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Abstract 
 
In this paper, we investigate an accelerated version of the discrete-time Jacobi waveform relaxation iteration 
method. Based on the well known Chebyshev polynomial theory, we show that significant speed up can be 
achieved by taking linear combinations of earlier iterates. The convergence and convergence speed of the 
new iterative method are presented and it is shown that the convergence speed of the new iterative method is 
sharper than that of the Jacobi method but blunter than that of the optimal SOR method. Moreover, at every 
iteration the new iterative method needs almost equal computation work and memory storage with the Jacobi 
method, and more importantly it can completely exploit the particular advantages of the Jacobi method in the 
sense of parallelism. We validate our theoretical conclusions with numerical experiments. 
 
Keywords: Discrete-Time Waveform Relaxation, Convergence, Parallel Computation, Chebyshev  

Polynomial, Jacobi Iteration, Optimal SOR 

1. Introduction 
 
For very large scale initial value problems (IVPs), linear 
or nonlinear, the waveform relaxation (WR) iteration, 
also called dynamic iteration, is a very powerful method 
and has received much interest from many researchers in 
the past years, see [1-9] for more details about the history 
of this method. The difference of the classical iteration 
methods with the WR iteration method is that the WR 
method iterates with functions in a functional space (con- 
tinuous-time WR), and solve each iteration by some nu- 
merical method (discrete-time WR), e.g. by the Runge- 
Kutta methods. In the past years, both the continuous- 
time WR iteration method and the discrete-time WR ite- 
ration method have been investigated widely. For exam- 
ple, one may refer to [1,3,9-13] for the the WR method 
dis-cussed in continuous time level, and to [9,12, 14-17] 
for the discrete-time WR method. There are so many ex- 
cellent results in this field that we can not recount them 
detaildly. 

For the linear system of IVPs on arbitrarily long time 
interval  0,T  defined as  
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= , 0, ,

= ,

y t y t f t t T

y t y
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      (1) 

where 0,  : ,  ,  n n n nf y y H       , the Jacobi 
WR iteration can be written as  
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where = H M N  and M  is a pointwise or block-  
wise diagonal matrix. The discrete-time Jacobi WR ite- 
ration can be obtained by applying some numerical me- 
thod, such as BDF method, Runge-Kutta method, etc., to 
discretize (2) for every iterative index k . 

In Jacobi waveform relaxation, continuous-time or dis- 
crete-time, system (2) is decoupled into, say d , loosely 
coupled subsystems. If, on a parallel computer, these 
subsystems are assigned to d  different processors, and 
they can be solved on  0,T  simultaneously. This ob- 
vious type of parallelism is present in all waveform re- 
laxation methods, see, e.g., [1,2-4,9-12,15-19] and re- 
ferences therein. However, in many cases, such as the 
Gauss-Seidel, optimal SOR waveform relaxation methods, 
exploiting this parallelism is only possible when appro- 
ximations are exchanged between the different proce- 
ssors as soon as they have been computed (see, e.g., [20]). 
This leads to a large amount of communication during 
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each waveform relaxation sweep, which forms a severe 
drawback. In Jacobi waveform relaxation, communica- 
tion is only necessary once per sweep, and this method is 
attractive for parallel implementation. 

Therefore, we think that any improvement of the con- 
vergence speed of the Jacobi WR iteration is important. 
Based on this consideration, in this paper, we attempt to 
get speed up by taking linear combinations of earlier Ja- 
cobi iterates, and this leads to the following special ite- 
rative scheme:  
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where the parameters   =0m m
v


 are constant and satisfy  

=0

= 1.m
m

v


                 (4) 

Since the discrete-time WR iteration is more favour- 
able in practical applications, we will devote ourself to 
getting the speed up of the discrete-time version of ite- 
rative scheme (3). To solve the ODEs in (3), we first de- 
compose the time interval  0,T  into N s  sub-inter- 
vals, say  1, , = 0,1, , 1n nt t n N s   , with equal leng- 
th h . And then we solve (3) numerically by a linear 
s -step formula with coefficients  

=0,1, ,
,j j j s

 


, which 
leads to the following iterative scheme written in 
compact form as  
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where the values  0 , = 0,1, , 1jy j s   are the s  initial 
values which are obtained by, for example, the backward 
Euler method or some other one-step methods. We 
denote the new iterative scheme (5) by Acc-Jacobi in the 
remainder of this paper. We will show that the optimal 
parameters   =0m m

v


 which are used to accelerate the 
convergence of the original discrete-time Jacobi WR ite- 
ration relate closely to the coefficients of the  -th Che- 
byshev polynomial. Moreover, the effects of the step size 
h  and the matrices ,  M N  on the convergence speed of 
the Acc-Jacobi method are also presented. We note that, 
for the sake of economizing memory storage, formula (5) 
can be performed in special wise which is independent of 
the parameter   and nearly equals to that of the classi- 
cal discrete-time Jacobi WR iteration. 

The remainder of this paper is organized as follows. In 
Section 2, we recall the definitions of the so-called  1

BH - 
block matrix and M -matrix, and some related proper-ties. 
In Section 3, the convergence speed of the discrete-time 
WR iteration (5) is derived and some comparisons about 
convergence speed between the Acc-Jacobi, the classical 
Jacobi and the optimal SOR methods are given. In Section 4, 
we present some numerical results which validate our theo- 
retical conclusions very well. 

2. Some Basic Knowledge of Matrix 

Throughout this paper, the partial orderings '   , ' <  
and the absolute value   in n  and n n  are inter- 
preted in componentwise. For a matrix n nA , let 
 q n  and   , = 1, ,in n i q  , be some positive inte-  

gers satisfying 
=1

=
q

ii
n n . Then define the block-wise  

vector and matrix spaces as follows (see also [11]):  
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Moreover, for any matrix n nG , let  

 11= diag , , , = ,  G nn G Gg g D B D G  

and 1= ,G G G
J D B                          (7) 

provided that the quantities 0iiq  , = 1, 2, ,i n .  

Definition 1 ([21]). A real matrix  = ij n n
a


A  with  

0ija   for all i j  is an M-matrix if A  is nonsi- 
gular and 1 0 A .  

Definition 2 ([11, 22]). qLH  is an  1
BH -block 

matrix, if its block comparison matrix H  defined by  
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11 , = 1, , ,
=

, , , = 1, , .
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H
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H
    (8) 

is an M -matrix, here and hereafter   denotes the 
standard Euclidean norm.  

Clearly, any M -matrix  = ijaA  with positive dia- 
gonal elements is an  1

BH -block matrix. 
For qLH , we use    = q q

ij
H H  to re- 

present the block absolute value. The block absolute 
value of a vector qVx  can be defined in a similar way,  

i.e.,    1= , , .
T

T T
qx x x   

Definition 3 ([21]). For n n  real matrices H , M  
and N , = H M N  is a regular splitting of matrix 
H , if M  is nonsingular with 1 0  0and  M N .  

Lemma 1 ([11, 22]). Let ,  ,  ,q qL V L M x y  and 
  . Then   

1) 
     
              ] ;

  

      

L M L M

L M x y x y x y
 

2)           ] LM L M Mx M x ;  

3)       [ ]    M M x x ;  

4)      M M .  

Lemma 2 ([11]). Let qLH  be an  1
BH -block ma- 

trix, then   
1)  is nonsingularH ;  

2) 
11    H H ;  

3)   < 1 HJ ,  

where 1= 
H H HJ D B  with  

 1 11 1 1
11= = , , qqdiag

   
  HH H HJ D B D H H  and  

= H HB H D .  

Lemma 3 ([21]). Let = H M N  be a regular split- 
ting of the matrix H . Then H is nonsingular with 

1 0 H , if and only if  1 < 1 M N .  
Lemma 4 ([21]). Let , n nA B , satisfy 0 A B . 

Then     A B .  
Lemma 5 ([23]). Let n nH , and can be splitted 

as =  H I B , where > 0,  0 B , then the follow- 
ing results are equivalent:   

1) 1 0 H ;  
2)   < B ;  
3) for = 1, 2, ,i n ,  Re 0i  , where i  is the 

eigenvalue of the matrix.  
Lemma 6 ([21]). Let 1 0 H  and  

1 1 2 2= = H M N M N  be two regular splittings of H.  

Then    1 1
2 2 1 11 > 0   M N M N  if 2 1 0 N N ;  

   1 1
2 2 1 11 > > > 0  M N M N  if 2 1 0 N N .  

3. Convergence Analysis 
 
As supposed in [11], we assume in this paper that the 
matrix  n nH  and its splitting = H M N  sa- 
tisfy the following assumption. 

Assumption (A). Assume that all the off diagonal ele- 
ments of H are non-positive and H is a symmetric and 

 1
BH -block matrix; its splitting = H M N  satisfies for 

some integer  1q q n   that  11= diag , , qqM H H  
is a symmetric positive definite matrix and ,M N  are 
commutative matrices, i.e., =MN NM . 

Under this assumption, we know that N  is also a 
symmetric matrix. Therefore, the eigenvalues of the pro- 
duct MN  are all real numbers, since for symmetric ma- 
trices M  and N , ,M N  are commutative matrices if 
and only if   =

T
MN MN , see, e.g., [21,23]. We next 

make an assumption for the linear s -step formula as 
follows. 

Assumption (B). Assume that > 0s

s




, where s  and  

s  are the coefficients of the linear s -step formula.  
Lemma 7. Let matrix H and its splitting = H M N  

satisfy assumption (A). Then for any real number 0h  ,  

h I H  is an M -matrix and   1
< 1h


I M N .  

Proof. Since  11= diag , , qqM H H  is a symmetric 
positive definite matrix with non-positive off diagonal 
elements, by the conclusions 1, 3 of lemma 5 and the 
results given in [11], we know that for any 0h   it 
holds  

   1 1 10 and .h h
     I M I M M  

Clearly, the inequality   1 1h
  I M M  implies  

1 10
h

 


  HI H
D D . Thus, by definition 3,  

=
h h

h
 

 
I H I H

I H D B  is a regular splitting of 

matrix h I H  and 1 1
h h

 
 

 H HI H I H
D B D B , since  

= 0
h 

HI H
B B , where the definition of the matrices  

HD  and HB  has been given in lemma 2. 

Then it follows from lemma 4 and the conclusion 3 of 
lemma 2 that  

   1 1 < 1.
h h

  
 

 H HI H I H
D B D B     (9) 

Moreover, by definition 2 and the notations given in 
lemma 2, it is clear that   = 0

h 


I H
N B ,  

=
h

h



I H

I M D  and the matrix h I M  is an  1
BH -  

block matrix, since  11= diag , , qqM H H  is a sym- 
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metric positive definite matrix. 
Therefore, we have  

       
  

 

1 1

1

1= < 1,
h h

h h

h

 





 




 

     

 

I H I H

I M N I M N

I M N

D B

   (10) 

where in the first, second and the last inequalities we 
have used the conclusions 2, 4 of lemma 1, the con- 
clusion 2 of lemma 2 and (9), respectively. 

Finally, from (10) we know that  =h h  I H I M N   
is a regular splitting of matrix h I H  which satisfies  

  1
< 1h


I H N . Hence, according to lemma 3, it  

is easy to know that h I H  is an M-matrix. □ 
Lemma 8 Let matrix H and its splitting = H M N  

satisfy assumption (A). Then for any real number r, all the 
eigenvalues of matrix   1

r
I M N  are real numbers.  

Proof. In assumption (A), we have mentioned that the 
matrices M  and N  are commutative. Therefore, by 
the results in [21,23], we know that there exists a non- 
singular matrix, say Q , such that  
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where  
=1

nM
i i
  and  

=1

nN
i i
  are the real eigenvalues of  

matrices M  and N , respectively. 
Thus, for any real number r , it is obvious that the n  

eigenvalues of the matrix   1
r

I M N  are 
=1

nN
i

M
i i

r




  
 

  
, 

which are real numbers. □ 
Now, we turn our attention to the convergence analysis 

of the Acc-Jacobi method defined by (5). We denote the 
convergent solution of the Acc-Jacobi method by ,jy  

= 0,1, ,j N s  with  0=j jy y  for = 0,1, , 1j s  . 
We thus define the notations as Equation (11) shows. 

Therefore, by careful routine calculations we can 
equivalently rewritten the Acc-Jacobi iteration (5) as  

       11 1 1= = ,
mm km

m
         X M NX M f r M N Y c  

(12) 

where     1 1 1

=0
=

jm

m j

       c M N M f r  with  

 01 = M N I . This implies the following relation bet- 
ween  1kY  and  kY  as  

     1 1

=0 =0

= .
mk k

m m m
m m

v v
 

    
 
   Y M N Y c      (13) 

Hence, it follows from the convergence theory of Ja- 
cobi iteration [21,23] that the vector  kY  generated by 
(13) converges to some value, say Y  for example, if 
and only if it holds that  
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=0 =0
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m m

m m s s
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Therefore, we arrive at the following question: how to 
select parameters   =0m m

v


 which minimize the argu-  
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here and hereafter we set  

1= s sC  N                 (15b) 

for convenience. 
Definition 4 Let S  be the set of all polynomials 
 p x  of degree   with  1 = 1p .  

By this definition, we can rewrite problem (15) as  

  min .
p S

p C
 




            (16) 

It is very difficult to solve problem (17) exactly. 
However, if we have  = C   at hand, we may con- 
sider the following problem  

  min max .
p S x

p x     
         (17) 

Clearly,  

     min min max .
p S p S x

p C p x     


    
  (18) 

The max-min problem (18) is classical and has been 
investigated deeply by the famous mathematician Pafnuty 
Chebyshev (1821-1894)， see, e.g., [24]. The solution of 
this problem can be obtained by the so called Chebyshev 
polynomial  U x  which is defined as follows.  

Definition 5 ([21,24])  

 
  

  
1

1

cos , if 1 1,cos
=

cosh , if > 1,cosh

x x
U x

x x










   



  (19) 

where 1   is an integer.  
The following two lemmas about the function  U x  

are useful to our subsequent analysis.  
Lemma 9 ([21,24]) The polynomial  U x  defined 

in (20) satisfies the three-term recursion relation as  

     
   

1 1

0 1
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with = 1 and = .

U x xU x U x
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Lemma 10 The function 
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is strictly monotone increasing.  
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0 < < 1x . Then routine computation shows that  
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for 0 < < 1x  and 1  . This implies that   f g x  is 

a strictly monotone increasing function for 0 < < 1x  
and 1  . Therefore, we complete the proof by noting  

that 
    1

=
1

f g x
U x

 for 0 < < 1x .□ 

With the Chebyshev polynomial  U x , we have the 
following conclusion for the max-min problem (18).  

Theorem 1 ([21]) The polynomial  

 
 

( ) = ,
1

U x
p x

U








           (21) 

is the unique polynomial which solves problem (18).  
We note that the coefficients of the polynomial p  

can be computed conveniently by the three-term recur- 
sion relation given by (21). 

Next, we focus on deriving the spectral radius of the 
matrix 

=0
m

mm
v C

 , when   =0m m
v


 are the coefficients 

of the polynomial p  defined by (22). Let   =1

n

i i
  be 

the n  eigenvalues of the matrix C  (the matrix C  is 
defined by (16)), and by lemma 8 we know that they are 
all real numbers. Therefore, it holds that  
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where  = C  . Then it follows, by noting that  

 1 = 1U   and there must exist some   =1

n

i i
   such  

that   = 1C  , that  
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Now, by assumptions (A) and (B), and lemma 7, we 
know that  
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Then by the definition of  U x  given in (24), 
routine computation yields  
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We next compare the convergence speed of the Acc- 
Jacobi method with the classical Jacobi iteration and the 
optimal SOR iteration. To this end, we first review the 
discrete-time Jacobi WR iteration and the discrete-time 
optimal SOR WR iteration investigated in [17,12] and 
[25,3,4], respectively. For simplicity, at the moment we 
just introduce the continuous-time Jacobi and SOR WR 
iterations, and the discrete-time version can be obtained 
straightforwardly by applying the linear s -step formula. 

The Jacobi WR iteration can be written as  
 

   
1

1d
=

d

k
k ky

y y f
t


 M N ;        (27) 

where = H M N  and M  is a point or block dia- 
gonal matrix. Clearly, the Jacobi WR iteration (28) can 
be equivalently written as  
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Analogously, the optimal SOR WR iteration can be 
written as follows:  

   

 
   

   

0

1

1

= ,

d
= ,  = 0,1, , ,

d

= ,

k

m
m m

k

x y

x
x x f m

t

y x

 







  M N  (29) 

where  1 1
= ,  = 


 


 M M L N M U  with the  

argument   been defined by (27), and =  H M U L . 
The matrix M  is the point or block diagonal matrix of 
H  just as mentioned in the Jacobi WR iteration (29) 
and L , U  are the strictly lower and upper triangle ma- 
trices of the matrix M H , respectively. 

Similar to our above analysis, it is easy to know that 
the convergence speed of the discrete-time Jacobi iter- 
ation (after applying the linear s -step formula to (29)) 
and the discrete-time optimal SOR WR iteration (after 
applying the linear s-step formula to (30)) can be spe- 
cified as  

2

2
= and = ,

1 1
Jac SOR
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respectively, where  = C   and 

1

= s
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C
h





 

 
 

I M N .  

For more details, see [25,12]. Let  
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  (31) 

where   =0m m
v


 are the coefficients of the  -th Che- 

byshev polynomial given by (20) and   is define by 
(27). In Figure 1, we plot the curves of the ,  Che Jac   
and SOR  as functions of  = C   for  0,1   
and = 4,8,11 .  

One can see clearly from these four panels that the 
convergence speed of the Acc-Jacobi WR iteration me- 
thod is sharper than that of the classical Jacobi WR 
iteration, while blunter than that of the optimal SOR me- 
thod. Moreover, as the argument   becomes larger, the 
spectral radiuses of the Acc-Jacobi and the optimal SOR 
methods become nearer. 

4. Numerical Results 

To validate our theoretical results given in Section 3, we 
consider the following problem:  

     
  0

= , 0, ,

0 = ,

fy t y t f t t t

y y

      



H
     (32) 

where  
=1,2, ,100

= sin
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f t t
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and 100 100H  is defined by  
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28.375 1 0 0
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H

B

B A

A

B

 (34) 

One can verify that the eigenvalue of the matrix H  
defined by (34) changes from 44 10  to 194, and thus 
system (33) is really stiff. To perform the discrete-time 
WR iteration, we choose the backward Euler method with 
step size = 0.02h . Throughout all of our experiments, 

we choose = 5  and = 250N , where = ft
N

h
 is the 

total steps when the time interval 0, ft    is discretized 

by step size h .We note that the discrete-time optimal 
SOR WR iteration is a typical sequential algorithm, and 
therefore we only focus on comparing the convergence 
speed of the Acc-Jacobi WR iteration defined by (5) and  
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Figure 1. The spectral radius of the three discrete-time WR iterative methods; from left to right: = 4,8,11 . 

 

     

Figure 2. Measured convergence speed of the Acc-Jacobi and discrete-time Jacobi WR methods. 
 

Table 1. Coefficients  5

=0m m
v  for splitting = 1 1H M N  and = 2 2H M N . 

 coefficients  5

=0m m
v  

splitting 0v  1v  2v  3v  4v  5v  

1 1= H M N  0  0.041 468 677 620 31 0  0.561 375 694 613 35 0  1.519 907 016 993 04

2 2= H M N  0  0.121 948 099 474 61 0  1.097 542 735 328 93 0  1.975 594 635 854 32

 
the Jacobi WR iteration. To make a fair comparison, the 
discrete-time Jacobi WR iteration is performed as (29). 
The measured error at iteration k  for these two methods 
is defined as: 

 Jacobi:    
1

Err = max k
Jac n n

n N
k y y

  
  , where  

  
=1

N
k

n
n

y  and   =1

N

n n
y  are the k -th iterative solu-  

tion and the convergent solution of the discrete- 
time Jacobi WR method, respectively.  

 Acc-Jacobi:    
1

Err = max k
Acc Jac n n

n N
k y y   

 , where   

  
=1

N
k

n
n

y  and   =1

N

n n
y  are the k -th iterative solu-  

tion and the convergent solution of the Acc-Jacobi 
method, respectively. 

We choose two different splitting  

1 1 2 2= = H M N M N with  1 = diag , , ,M A A A , 

 2 = diag 100,100, ,100M and 1 1= ,N M H   

2 2= N M H . And by computer it is easy to get  

1

1 1

1

2 2

1
0.543 6,

1
and  0.666 7.

h

h









        
        

I M N

I M N

 

For the splitting 1 1= H M N  and 2 2= H M N , 

the coefficients  5

=0m m
v  are given in Table 1.  

In Figure 2, we plot in the left and middle panels the 
measured error decay of the two methods with splitting 

1 1= H M N  and 2 2= H M N , respectively, where 
one can see clearly that the convergence speed of the 
Acc-Jacobi method is much sharper than that of the 
Jaocbi method. For these two splitting 1 1= H M N  
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and 2 2= H M N  with 2 1N N , theorem 1 predicts 
that the Acc-Jacobi WR method with the former choice 
shall converge faster than the case with the latter one. 
This theoretical conclusion is clearly depicted in the right 
panel of Figure 2.  
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