

Kinetic Study of Non-Isothermal Crystallization in Se_{90-x}Zn₁₀Sb_x (x = 0, 2, 4, 6) Chalcogenide Glasses

Lamia Heireche, Mohamed Heireche, Maamar Belhadji

Physics Department, Faculty of Science, Oran University, Oran, Algeria Email: <u>heirechelamia80@yahoo.f</u>, <u>heirechemohamed@yahoo.fr</u>, <u>nmaamar@yahoo.fr</u>

Received 25 February 2014; revised 25 March 2014; accepted 1 April 2014

Copyright © 2014 by authors and Scientific Research Publishing Inc. This work is licensed under the Creative Commons Attribution International License (CC BY). <u>http://creativecommons.org/licenses/by/4.0/</u>

CC ① Open Access

Abstract

Crystallization and glass transition kinetics of $Se_{90-x}Zn_{10}Sb_x$ (x = 0, 2, 4, 6) chalcogenide glasses prepared by conventional melt-quenching technique were studied under non-isothermal condition using a differential scanning Calorimeter (DSC) measurement at different heating rates 5, 7, 10 and 12°C/min. The glass transition temperatures T_g , the crystallization temperatures T_c and the peak temperatures of crystallization T_p were found to be dependent on the compositions and the heating rates. From the dependence on the heating rates of T_g and T_p , the activation energy for glass transition, E_g , and the activation energy for crystallization, E_c , are calculated and their composition dependence is discussed. The activation energy of glass transition E_g , Avrami index *n*, dimensionality of growth *m* and activation energy of crystallization E_c have been determined from different models.

Keywords

Crystallization Kinetics, Chalcogenide Glasses, Crystallization Temperature, Activation Energy, Differential Scanning Calorimetry

1. Introduction

Chalcogenide glasses are of wide-ranging importance in a variety of technological. They are based on chalcogen elements S, Se and Te. These glasses are formed by the addition of other elements such as Ga, In, Si, Ge, Sn, As, Sb, Bi, Ag, Cd, Zn. Many researchers have studied the structure, electrical properties, photoconductivity, glass formation and crystallization kinetics of the glassy system [1]-[7]. The current interest in chalcogenide materials centers on X-ray imaging [8], xerography [9], optical recording [10], memory switching [11] and electrographic

How to cite this paper: Heireche, L., Heireche, M.M. and Belhadji, M. (2014) Kinetic Study of Non-Isothermal Crystallization in $Se_{90-x}Zn_{10}Sb_x$ (x = 0, 2, 4, 6) Chalcogenide Glasses. *Journal of Crystallization Process and Technology*, **4**, 111-120. http://dx.doi.org/10.4236/jcpt.2014.42014 applications such as photoreceptors in photocopying and laser printing [12]-[14]. The binary Se-Zn alloys have more advantages due to their wide band gap; they are an example of potential applications in optoelectronic devices like blue light emitting diodes and blue diode lasers [15] and white Light Emitting Diodes (LEDs) and infrared lenses [16]. The proprieties of binary SeZn can be modified by adding a third element. The work presented in this paper has been done with the purpose of studying the effect of Sb on various thermal parameters in binary Se-Zn system, the crystallization kinetics and the evaluation of the crystallization parameters of Se_{90-x}Zn₁₀Sb_x (x = 0, 2, 4, 6) glassy alloy under non-isothermal conditions. Using the differential scanning calorimetry (DSC) measurement, the kinetic parameters such as activation energy of glass transition E_g , Avrami index *n*, dimensional growth *m* and activation energy of crystallization E_c have been determined from different models.

2. Experimental

Bulk sample of the $Se_{90-x}Zn_{10}Sb_x$ (x = 0, 2, 4, 6) were prepared by the melt quenching technique. High purity materials (99.999%) were weighted according to their atomic percentages and were sealed in quartz ampoules under the vacuum of 10^{-5} Torr. The sealed ampoules are kept inside the furnace where the temperature was raised to 800°C for 10 h. The ampoule was frequently rocked to ensure the homogeneity of the melt. The quenching was done in ice water to obtain the composition in the glass state.

The amorphocity of the samples was confirmed by the absence of any sharp peak in the X-ray diffraction pattern, Figure 1 shows the X-ray diffraction pattern of $Se_{86}Zn_{10}Sb_4$ glass at room temperature.

3. Results and Discussions

DSC therograms of glassy alloys $Se_{90-x}Zn_{10}Sb_x$ (x = 0, 2, 4, 6) were recorded at different heating rate $10^{\circ}C/min$ is shown in **Figure 2**. The endothermic peak of glass transition, exothermic peak of crystallization and endothermic pick present the melting of sample have been clearly observed in the **Figure 2**. The values of the glass transition temperature T_g and the crystallization temperature T_c for each sample at different heating rates 5, 7, 10, $12^{\circ}C/min$ are given in **Table 1**. From the **Table 1** it is clear that glass transition temperature T_g and crystallization temperature T_c both shift towards higher temperatures as the heating rate increases from 5 to $12^{\circ}C/min$. is found that the glass transition temperature T_g decreases as Sb concentration increases and the crystallization temperature T_c increases with increasing Sb.

Glass transition region

Two approaches have been used to study the dependence of T_g on the heating rate α the first approach is the empirical relation suggested by Lasocka [17]

$$T_{\sigma} = A + B \ln \alpha \tag{1}$$

where A and B are constants for a given glass composition. The value of A indicates the glass transition temperature for the heating rate of 1°C/min, while B is proportional to the time taken by the system to reduce its glass transition temperature, when its heating rate is lowered from 10 to 1 K/min [18]. Figure 3 depicts the

Figure 1. XRD pattern of Se₈₆Zn₁₀Sb₄ glassy alloy.

L. Heireche et al.

Figure 2. DSC thermograms of $Se_{90-x}Zn_{10}Sb_x$ (x = 0, 2, 4, 6) glassy alloys at heating rate of 10°C/min

Table 1. The values of glass transition temperature T_g and crystallization temperature T_c at different heating rates 5, 7, 10, 12°C/min for Se_{90-x}Zn₁₀Sb_x (x = 0, 2, 4, 6) glassy alloys.

Heating rate (°C/min)	Se ₉₀ Zn ₁₀		$\mathrm{Se}_{89}\mathrm{Zn}_{10}\mathrm{Sb}_2$		$Se_{88}Zn_{10}Sb_4$		$Se_{86}Zn_{10}Sb_6$	
	$T_g(\mathbf{K})$	$T_c(\mathbf{K})$	$T_g(\mathbf{K})$	$T_c(\mathbf{K})$	$T_g(\mathbf{K})$	$T_c(\mathbf{K})$	$T_g(\mathbf{K})$	$T_c(\mathbf{K})$
05	325	374	323	388	321	391	319	397
07	328	377	326	397	325	403	324	426
10	331	381	329	401	327	408	325	429
12	332	385	331	405	328	412	327	431

variation of the glass transition temperature T_g with $\ln \alpha$ for the investigated Se_{90-x}Zn₁₀Sb_x (x = 0, 2, 4, 6) glassy systems. from Figure 3 the value of A and B can be obtained form the slop of straight line of the plot T_g versus $\ln \alpha$.

The calculated values of *A* and *B* for the different compositions are listed in Table 1.

The second approach is the evaluation of the activation energy for the glass transition E_g using Kissinger equation [19]

$$\ln\left(\alpha/T_{gp}^{2}\right) = -E_{g}/RT_{gp} + \text{constant}$$
⁽²⁾

where α is the heating rate, T_{gp} is the peak glass transition temperature, E_g is the activation energy for the glass transition and R is the gas constant. Figure 4 shows $\ln(\alpha/T_{gp}^2)$ versus $1000/T_{gp}$ plots for different composition

 $Se_{90-x}Zn_{10}Sb_x$ (x = 0, 2, 4, 6) glassy systems.

The values of activation energy of glass transition E_g calculated from the slope of the straight line of the plots between $\ln(\alpha/T_{gp}^2)$ and $1000/T_{gp}$ are listed in Table 2. From Table 2 the value of E_g decreases with increasing Sb.

Figure 3. Plots of T_g versus ln α for Se_{90-x}Zn₁₀Sb_x (x = 0, 2, 4, 6) glasses.

Composition	<i>A</i> (K)	<i>B</i> (min)	E_g (KJ/mol)
$Se_{90}Zn_{10}$	312.30 ± 0.79	8.01 ± 0.37	73.92 ± 0.85
$Se_{88}Zn_{10}Sb_2$	308.84 ± 1.67	9.02 ± 0.79	70.65 ± 1.03
$Se_{86}Zn_{10}Sb_4$	307.33 ± 1.90	8.70 ± 0.90	68.98 ± 0.74
$Se_{84}Zn_{10}Sb_6$	303.92 ± 2.94	9.74 ± 1.39	66.44 ± 0.68

Crystallization region

The crystallization fraction x, can be expressed as a function of time according to the Johnson–Mehl–Avrami equation [20]-[22]:

$$x(t) = 1 - \exp\left[-(kt)^n\right]$$
(3)

where n is the Avrami exponent which depends on the mechanism of the growth and dimensionality of crystal growth and K is defined as the reaction rate constant and is given by:

$$K = K_0 \exp\left(-E_c/kT\right) \tag{4}$$

where E_c is the activation on energy of crystallization, k is the Boltzmann constant, T is the isothermal temperature and K_0 is the frequency factor. The activation energy of crystallization E_c for Se_{90-x}Zn₁₀Sb_x (x = 0, 2, 4, 6) glassy system have been determined using Matusita, Kissinger and Ozawa methods.

3.1. Matusita Model

In the non-isothermal method, the crystallized fraction x, precipitated in a glass heated at constant rate α , is related to the activation energy for crystallization E_c through the following expression [23] [24]

$$\ln\left[-\ln\left(1-x\right)\right] = -n\ln\alpha - 1.052\,mE_c/RT + \text{constant}$$
(5).

where *n* is the Avrami index depending on the nucleation process, *m* is an integer which depends on the dimensionality of the crystal. Here n = m + 1 is taken for a quenched glass containing no nuclei and n = m for a preheated glass containing sufficiently large number of nuclei, the values of *n* and *m* for different crystallization are given in **Table 3**. The fraction volume *x* crystallized at any temperature *T* is given as $x = S/S_T$, where S_T is the total area of the exotherm between T_i where the crystallization just begins and the temperature T_f where the crystallization is completed and *S* is the area between T_i and *T* as shown by the hatched portion in **Figure 5**.

Figure 6 shows linear plots of $\ln \left[-\ln(1-x)\right]$ versus $\ln \alpha$ at three fixed temperatures for $Se_{90-x}Zn_{10}Sb_x(x=0, \alpha)$

able 3. The Values of <i>n</i> and <i>m</i> for different crystallization mechanism.						
Mechanism	п	т				
Three-dimensional growth	4	3				
Two-dimensional growth	3	2				
One-dimensional growth	2	1				
Surface nucleation	1	1				

Figure 5. The DSC curve indicating the estimation of volume fraction crystallized.

2, 4, 6) glasses system .Using Equation (5), the values of n have been determined from the slopes of these curves at each temperature and are given in Table 4 for $Se_{90-x}Zn_{10}Sb_x$ (x = 0, 2, 4, 6) glassy system, the observed values reveal the dimension growth is two dimensional for the binary $Se_{90}Zn_{10}$ and three for the ternaries $Se_{90-x}Zn_{10}Sb_x$ (x = 2, 4, 6).

Figure 7 shows the plot of $\ln[-\ln(1 - x)]$ versus 1000/T for $Se_{90-x}Zn_{10}Sb_x$ (x = 0, 2, 4, 6) at different heating rates 5, 7, 10 and 12°C/min. The deviation from the straight line nature at higher temperature is due to saturation of nucleation sites during the latter stage in the process of crystallization [25] or to the restriction of crystal growth by the small size of the particles [26]. From Figure 7, the value of activation energy of crystallization E_c was calculated from the slope of the $\ln[-\ln(1 - x)]$ versus 1000/T for all heating rates, the values are given in

Figure 6. The plots of $\ln[-\ln(1 - x)]$ versus $\ln \alpha$ for different composition $\operatorname{Se}_{90-x} \operatorname{Zn}_{10} \operatorname{Sb}_x(x = 0, 2, 4, 6)$ at any fixed temperature.

Table 4.	The values	of Avram	i index <i>n</i> a	and dimen	isionality c	of growth <i>m</i>

Sample	$Se_{90}Zn_{10}$		$Se_{88}Zn_{10}Sb_2$		$Se_{86}Zn_{10}Sb_4 \\$		$\mathrm{Se}_{84}\mathrm{Zn}_{10}\mathrm{Sb}_6$					
<i>T</i> (K)	384	392	400	405	411	415	402	407	415	405	410	415
n	4.14 ± 0.52	3.21 ± 0.10	$\begin{array}{c} 2.13 \pm \\ 0.18 \end{array}$	4.49 ± 0.15	$\begin{array}{c} 3.85 \pm \\ 0.26 \end{array}$	$\begin{array}{c} 4.03 \pm \\ 0.25 \end{array}$	$\begin{array}{c} 4.39 \pm \\ 0.22 \end{array}$	$\begin{array}{c} 4.26 \pm \\ 0.28 \end{array}$	$\begin{array}{c} 3.66 \pm \\ 0.40 \end{array}$	$\begin{array}{c} 4.37 \pm \\ 0.26 \end{array}$	$\begin{array}{c} 4.44 \pm \\ 0.41 \end{array}$	4.53 ± 0.32
Average value <i>n</i>	3.16 ± 0.26		4.12 ± 0.22		4.10 ± 0.30		4.11 ± 0.33					
т	2		3		3		3					

Table 5. From Table 5 the value of activation energy of crystallization E_c of Se Zn Sb glassy increases with decreasing Sb.

3.2. Kissinger Method

The activation energy for crystallization E_c can be obtained from the heating-rate dependence on the peak temperature of crystallization T_p , using the Kissinger equation [19].

$$\ln\left(\alpha/T_p^2\right) = -E_c/RT_p + \text{constant}$$
(6)

Figure 7. The plots of $\ln[-\ln(1-x)]$ versus $\ln \alpha$ at different heating rates for $\text{Se}_{90-x}\text{Zn}_{10}\text{Sb}_x$ (x = 0, 2, 4, 6) glasses.

 Table 5. The values of activation energy of crystallisation obtained from Matusita method.

Composition	E_c (KJ/mol)	E_c (eV)
$Se_{90}Zn_{10}$	93.53 ± 8.42	0.96 ± 0.08
$Se_{88}Zn_{10}Sb_2$	104.44 ± 6.60	1.08 ± 0.06
$Se_{86}Zn_{10}Sb_4 \\$	127.52 ± 4.30	1.32 ± 0.04
$Se_{84}Zn_{10}Sb_6$	165.33 ± 8.19	1.71 ± 0.08

A plot of $\ln(\alpha/T_p^2)$ versus $1/T_p$ for compositions $Se_{90-x}Zn_{10}Sb_x$ (x = 0, 2, 4, 6) is shown in Figure 8 The slope of these straight lines gives the activation energy of crystallization E_c , the values of E_c for all compositions are given in Table 6.

3.3. Ozawa Method

The activation energy of crystallization E_c can also be obtained from the variation of the temperature at maximum peak T_p with heating rate by using Ozawa's [27] relation as

$$\ln \alpha = -E_c / RT_p + \text{constant}$$
(7)

The plots of $\ln \alpha$ versus $1/T_p$ for different compositions are shown in Figure 9. The Values of the activation energy E_c for the crystallization processes are listed in Table 6.

4. Conclusion

The crystallization kinetics in glassy $Se_{90-x}Zn_{10}Sb_x$ (x = 0, 2, 4, 6) alloys have been studied under non-isothermal conditions using the DSC technique. The glass transition temperature T_g decreases with an increase in the Sb

	Kissin	iger	Ozav	wa			
Composition	E_c (KJ/mol)	E_c (eV)	E_c (KJ/mol)	E_c (eV)			
$Se_{90}Zn_{10}$	85.86 ± 7.06	0.89 ± 0.07	92.50 ± 8.39	0.95 ± 0.08			
$Se_{88}Zn_{10}Sb_2$	89.84 ± 8.56	0.93 ± 0.08	96.74 ± 12.38	1.00 ± 0.12			
$\mathrm{Se}_{86}\mathrm{Zn}_{10}\mathrm{Sb}_4$	98.49 ± 6.17	1.02 ± 0.06	105.39 ± 3.90	1.09 ± 0.04			
$Se_{84}Zn_{10}Sb_6$	122.34 ± 7.67	1.26 ± 0.07	129.33 ± 9.89	1.34 ± 0.10			

Table 6. The values of activation energy of crystallisation obtained from Kissinger and Ozawa methods.

contents and the crystallization temperature T_c increase with increase in Sb. The activation energy of glass transition E_g calculated from Kissinger model decreases with the increase in Sb. The calculated values of the kinetic exponent n suggest two dimensional growth for the binary Se₉₀Zn₁₀ and three dimensional growth for ternaries Se_{90-x}Zn₁₀Sb_x (x = 0, 2, 4, 6), the activation energy of crystallization E_c has been calculated using Kissinger, Ozawa and Matusita models there are in good agreement with each other.

References

- [1] Heireche, L. and Belhadji, M. (2009) A New Concept of Glass Transition and Modification of Johnson-Mehl-Avrami Equation in Chalcogenide Glass Ge-Sb-Te. *Journal of Optoelectronics and Advanced Materials*, **11**, 1058-1066.
- [2] Yahia, I.S., Shakra, A.M., Fadel, M., Hegab, N.A., Salem, A.M. and Farid, A.S. (2011) Kinetics of Non-Isothermal Crystallization of Ternary Se₈₅Te_{15-x}Sb_x Glassy Alloys. *Chalcogenide Letters*, 8, 453-467.
- [3] Naqvi, S.F., Deepika, Saxena, N.S. Sharma, K. and Bhandari, D. (2010) Glass-Crystal Transformations in Se_{80-x}Te₂₀Ag_x (x = 0, 3, 5, 7 and 9) Glasses. *Journal of Alloys and Compounds*, **506**, 956-962. http://dx.doi.org/10.1016/j.jallcom.2010.07.128
- [4] Abdel-Wahab, F.A., El-Hakim, S.A. and Kotkata, M.F. (2005) Electrical Conductivity and Crystallization Kinetics of Amorphous Se_{0.81}In_{0.19} Films. *Physica B*, 366, 38-43. <u>http://dx.doi.org/10.1016/j.physb.2005.05.018</u>
- [5] Ziani, N., Belhadji, M., Heireche, L., Bouchaour, Z. and Belbachir, M. (2005) Crystallization Kinetics of Ge₂₀Te₈₀ Chalcogenide Glasses Doped with Sb. *Physica B: Condensed Matter*, **358**, 132-137. <u>http://dx.doi.org/10.1016/j.physb.2004.12.068</u>
- [6] Majeed Khan, M.A., Kumar, S., Husain, M. and Zulfequar, M. (2008) The Effect of Annealing on the Electrical Conduction of Amorphous Bi0.5Se99.4Zn0.1 Thin Films. *Materials Letters*, 62, 1572-1574. <u>http://dx.doi.org/10.1016/j.matlet.2007.09.025</u>
- [7] Ammar, A.H., Abdel-Moniem, N.M., Farag, A.A.M. and Farag, E.-S.M. (2012) Influence of Indium Content on the Optical, Electrical and Crystallization Kinetics of Se_{100-x} In_x Thin Films Deposited by Flash Evaporation Technique *Physica B*, **407**, 356-360. <u>http://dx.doi.org/10.1016/j.physb.2011.10.053</u>
- [8] Hunt, D.C., Kirby, S.S. and Rowlands. J.A. (2002) X-Ray Imaging with Amorphous Selenium: X-Ray to Charge Conversion Gain and Avalanche Multiplication Gain. *Medical Physics*, 29, 2464-2471. <u>http://dx.doi.org/10.1118/1.1513157</u>
- [9] Zhang, J., Zhang, S.Y., Xu, J.J. and Chen, H.Y. (2004) A New Method for the Synthesis of Selenium Nanoparticles and the Application to Construction of H₂O₂ Biosensor. *Chinese Chemical Letters*, **15**, 1345-1348.
- [10] Yamada, N., Ohno, E., Akahira, N., Nishiuchi, K., Nagata, K. and Takao, M. (1987) Proceedings of the International Symposium on Optical Memory. *Japanese Journal of Applied Physics*, Tokyo, 26.
- [11] Thornburg, D.D. (1972) Memory Switching in Amorphous Arsenic Triselenide. *Journal of Non-Crystalline Solids*, 11, 113-120.
- [12] Le Neindre, L., Smektala, F., Le Foulgoc, K., Zhang, X.H. and Lucas, J. (1998) Tellurium Halide Optical Fibers. *Journal of Non-Crystalline Solids*, 242, 299-103.
- [13] Akiyama, T. Uno, M. Kitaura, H., Narumi, K., Kojima, R., Nishiuchi, K. and Yamada, N. (2001) Rewritable Dual-Layer Phase-Change Optical Disk Utilizing a Blue-Violet Laser. *Japanese Journal of Applied Physics*, 40, 1598-1603. <u>http://dx.doi.org/10.1143/JJAP.40.1598</u>
- [14] Ohta, T. (2001) Phase-Change Optical Memory Promotes the DVD Optical Disk. Journal of Optoelectronics and Advanced Materials, 3, 609-626.
- [15] Mehta, N., Singh, K. and Saxena, N.S. (2010) Effect of in and Zn Additives on Some Thermal Properties of a-Se. Solid

State Sciences, 12, 963-965. http://dx.doi.org/10.1016/j.solidstatesciences.2010.01.028

- [16] Bhargava, R.N. (1997) Properties of Wide Band Gap II-VI Semiconductors. INSPEC, IEE, London.
- [17] Lasocka, M. (1976) The Effect of Scanning Rate on Glass Transition Temperature of Splat-Cooled Te₈₅Ge₁₅. *Materials Science and Engineering*, 23, 173-177.
- [18] Naqvi, S.F. and Saxena, N.S. (2012) Kinetics of Phase Transition and Thermal Stability in Se_{80-x}Te₂₀Zn_x (x= 2, 4, 6, 8, and 10) Glasses. *Journal of Thermal Analysis and Calorimetry*, **108**, 1161-1169. http://dx.doi.org/10.1007/s10973-011-1857-2
- [19] Kissinger, H.E. (1957) Reaction Kinetics in Differential Thermal Analysis. Analytical Chemistry, 29, 1702-1706. http://dx.doi.org/10.1021/ac60131a045
- [20] Avrami, M. (1939) Kinetics of Phase Change. I. General Theory. Journal of Chemical Physics, 7, 1103-1112. http://dx.doi.org/10.1063/1.1750380
- [21] Avrami, M. (1940) Kinetics of Phase Change. II. Transformation-Timerelations for Random Distribution of Nuclei. Journal of Chemical Physics, 8, 212-224. <u>http://dx.doi.org/10.1063/1.1750631</u>
- [22] Avrami, M. (1941) Granulation, Phase Change and Microstructure Kinetics of Phase Change. III. Journal of Chemical Physics, 9, 177-184. <u>http://dx.doi.org/10.1063/1.1750872</u>
- [23] Affy, N. (1992) Calorimetric Study on the Crystallization of a Se_{0.8}Te_{0.2} Chalcogenide Glass. *Journal of Non-Crystalline Solids*, 142, 247-259.
- [24] Matusita, K., Konastsu, T. and Yokota. R. (1984) Kinetics of Non-Isothermal Crystallization Process and Activation Energy for Crystal Growth in Amorphous Materials. *Journal of Materials Science*, 19, 291-296.
- [25] Colmenero, J. and Barandiaran, J.M. (1979) Crystallization of Al₂₃Te₇₇ Glasses. *Journal of Non-Crystalline Solids*, 30, 263-271.
- [26] Kaur, G. and Komatsu, T. (2001) Crystallization Behavior of Bulk Amorphous Se-Sb-In System. Journal of Materials Science, 36, 4531-4533.
- [27] Ozawa, T. (1965) A New Method of Analyzing Thermo Gravimetric Data. Bulletin of the Chemical Society of Japan, 38, 1881-1886. <u>http://dx.doi.org/10.1246/bcsj.38.1881</u>