , then ( ) ( ) ( ) ( )* * *π π max πU LQ Q Q Q Q− ≤ − ∆  for * * *,L UQ Q Q ∈   . The theo- 

rem is proved since, by Equation (5), ( ) ( )πc s nh Q r c− − + ≤ ∆ ≤ −  (implied from the restriction ( )0 1kF Q≤ ≤ , 

1, 2, ,k n=  ). 
The practical merit of Theorem 4 is that when the value of Λ  is smaller than a predetermined threshold, 

then we know ahead that using a search procedure to find *Q  is not economically justified. 

5. Results under a Non-stationary Poisson Demand Process 
Numerous models in the inventory literature assume, justifiably, that demand is characterized by a Poisson dis- 
tribution (Nahmias [16], p. 287). However, the assumption of a stationary Poisson process (e.g., [2], p. 45) may 
not suit the cases of perishable items (e.g., [5]-[8]) or deteriorating items (e.g., [9] [20] [21]). Therefore, we con-
tinue with an example that follows a non-stationary Poisson process, where ( )~ Poissonj jd λ  (independently  
of id , i j≠ ), so that ( )1~ Poisson k

k k jjD µ λ
=

= ∑ . Applying Equation (10) in Appendix 3 of Hadley and  

Whitin [11] in Equation (6), the expected shortage in Equation (4) for the Poisson process can be simplified to  

( ) ( )( ) ( )( )1 2 1 1k k k kQ F Q Q F Qη µ= − − − − − .                      (14) 

In our numerical examples in the following subsection, it is assumed that  

1
1 ,  1

0,                           1
k

N k k N
N

k N

β

λλ
 − + ⋅ ≤ ≤  =   
 ≥ +

                          (15) 

where 1λ  is the expected demand for a fresh item per epoch; N  is an item’s shelf-life duration, measured in 
number of epochs; and β  is the demand deterioration coefficient across epochs. According to Avinadav and 
Arponen [5], this polynomial form is general enough to represent various decreasing behaviors of kλ : 0β =  
reflects no decrease; 0 1β< <  reflects a moderate decrease (concave function); 1β =  reflects a constant de- 
crease (linear function); and 1β >  reflects a rapid decrease (convex function). 

5.1. Experiment Design and Results 
In order to evaluate the performance of the three heuristic solutions and of the two bounds in the previous sec- 
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tion, we use 64 numerical examples in a two- and four-level factorial design of the model parameters. In all the 
examples we assume that 1) an epoch is a day; 2) a unit costs the vendor c  = 1 dollar; 3) a unit’s shelf-life du- 
ration is N = 10 days; and 4) the expected demand for a fresh item is λ1 = 20 units per day. To create different 
scenarios, we use two or four levels of values for each parameter. We use two values for h  (0.1 and 0.2 dollars 
per unit per day), n  (5 and 10 days) and s  (0.5 and 0 dollars per unit). Since the values of n  and s  might 
be correlated (the salvage value usually decreases as the selling period approaches the shelf-life duration), we 
use the high value of n  with the low value of s  and vice versa. We use four values for r  (2, 2.5, 3 and 3.5 
dollars per unit), as well as for β  (0, 0.5, 1 and 2 for zero, moderate, constant and rapid decreasing behaviors 
of kλ , respectively). 

For each of the 64 combinations of the parameter values we calculate *Q  (by Equation (6)), *
UQ  (by Equa- 

tion (8)), *
LQ  (by Equation (9)), * * *0.5A L UQ Q Q = +  , *

NQ  (by Equation (10)) and *
LNQ  (by Equation (11)). 

Since 2
k kσ µ=  in the Poisson distribution, *

NQ  and *
LNQ  are calculated by  

[ ] ( )
1

1 1

1n n

k k k n
k k

E X w h r s h
r s nh

µ µ µ
−

= =

 = = + − + − +  
∑ ∑                        (16) 

and 

[ ] ( ) [ ] [ ] [ ] ( )
1

2 2 2 2 2

1 1

1n n

k k k k n
k k

V X w E X E X E X h r s h
r s nh

µ µ µ µ
−

= =

 = + − = − + + − + − +  
∑ ∑           (17) 

For each of the five values of Q  we calculate the expected profit by Equation (4) and Equation (14), and 
Λ  by Theorem 4. The results are presented in Table 1. 

In order to evaluate the performance of the heuristics and of the bounds, we calculate for each one the abso- 
lute values of the percentage deviation from the optimal order quantity and the resultant percentage deviation 
from the maximal profit. The results, ordered according to size of deviation, are presented in Figure 2-5 provide 
a zoom in Figure 2 and Figure 3, respectively, after screening eight instances in which the lower bound failed 
to provide valuable information. 

5.2. Analysis of Results 
The lower bound, *

LQ , produced the largest maximal percentage deviations from *Q  (100%) and from ( )*π Q   
 

 

Figure 2. Percentage deviations (in absolute value) of *
LQ , *

UQ , *
AQ , *

NQ  and *
LNQ  from *Q , 

sorted in descending order by size.                                                      
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Table 1. Results of the 64 factorial experiments.                                                              

 Parameters Order quantities [units] Expected profits [$] Gap [$] 

no. n s r h β *Q  *
LQ  *

UQ  *
AQ  *

NQ  *
LNQ  ( )*π Q  ( )*π LQ  ( )*π UQ  ( )*π AQ  ( )*π NQ  ( )*π LNQ  Λ  

1 5 0.5 2 0.1 0 97 97 100 98 90 87 74.0 74.0 73.6 73.9 72.7 71.4 3.0 

2 5 0.5 2 0.1 0.5 86 86 89 87 81 78 66.7 66.7 66.4 66.6 65.9 64.7 3.0 

3 5 0.5 2 0.1 1 77 77 80 78 73 71 60.6 60.6 60.3 60.5 60.0 59.3 3.0 

4 5 0.5 2 0.1 2 64 63 66 64 61 59 51.0 51.0 50.7 51.0 50.7 50.1 3.0 

5 5 0.5 2 0.2 0 89 88 97 92 77 73 56.6 56.5 54.9 56.3 54.3 52.9 13.5 

6 5 0.5 2 0.2 0.5 79 78 87 82 70 67 52.3 52.3 50.5 52.1 50.7 49.7 13.5 

7 5 0.5 2 0.2 1 71 69 78 73 64 61 48.6 48.5 47.0 48.5 47.4 46.4 13.5 

8 5 0.5 2 0.2 2 59 56 64 60 54 52 42.5 42.3 41.4 42.5 41.8 41.2 12.0 

9 5 0.5 2.5 0.1 0 100 100 102 101 98 95 121.6 121.6 121.5 121.6 121.4 120.4 3.0 

10 5 0.5 2.5 0.1 0.5 90 89 91 90 87 85 109.0 109.0 108.9 109.0 108.7 108.1 3.0 

11 5 0.5 2.5 0.1 1 80 80 82 81 79 77 98.5 98.5 98.4 98.5 98.4 97.9 3.0 

12 5 0.5 2.5 0.1 2 66 66 68 67 65 64 82.1 82.1 82.0 82.1 82.0 81.8 3.0 

13 5 0.5 2.5 0.2 0 95 95 100 97 87 83 102.2 102.2 101.2 102.1 99.8 97.3 7.5 

14 5 0.5 2.5 0.2 0.5 85 84 89 86 78 75 92.8 92.8 92.0 92.7 91.0 89.3 7.5 

15 5 0.5 2.5 0.2 1 76 76 80 78 71 68 84.9 84.9 84.1 84.7 83.8 82.2 6.0 

16 5 0.5 2.5 0.2 2 63 62 66 64 59 57 72.3 72.3 71.7 72.3 71.6 70.7 6.0 

17 5 0.5 3 0.1 0 103 103 104 103 102 100 170.0 170.0 170.0 170.0 170.0 169.6 2.0 

18 5 0.5 3 0.1 0.5 92 92 93 92 91 90 152.1 152.1 152.0 152.1 152.0 151.9 2.0 

19 5 0.5 3 0.1 1 83 82 84 83 82 81 137.0 137.0 136.9 137.0 137.0 136.9 4.0 

20 5 0.5 3 0.1 2 68 68 69 68 68 67 113.8 113.8 113.8 113.8 113.8 113.7 2.0 

21 5 0.5 3 0.2 0 98 98 102 100 93 90 149.3 149.3 148.7 149.2 147.8 145.7 8.0 

22 5 0.5 3 0.2 0.5 88 88 91 89 83 81 134.7 134.7 134.1 134.6 133.5 132.2 6.0 

23 5 0.5 3 0.2 1 79 79 81 80 75 73 122.4 122.4 122.1 122.3 121.6 120.4 4.0 

24 5 0.5 3 0.2 2 65 65 67 66 63 61 103.2 103.2 102.9 103.1 102.9 102.0 4.0 

25 5 0.5 3.5 0.1 0 104 104 106 105 106 104 218.8 218.8 218.7 218.8 218.7 218.8 5.0 

26 5 0.5 3.5 0.1 0.5 93 93 94 93 94 93 195.4 195.4 195.4 195.4 195.4 195.4 2.5 

27 5 0.5 3.5 0.1 1 84 84 85 84 85 83 176.0 176.0 175.9 176.0 175.9 175.9 2.5 

28 5 0.5 3.5 0.1 2 70 70 70 70 70 69 145.9 145.9 145.9 145.9 145.9 145.8 0.0 

29 5 0.5 3.5 0.2 0 101 101 103 102 98 95 197.3 197.3 196.9 197.1 196.8 195.2 5.0 

30 5 0.5 3.5 0.2 0.5 90 90 92 91 87 85 177.3 177.3 176.9 177.2 176.8 175.8 5.0 

31 5 0.5 3.5 0.2 1 81 81 83 82 79 77 160.6 160.6 160.2 160.4 160.4 159.6 5.0 

32 5 0.5 3.5 0.2 2 67 66 68 67 66 64 134.5 134.5 134.4 134.5 134.5 133.9 5.0 

33 10 0 2 0.1 0 180 177 194 185 146 141 106.5 106.4 102.8 106.0 99.5 97.8 34.0 

34 10 0 2 0.1 0.5 128 123 137 130 110 107 86.0 85.6 83.7 85.9 81.8 80.6 28.0 

35 10 0 2 0.1 1 99 93 105 99 88 86 72.2 71.2 70.9 72.2 69.4 68.5 24.0 

36 10 0 2 0.1 2 70 63 73 68 65 64 55.0 53.3 54.4 54.9 54.1 53.8 20.0 

37 10 0 2 0.2 0 109 0 190 95 113 111 59.6 0.0 23.3 58.6 59.6 59.6 570.0 

38 10 0 2 0.2 0.5 95 0 134 67 89 88 55.1 0.0 39.5 49.7 54.8 54.7 402.0 

39 10 0 2 0.2 1 83 0 103 51 74 73 51.2 0.0 43.4 41.9 50.3 50.1 309.0 

40 10 0 2 0.2 2 63 0 71 35 57 56 44.0 0.0 41.3 31.6 43.1 42.8 213.0 

41 10 0 2.5 0.1 0 190 190 197 193 165 158 198.7 198.7 197.1 198.4 187.1 181.9 14.0 
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Continued 

42 10 0 2.5 0.1 0.5 134 133 140 136 121 117 151.2 151.1 149.9 151.1 145.6 142.6 14.0 

43 10 0 2.5 0.1 1 104 102 108 105 96 94 122.4 122.2 121.6 122.4 119.7 118.3 12.0 

44 10 0 2.5 0.1 2 73 70 75 72 70 68 90.0 89.5 89.7 90.0 89.5 88.6 10.0 

45 10 0 2.5 0.2 0 159 0 194 97 134 128 126.9 0.0 113.2 107.3 123.6 121.9 582.0 

46 10 0 2.5 0.2 0.5 121 0 137 68 102 99 110.2 0.0 102.8 84.1 105.8 104.5 411.0 

47 10 0 2.5 0.2 1 96 0 105 52 84 81 96.4 0.0 92.6 68.4 93.2 91.6 315.0 

48 10 0 2.5 0.2 2 68 0 73 36 62 61 76.7 0.0 75.1 50.3 74.9 74.4 219.0 

49 10 0 3 0.1 0 195 195 200 197 177 171 293.7 293.7 292.5 293.4 283.1 276.6 10.0 

50 10 0 3 0.1 0.5 138 138 142 140 129 125 218.2 218.2 217.4 218.0 214.2 210.5 8.0 

51 10 0 3 0.1 1 107 106 110 108 102 99 174.1 174.0 173.5 174.0 172.6 170.4 8.0 

52 10 0 3 0.1 2 75 74 77 75 73 71 125.9 125.8 125.6 125.9 125.6 124.7 6.0 

53 10 0 3 0.2 0 181 179 196 187 149 141 213.4 213.3 206.7 212.6 200.8 195.7 51.0 

54 10 0 3 0.2 0.5 129 124 139 131 112 107 172.8 171.8 168.3 172.7 165.0 161.1 45.0 

55 10 0 3 0.2 1 101 94 107 100 90 87 145.2 143.2 142.6 145.2 140.5 138.0 39.0 

56 10 0 3 0.2 2 71 64 75 69 66 65 111.0 107.8 109.6 110.8 109.3 108.6 33.0 

57 10 0 3.5 0.1 0 198 198 202 200 187 180 389.9 389.9 389.0 389.7 384.1 375.8 10.0 

58 10 0 3.5 0.1 0.5 141 140 144 142 135 131 286.1 286.1 285.4 286.0 284.2 280.7 10.0 

59 10 0 3.5 0.1 1 109 108 111 109 106 103 226.4 226.4 226.2 226.4 225.8 223.8 7.5 

60 10 0 3.5 0.1 2 77 76 78 77 75 74 162.4 162.4 162.2 162.4 162.1 161.8 5.0 

61 10 0 3.5 0.2 0 188 188 198 193 161 152 305.5 305.5 301.1 304.5 287.8 278.6 30.0 

62 10 0 3.5 0.2 0.5 134 132 141 136 119 114 237.9 237.8 234.5 237.6 229.0 223.4 27.0 

63 10 0 3.5 0.2 1 104 101 109 105 95 92 195.6 195.1 193.3 195.4 191.1 187.9 24.0 

64 10 0 3.5 0.2 2 73 69 76 72 69 67 146.3 144.9 145.3 146.2 144.9 143.2 21.0 

 
(100%). However, further analysis shows that such extreme deviations occurred only when *

LQ  was equal to 
zero (i.e., the bound failed to provide valuable information). On the other hand, when *

LQ  was positive (in 56 
out of the 64 instances), its associated percentage deviations were generally lower than those produced by using 
the other heuristics (see Figure 4 and Figure 5), with up to 10% deviation from *Q  (1.5% on average) and up 
to 3% deviation from ( )*π Q  (0.2% on average). We analyzed the eight instances in which *

LQ  was ineffec- 
tive (no. 37 - 40 and 45 - 48 in Table 1), and found that they were characterized by high levels of n and h, low 
levels of s and relatively low levels of r. The relation between these characteristics and a *

LQ  value of zero can 
be explained by low profitability of the item (implying low L

uc ) when all sold units are associated with substan- 
tial holding costs over the selling period, regardless of their exact duration in inventory. 

The higher bound, *
UQ , produced large maximal percentage deviations from *Q  (74.3%) and from ( )*π Q  

(60.9%). If we disregard the eight problematic instances (no. 37 - 40 and 45 - 48), then the maximal percentage 
deviations produced by using *

UQ  are similar to those produced by using *
LQ  (10.1% from *Q  and 3.5% 

from ( )*π Q ). On the other hand, the average percentage deviations produced by using *
UQ  (3.8% from *Q  

and 0.9% from ( )*π Q ) are considerably larger than those produced by using *
LQ .  

The average of the bounds, *
AQ , produced maximal and average deviations from *Q  (47.1% and 5.8%, re- 

spectively) and from ( )*π Q  (34.4% and 2.6%, respectively) that were lower than those obtained by using *
LQ  

or *
UQ . If we disregard the eight problematic instances (no. 37 - 40 and 45 - 48), then *

AQ  produced excellent 
maximal and average deviations from *Q  (3.8% and 1.2%, respectively) and from ( )*π Q  (0.4% and 0.1%, 
respectively). 

The two-moment lognormal approximation always produced a lower optimal order quantity than did the two- 
moment normal approximation (i.e., * *

LN NQ Q< ). Notably, however, in most cases, using the two-moment nor- 
mal approximation produced a lower-than-optimal order quantity ( * *

NQ Q<  in 60 out of the 64 instances), 
which explains why, in most cases, using *

LNQ  led to a higher percentage deviation from ( )*π Q  than did us- 
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Figure 3. Percentage deviations (in absolute value) of ( )*π LQ , ( )*π UQ , ( )*π AQ , ( )*π NQ  and 

( )*π LNQ  from ( )*π Q , sorted in descending order by size.                                    

 

 

Figure 4. Percentage deviations (in absolute value) of *
LQ , *

UQ , *
AQ , *

NQ  and *
LNQ  from *Q , 

sorted in descending order by size (without instances no. 37 - 40 and 45 - 48 in Table 1).             
 
ing *

NQ . By Figure 2 and Figure 3, we see that, in comparison to *
LQ  and *

UQ , *
NQ  and *

LNQ  produced 
lower maximal percentage deviations from Q* (18.9% and 22.1%, respectively) and from ( )*π Q  (6.6% and 
8.8%, respectively). However, if we disregard the eight instances with a *

LQ  value of zero, then using *
NQ  and 

*
LNQ  produced average percentage deviations from *Q  (6.3% and 8.9%, respectively) and from ( )*π Q  (1.7% 
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Figure 5. Percentage deviations (in absolute value) of ( )*π LQ , ( )*π UQ , ( )*π AQ , ( )*π NQ  and ( )*π LNQ  

from ( )*π Q , sorted in descending order by size (without instances no. 37 - 40 and 45 - 48 in Table 1).     

 
and 2.9%, respectively) that were considerably higher than those produced by using *

LQ  and *
UQ  (see above). 

We investigate now why the values of *
NQ  and *

LNQ  tended to be lower than the optimal order quantity. To 
do so, we analyze instance no. 33 in Table 1 (n = 10, s = 0, r = 2, h = 0.1 and β = 0). By Equation (15), λk = 20, 
so that for the Poisson process 2 20k k kµ σ= =  and ( ) ( )20

0 20 !ijk
k iF j e k i−

=
= ∑  for 1, 2, ,10k =  . By Sec- 

tion 3, wk = 0.0333 for 1, 2, ,9k =  , and w10 = 0.7, so that, by Equation (7),  

( ) ( ) ( ) ( )
9

mixture 10
1

0.0333 0.7X k
k

F j F j F j F j
=

≡ = +∑ ,                    (18) 

by Equation (10), [ ] 170E X = , and by Equation (11), [ ] 3070V X = . Thus, the two-moment normal approxi- 
mation of the CDF of X  is 

( )4076.55/)170()(normal −Φ= jjF ,                                (19) 

and the two-moment lognormal approximation of the CDF of X is 

( ) ( )( )lognormal ln 5.08532 0.31774F j j= Φ − .                    (20) 

By the ratio from the right-hand side of Equation (7), ( ) ( ) 0.333r c r s nh− − + = .  
The three CDFs, ( )mixtureF j , ( )normalF j  and ( )lognormalF j , are plotted in Figure 6, from which it is clear 

that ( ) ( ) ( )1 1 1
lognormal normal mixtureF F Fϕ ϕ ϕ− − −< <  for ( )0.2,0.7ϕ ∈ . We therefore conclude that the reasons why the 

values of *
NQ  and *

LNQ  were lower than those of *Q  in most of our 64 instances were that: 1) the values of 
the ratio ( ) ( )r c r s nh− − +  were from 0.25 to 0.714, and 2) the order of the three inverse CDFs, ( )1

lognormalF ϕ− , 
( )1

normalF ϕ−  and ( )1
mixtureF ϕ−  for ( )0.2,0.7ϕ ∈ , mostly remained as plotted in Figure 6. 

To summarize this section, we highlight the following results. First, the distributions of the percentage devia- 
tions from *Q  and from ( )*Qπ  were mostly preferable for the lower bound, *

LQ , than for the upper bound, 
*
UQ , except in cases with a *

LQ  value of zero. Second, the percentage deviations (maximal and average) ob- 
tained with *

AQ  (the average of the upper and lower bounds) were mostly better than those obtained with each 
bound separately. Finally, although the two-moment approximations, *

NQ  and *
LNQ , used more information on 
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Figure 6. Plot of ( )mixtureF j , ( )normalF j  and ( )lognormalF j  for n = 10, d = 0, r = 2, h = 0.1, s = 0.5 
and β = 0.                                                                            

 
the demand process (the expectation and variance of the demand in each epoch) than did *

LQ  and *
UQ  (which 

only required knowing the demand distribution over the entire period), they produced less-preferable distribu- 
tions of percentage deviations from *Q  and from ( )*π Q . These two-moment approximations performed bet- 
ter than the upper and lower bounds mostly in cases with a *

LQ  value of zero. This surprising result can be ex- 
plained by the exact distribution of the mixture, X , which is quite different from the normal or the lognormal 
distributions. For this reason, the two-moment approximations were associated, in most cases, with negative 
deviation from *Q . 

6. Managerial Implications 
Our accounting approach for inventory costs is primarily applicable to food and fashion products, for which the 
most suitable periodic inventory models are newsvendor problems with non-short selling period durations, such 
that holding costs of sold units cannot be neglected as in the classical model. Practitioners who manage numer- 
ous products under frequent cost updates (e.g., in supermarkets) may find it difficult to repeatedly implement 
multiple search procedures for extracting the optimal order quantities. For such cases, we show that simple heu- 
ristics and bounds can be used. Specifically, we propose lower and upper bounds that are based on the classical 
newsvendor formula with modified cost parameters, and which can be implemented in a straightforward manner 
via an inventory support system or a spreadsheet. Given these bounds, we show how to identify instances in 
which the potential profit improvement that can be obtained by calculating the exact optimal order quantity does 
not economically justify the search for this order quantity. In such cases, we propose using the average of the 
upper and lower bounds as a more promising heuristic, and show that, indeed, this approximation yields consi- 
derably lower maximal and average percentage deviations compared with either the upper or the lower bounds. 
An attractive feature of the proposed heuristic is that it requires only the distribution of demand over the entire 
period, which is usually known in practice, and not full information on the demand process, which is more dif- 
ficult to obtain. 

For cases in which only partial information on the demand process is available—specifically, when the ex- 
pectation and variance trajectories over the epochs are known, but the exact distribution of demand is un- 
known—we suggest two approximations, which are based on the classical newsvendor formula with normal and 
lognormal demand distributions. Using numerical examples, we find that these two-moment approximations 
produce lower maximal percentage deviations—but higher average percentage deviations—compared with the 
approximation based on the average of the upper and lower bounds. The two-moment approximations tended to 
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perform worse than the average of the bounds in cases where the lower bound was positive, and better when the 
lower bound was zero. Moreover, the normal approximation outperformed the lognormal approximation in most 
cases, and since it can be easily calculated using a spreadsheet, it is valuable for practitioners.  

We hope that this work will convince researchers and especially practitioners that, in stochastic periodic-re- 
eview inventory systems, it is beneficial to account for inventory costs exactly when they occur during the rep- 
lenishment period. Though our analysis is based on the basic newsvendor model, we are convinced that similar 
benefits can be obtained for more elaborate inventory models. A promising direction for future research is im- 
plementing our accounting approach in multi-period models, as well as in models that include partial backlog- 
ging and spoilage, lead-time, fixed order cost and duration-dependent shortage cost. An additional direction for 
future work is improving the approximation formulas on the basis of the mixture’s properties instead of relying 
on the normal or lognormal distributions arbitrarily. 
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Appendix A 
According to Appendix 5B in Nahmias [16], the expected profit in the classical newsvendor problem under con- 
tinuous demand and without backlogging cost is 

( ) ( ) ( ) ( )
0 0

π d d ( ) d
Q Q

Q

Q r xf x x rQ f x x h Q x f x x cQ
∞

= + − − −∫ ∫ ∫ , 

where ( )f x  is the probability density function (PDF) of the demand over the entire period, and h is the hold- 
ing cost per unit of inventory remaining in stock at the end of the period.  

Using the relation  

( ) ( )
0

d d
Q

Q

xf x x xf x xµ
∞

= −∫ ∫ , 

we obtain 

( ) ( ) ( )( ) ( ) ( )
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µ µ

µ

µ
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∞ ∞

∞
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∞

   
= − + − − − + −      
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 

= + + − − + +  
 
 

= + + − − + + −  
 

 
= + − − − +  
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∫ ∫

∫

∫

∫

. 

Substituting n = 1 and s = 0 in Equation (4) and defining nµ µ≡  and ( ) ( )nQ Qη η≡  results in  

( ) ( )( ) ( )( ) ( ) ( )( ) ( )π Q r Q cQ h Q Q r h Q c h Qµ η µ η µ η= − − − − + = + − − + . 

Thus, the classical newsvendor profit function is a special case of our generalized model. 
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