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Abstract

We establish that [1]’s parameters are universally unidentified and a subset of their parameteri-
zation is over identified. As a solution to the problem with the identifiability, we propose a new
representation of double-regime three-factor GDTSMs whose parameters are just-identified when
the number of the pricing-with-error yields equals 2. This new parametrization has another ad-
vantage over [2] in that we can back out Q parameters and » parameters separately and
make the estimation of structural parameters easier. Finally, we show that regime-switching
three-factor arbitrage-free dynamic Nelson-Siegel model is a restricted special case of our model.
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1. Introduction

After [2] proposed the single factor Gaussian affine term structure model. The class of Gaussian affine term
structure models (GDTSMs) has been generalized and developed by, [3] [4], and [5] and has become the basic
workhorse in macroeconomics and finance for purposes of using a no-arbitrage framework for studying the rela-
tions between yields on assets of different maturities. [4] and [5] find the Gaussian form of three-factor affine
term structure model describes US treasury yields better than other forms. However, there is an extensive em-
pirical literature on bond yields (particularly short-term rates) that suggests that “switching-regime” models de-
scribe the historical interest rate data better than single-regime models (see, for example, [1] [6] and [7]).

[1] develop a discrete-time multi-factor DTSM with the following features: 1) within each regime the
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short-term interest rate follows a three-factor Gaussian model with state-dependent market prices of factor risks;
2) there are two regimes characterized by low (L) and high (H) volatility, and the transitions between these re-
gimes under the historical measure P are governed by a Markov process with regime-shift probabilities
ﬂtﬂpu (i, j=H, L) that depend on the risk factors underlying changes in the shape of the yield curve; and 3) re-
gime-shift risks are priced. This model yields exact closed-form solutions for bond prices, and an analytic re-
presentation of the likelihood function that they use in their empirical analysis of US. Treasury zero-coupon
bond vyields. Expected excess returns are decomposed into two components, which are associated with re-
gime-shift and factor risks, respectively.

But in the practical experience of those who have used DSY model are tremendous numerical challenges in
estimating the necessary parameters from the data due to highly non-linear and badly behaved likelihood sur-
faces. For example, [1] reported:

... Even with these normalizations/constraints, the resulting maximally flexible A (3) model (with restric-
tions for analytical pricing) involves a high dimensional parameter space...

Another problem with DSY model is its identification. We find that DSY model parameters are universally
unidentified. If there are some parameters in the model that are unidentified, then it will be wrong to make con-
clusions from its parameters’ estimate, let us say about how regime-shift risks are priced.

This paper proposes solution to them and other problems with regime-switching affine term structure model
of [1] based on what we will refer to as their reduced-form representation. For a popular class of re-
gime-switching Gaussian affine term structure models—namely, those for which the model is claimed to price
exactly a subset of N linear combinations of observed yields, where N is the number of unobserved pricing
factors—this reduced form is a restricted regime-switching multivariate linear regression in the observed set of
yields.

One implication is that the parameters of these reduced-form representations contain all the observable impli-
cations of [1] regime-switching Gaussian affine term structure model for the sample of observed data, and can
therefore be used as a basis for assessing identification. If more than one value for the parameter vector of inter-
est is associated with the same reduced-form parameter vector, then the model is unidentified at that point and
there is no way to use the observed data to distinguish between the alternative possibilities. [8] has applied this
idea to affine term structure models with single regime. In this paper, we use it to demonstrate that [1] is in fact
unidentified, an observation that our paper is the first to point out. This issue of identification is one factor that
contributes to the numerical difficulties for conventional methods.

A second and completely separate contribution of the paper is that we propose our canonical representation of
GDTSMs, which is then used in double-regime environment as a new form of regime-switching GDTSMs. Us-
ing this form of representation, it is possible for the parameters of interest to be inferred directly from estimates
of the reduced-form parameters themselves. This is a very useful result because the latter are often simple re-
gime-switching OLS coefficients. Although translating from reduced-form parameters into structural parameters
involves a mix of analytical and numerical calculations, the numerical component is far simpler than that asso-
ciated with the usual approach of trying to find the maximum of the likelihood surface directly as a function of
the structural parameters.

There have been several other recent efforts to use new development in GDTSMs for multi-regime considera-
tion. [9] developed a no-arbitrage representation of a dynamic Nelson-Siegel model of interest rates that gives a
convenient representation of level, slope and curvature factors. For example, [10] presents an affine, arbi-
trage-free, regime-switching dynamic Nelson-Siegel model of the term structure (Regime-Switching AFNS).
We show that it is a special case of our new form of regime-switching GDTSMs.

The chief difference between this paper and other relevant papers is that they focus on how the re-
gime-switching GDTSMs should be represented, whereas we also examine how the parameters of the regime-
switching GDTSMs are to be estimated.

The rest of the paper is organized as follows. Section 2 describes [1] regime-switching Gaussian affine term
structure model. Section 3 investigates the mapping from structural to reduced-form parameters. We establish
that the canonical forms of [1] are universally unidentified and a subset of their parameterization is over identi-
fied. In Section 4, we propose a new representation. We establish when this representation is just-identified and
how the parameters are to be estimated. In Section 5, we examine Regime-Switching AFNS’s representation.
We establish that it is the constrained special case of our representation. Section 6 concludes.
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2. Regime-Switching Gaussian Affine Term Structure Model

In this section, we just briefly describe the model set by [1]. Given the time t + 1 regime S, = j, under the
risk-neutral measure (hereafter denoted by @), [1] assumes that the N-dimensional state (factor) vector Y fol-
low the process

j .
Yoo =4 +Z06

where 42 =Y, +x° QHQ' -Y,), Z! isa volatility matrix that is regime-dependent but not dependent on time,
and €, ~N(0,1,) isstandard normal. ,

The regime-switching Q probabilities 79 is state-independent. 22" s the (j, k) element of 7, denot-
ingthe Q probability of switching from regime S, = j toregime S, =K.

The continuously compounded yield on a one-period zero-coupon bond in regime j is assumed to be the affine
function of Y,, thatis, r) =r(Y,,S, = j)=35 +5Y,.

Letting D,, =D, (Yt,St) denote the time t price for a zero-coupon bond with maturity of n periods, and
D/, denote the price when the current regime is S, = j . Then, as is proved by [1], we have,

D), = exp(—A“j - BnYt)
where,
. . i ! . . S i
AL =5 +(KQ9QJ ) B, —%B;,Z’Z"Bn - Iog(Zﬁij e j
k=0
Bn+l = 5Y + Bn _KQ'Bn
with initial conditions: AO' =0, B, =0. When n denotes maturities in months, the annualized yields are given by
R), =-log(D}, )x12/n=a] +byY, (1)
AL B,
nf12"" n/12’
The market prices of factor (MPF) risks in regime j, Atj , take a form of [5]’s essentially affine, assuming that
A= (=) (A +AN,).
Given the time t + 1 regime S,,; = j, under the historical measure (hereafter denoted by P), the N-dimen-
sional state (factor) vector Y follows the process

where al =

i _
Yt+1 = /utP + ZJEHl
where yf’j =Y, +x (Gpj —Yt) , =) is a volatility matrix that is regime-dependent but not dependent on time,

and €, ~N(0,1,) isstandard normal. )
The regime-switching P probabilities 7, is state-dependent. 7Z'IPJ is the (j, k) element of 7z, denoting the
P probability of switching from regime S, = j toregime S,,, =k . For the two-regime case, they assume,

i pik
., =l-x

pk _ _pk _
™ =7 (Yl)_ ik, jky ?
1+g% NN

where j # k. And then, the market price of regime-shift (MPRS) risk from S, to S,,;is as,
ri = |og(;zf"k /72" ) Vi, k.

3. Identification of [1]’s Model

[1] assumes that the yields on a collection of N zero-coupon bonds are priced without error, and the yields on
a collection of M zero-coupon bonds are priced with error. Let R, be the Nx1 vector of yields for the

bonds priced exactly by the model and R, be the remaining M x1 vector of yields for the bonds priced with
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error.

[1] belongs to the class of state space models. Any regime-switching Gaussian affine term structure model in
which exactly N yields are assumed to be priced without error takes the form of a restricted regime-switching
multivariate linear regression (LR). The mapping from the affine-pricing parameters to the LR parameters al-
lows us to evaluate the identifiability of a given structure. If two different values for the structural parameters
imply the identical reduced-form parameters, there is no way to use observable data to choose between the two.
Based on this idea, [8] demonstrates that [4] [11] and [12] are in fact unidentified. We now explore the implica-
tions of this fact for [1] described in the previous section.

Given the time t regime S, = j, according to (1), we have

R =&’ +by, )

where &; isaregime-dependent N x1 vector, b isaregime-independent N xN factor loading matrix.
Inverting (2) results in

Y) —6(R -a))
Then,

where,

KJ =—bx"'b?
31 =py
6 ~N(01,)

The remaining M vyields can be expressed as follows,
R =a +bY) +Qlu, =K} +KR +Qly,

where,
K{ =&’ —bba!
R, =5
u ~N(0,1y)

The P-measure regime-switching probability 7Z'tpjk can be transformed as follows,

i 1 1
ﬂtplk =

= T T = ik kA
14e® WY 1yl vin R

where,
Bl -n G =l
Letting © xrou :{50",5y,zc"j Vi ,Zj,ﬂ(,j,ﬂJ,Qj,zzQ,ngk,an} be the vector of parameters relevant for re-

gime-switching affine pricing and @, = {Kg,Kf,Kg K21l ,ﬁO"k,ﬁF{k} be the vector of parameters in the

regime-switching multivariate linear regression model. ® , is an implicit function of © ., . We know that
O, have one-to-one correspondence to observations and thus are identifiable. Therefore, we examine whe-
ther the mapping from ©,.5, t0o ©,; is one-to-one or not to determine the identifiability of @ g .- Ifitisa

(=)
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multi-to-one mapping, then @ ., is unidentified; if it is a one-to-one mapping, then © ., is just-identified;
and if a one-to-multi mapping, then © .., is over identified.

However, which kind of mapping it may be is not inherent in the model but depends on the data structure used.
For example, if the dimension of R, (that is M) increases (or decreases) by 1, then the number of parameters in
KO‘ of @, will increase (or decrease) by 1, and the number of parameters in K, will increase (or decrease)
by N . On the other side, all subsets of ©,5, but Q' remain the same size. Therefore, the number of M
is crucial for the identification of © g, - R

[1] estimates a two-regime, three-factor (N =3) model. The vector R, includes the yields on bonds with
maturities of 6, 24, and 120 months, and M = 1 with R, chosen to be the yield on the 60-month bond. The two

regimes are denoted L and H, corresponding to “low” and “high” values of the diagonal entries of 7.

Firstly, let us look at the flexibility of [1]’s empirical model. They set K , A and A as free parameters

. . H . . . L
in their model. Consequently, x° as well as " are derived parameters using equations x° =& +Af

and &7 =« +A; — A, . Furthermore, they set x" to a lower triangular matrix which has 6 free parame-

0 /IYLIZ /1YL13
ers, and A; to a form of | 0 0  As, | which has 5 free parameters. However, even though «2 is
L L
ﬂY 31 0 ﬂ‘Y 33

unrestricted full Lmatrix, x? only has 9 parameters which is less than the sum of the number of parameters
contained in &7 and Af . In this case, there would be more than one set of x” and A that fulfill the equa-

tion x° =x" +A" for some real x2, making parameters x* and A" unidentified. On the other hand, if

«" is determined by fitting the P distribution of Y,, then «® only has as many free parameters as A,

therefore making x? an over-identified matrix. In this case, the model would be not so flexible.
Secondly, let us look at the total number of parameters for both models. Table 1 lists the number of free pa-
rameters contained in ®,.g, Which is 49. Besides, they fix some subsets of ©,., a priori, that is,
1

5r =0.004417; & +5,07" =0.00767; 6° =(0 0 0) and +125“=| 1 |. These constraints re-
1

duce the total number of free parameters in © ¢, t0 41. Table 2 lists the number of free parameters contained
in ®  which is 34. Therefore, the only kind of mapping from ©,;,, to ©  is multi-to-one, and there
must be some parameters in  © ,15,, Which are unidentified.

4. A New Representation and Its Estimation

Due to the problems with identifiability of [1] parameters, we develop our “HW?” canonical representation of re-
gime-switching GDTSMs. Here, we use “HW” to represent [8], because they first propose this normalization for
three-factor GDTSMs. However, they do not further examine this form of normalization.

In [8], they have proposed that for any 3 x 3 real-valued matrix:

Pu P P
P=|Pn Pn Px
Pa Pz Ps
there exist H that makes y =HpH™, where y takes following form:
rm 00
V=|Ya & 7Iax
Ya 7 @

With 7, <73, .
Although, as is pointed out in [8], this form cannot be extended to higher dimension, it has an advantage over
others in that it can deal with the situation of x? having complex eigenvalues. This form is enough for us to

(=)
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Table 1. The number of free parameters in - ©arsu .

Coefficient Number of free Coefficient Number of free Coefficient Number of free
estimated parameters estimated parameters estimated parameters
K 6 s 3 o 3
A 5 Al 5 A 3
an 3 H 3 =t 3
5, 3 St 1 S 1
7 1 o 1 " 1
ne* 1 w" 2 " 2
o 1 Q" 1

Table 2. The number of free parameters in i .

Coefficient Number of free Coefficient Number of free Coefficient Number of free
estimated parameters estimated parameters estimated parameters
KL 3 $r 3 Ky 1
K} 3 st 3 K, 3
Kt 9 Kt 1 o 1
K} 9 ot 1

study regime-switching three-factor GDTSMs. Next, we propose an alternative normalization in the following
Theorem.

Theorem 1. Every three-factor canonical GDTSM is observationally equivalent to the three-factor canonical
GDTSM with

AX, = 7/th—1+2x€t 3)
AX, =75+ Xea + 246 )
r=r, +1'X )
where, 2 takes the following form:
72 0 0
=l oa R
% rs @

" r. isascalar.

0

7, isa3x1vector, y isa3x3 factor loading matrix, | represents (1 1 1)
Proof:
Assuming some three-factor canonical GDTSM takes the following form:

AY, = k2 + k2, +26,

AY, =&k} +x Y, +2Z,6,

rL=35,+34,Y,.
For ease of exposition, we assume we have found H , making HyH ™" =x2,and y takes the form:
ru 0 0
V=Va & 7y
Vs Vs @

Then, letting X, =v* (Yt +(z<1Q )71 K(?), where v = H xdiag ((5Y’H )'1). We can regard X, as a new state

(=)



G. Wang

factor, because the mapping from Y, to X, is one-to-one. The @Q dynamic process of X, can be obtained
as follows,

AX, =VIAY, =v7 (k§ + Y, + Ty )
= diag (87 H ) x H'i?H xdliag (8 H) ') X +V'Z,
=y%X , +V'Zq
where, 9 = diag(yH )x y x diag((cYY’ H )71) which also takes the same formas y, that is,

;/1Ql 0 0
=lya a3
re rs A

Likewise, the P dynamic process of X, can be obtained as follows,

AX, =VIAY, =V (kg 4K Y + 206 ) =75+ Xis Y E 6

P_. 1P 1 P( Q\t P P_.,-1_P P P : .
where, y; =V Kk, —V K (Kl) Ky, 7 =V Kk Vv.Both y; and y are unrestricted vector and matrix be-

cause we do not impose any restriction on either «; or ;.
Finally, we can transform the short rate as an affine function of the new state variables as follows,

L=05,+8,Y, =6,+6, (vxt —(Kf)'1K§)= r+1X,

-1 .
where, 1, =5,-5,(x?) x§ which isascalar.
By Theorem 1, we will establish the reparametrization of [1] regime-switching three-factor GDTSM as fol-

lows.
Given the time tregime S, = j, under Q, we assume that the three-dimensional state vector X, follow the
process,
AX, = VQXt-l + Eiet

s 0 0

where »° takes the formof |y2 a y3 |, X! is a volatility matrix that is regime-dependent but not de-
Q .0
Vai Vs @

pendent on time, and ¢ ~ N (0,1;) is standard normal. Unlike [1], we do not have to set the intercept term. In
order to have closed-form solutions for zero-coupon bond prices, we still set »© to be state-independent.

Like [1], the regime-switching Q probabilities 7% is state-independent. 72" is the (j, k) element of 72,
denoting the Q probability of switching from regime S, =j toregime S, =k.

Unlike [1], the continuously compounded yield on a one-period zero-coupon bond in regime j is assumed to
be a different affine function of X, , thatis, ) =r(Y,,S, = j)=r)+I'X,.

Then, given the time t regime S, = j, the time-t price for a zero-coupon bond with maturity of n periods
D/, is computed as follows,

DtJ;n =exp(_Af _ant)
where,
; ol i > Qi __ak
Al =r] —EBHZJXZJX B,—log| > 7% e
k=0
Bn+l=|+Bn_7/QBn'

with initial conditions: AJ =0,B, =0.When n denotes maturities in months, the annualized yields are given
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by
Rl = ————""=al +bX, 1)
A, _B

b, = .
n/12 n/12
Given the time tregime S, = j,under P, X, follows the process

where a) =

AX, =38+ X, +2le

where y¢ " ;/fi and X} are state-dependent parameters.

Like [1], the regime-switching P probabilities 7 is state-dependent. For the two-regime case, we still
assume,

ﬂ_tPik :ﬁpik(xt):%’ ﬂ_tPJ'i :1_ﬂ_tpik'j:L/H,k¢L
1+e T
And then, the market price of regime-shift (MPRS) risk from S, to S, isas, I'* = Iog[ L J vij,k.
7Z'tQ]

Like [1], we could set the market prices of factor risks in regime j, A} =(x’ )71(%1' +4)Y,) . However, we do
not set 4/ and A to be free parameters. Instead, we set °, y& " and 5" as free parameters in our mo-
del. Consequently, 1) aswell as A are derived parameters using equations A =»° —71PJ and ) = —75” .
A distinctive feature of this reparametrization is that, in estimation, there is an inherent separation between the
parameters of the P and Q distributions of X, . In contrast, when the risk factors are latent, estimates of the
parameters governing the P distribution necessarily depend on those of the Q distribution of the state, since
the pricing model is required to invert the model for the fitted states (when N bonds are priced perfectly). We
will formalize this “separation property” of our reparametrization in the following contents.

As in [1], we assume that the yields on a collection of three zero-coupon bonds are priced without error, and
the yields on a collection of M zero-coupon bonds are priced with error. In this data structure, we will prove
that, for two-regime model, the sufficient condition of just-identification of our normalizationis M =2.

Let R, be the 3x1 vector of yields for the bonds priced exactly by the model and R be the remaining
2x1 vector of yields for the bonds priced with error.

Given the time tregime S, = j, according to (1), we have

R =& +bx/ o)
where &’ is a regime-dependent 3x1 vector, b isa regime-independent 3x3 factor loading matrix.
Inverting (2) results in

X} =b*(R -a’)
Then,

where,

KlJ =_6}/1ij—1’
si=pxi,
g~N (0, Iy )
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The remaining 2 yields can be expressed as follows,
R =a +bX/ +Qlu, =K} +KR +Qly,

where,

u ~N(0,1,).
The P -measure regime-switching probability 7Z'tpjk can be transformed as follows,

i 1 1
ﬂtpjk = =

1l R il iR
where,
A jk jk kR-141]
ny =ng —nyba’
~ jk Ko
e =nxb™
In summary, we can use the method proposed in [13] to estimate the parameters
0O, = {IZOj el K, K,21,Ql, pk ,ﬁgk} , then we can back out our state-space parameters
Oprsm = {roojaVQ:V(?j 171Pj 12£< ’”Qik :770jkv77>j<k} as follows.

_Step 1. The estimate of the 6 unknowns in »? is obtained by numerically solving the 6 equations in
K,=bb™.
Step 2. The estimate of £ is obtained analytically by the equation %I =bx! , thatis £} =b™%i.

Step 3. The estimate of the 4 unknowns in {r;, o2 ,zQHL} is obtained by numerically solving the 4 eg-
uations in
K- =a"-bb'a- =a--K,a"
and,

Step 4. The estimate of »7 s obtained analytically by the equation K/ = —Byfjﬁ’l , that is
ylpj = —6’”@6.

Step 5. The estimate of 5’ is obtained analytically by the equation KJ =by’ +by' 04! =by?' —KJa’,
thatis 7.’ =6’1(K0j + Kliéj).

Step 6. The estimate of 7 is obtained analytically by the equation 7% =70, thatis 7 =7¥b.

Step7. The estimate of 7 is obtained analytically by the equation 7 =nX —pib*al =pk —5Xa’ that
is n =k +Akal,

In every step, the solving processes can be invertible, so we can also obtain ®,; from ©,.,. That is the
mapping relation between ®,; and ©,., is one-to-one, and the parameters of our normalization are just-
identified.

When M = 1, the situation is different. In Step 1, there are still 6 unknowns in 2, while there are only 3 equ-

ations in K, = bb™*; in Step 3, we still need estimate the 4 unknowns in {rL o2 ,ﬂ'QHL} ,while there are

w10

only 2 equations in K, =a"-K,a8" and K{'=a" -K&". The mapping from @, to ©, is mul-
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ti-to-one and so the parameters of our normalization are unidentified.
When M >3, we will see our state-space parameters © .., to be over identified. In Step 1, there will be at
least 3 x 3 = 9 equations, but we still need to estimate only 6 unknowns in »°. In Step 3, there will be at least 3

x 2 = 6 equations in K =a"-Ka" and K/' =a" —-K,a", but we there are still only 4 unknowns in

{rL i ,nQHL} . This means that the mapping from © 5, t0 © 5 is one-to-multi and so the parameters

© !0

of our normalization are over identified.

The next question is how to obtain the standard error for these state-space parameters © 45, . [8] has proved
that under the usual regularity conditions, we could use Delta Methods to obtain the asymptotic standard errors
of the structural parameters.

Within [1]’s parametrization, the @Q parameters control the cross-sectional relationship among the yields
and the latent factors are fitted from observed yields, so the estimates of the parameters governing the P dis-
tribution will necessarily depend on those of the Q distribution of the state. On the other hand, [1]’s parame-
trization also makes the @Q parameters as derived parameters from P parameters. Therefore, we cannot back
out Q parametersand P parameters separately in [1]’s model, while our model’s parametrization makes this
“separation property” possible.

5. Regime-Switching Three-Factor Arbitrage-Free Nelson-Siegel Model.

In this section, we will show that the regime-switching extension on the AFNS model of [9] is a constrained spe-
cial case of our representation.
By [9], under Q, the three-dimensional state vector Z, follow the process,

dz;) (0 0 0)|(&R) (z!
dzZ =10 4 4[| 62 |-| 22 ||+2,0, (6)
dz}) (0 0o A )|\6)) |z}

where X, isa volatility matrix and @, ~N(0,1;) is standard normal. The short rate depends only on the first
two latent pricing factors, that is,

=2 +2? @)
First, we let F, =Z,—6° to be a new state vector. Replacing Z, with F,in(6) and (7), we have,
df*) (0 0 O )\(F!
dF’ |=|0 -2 A ||F? |[+Z,0 (8)
d/*) (0 0 -AJ|F?

I:tl
r=r,+(1 1 0)F’ 9)
F®
where
r,=02+63.
10 0]
Second, let X, =GF,,with G={0 1 -A|.Premultiply both sides of (8) by G, we have,
00 4

dXx;) (0 0 0 X}
dXZ =0 -2 A || X7 |+, (10)
dx?) o 0 A\ X¢

()
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100
where ¥, =GX, . Inserting F, =G™'X,=|0 1 1|X, into (7) produces
00 L
A
r=r, +1'X, (11)

where 1=(1 1 1)'.

Comparing (10) with (3), we find that the regime-switching AFNS model is the constrained special case of
the our normalization with 72 =0, 2 =0, 72 =0, y$ =0 and y2 =-a.

Sometimes, we want to test if these constraints are valid. We could set regime-switching AFNS model as the

null model and our representation as the alternative model, and then, under a desired statistical significance level,
we compare likelihood ratio to the chi squared value with degrees of freedom equal to 5.

6. Conclusions

[1]’s regime-switching three-factor affine term structure model, when we assume that the yields on a collection
of three zero-coupon bonds are priced without error, is simply a restricted regime-switching linear regression.
We use this correspondence to demonstrate that [1]’s parameters are in fact universally unidentified and a subset
of their parameterization is over identified. As a solution to the problem with the identifiability, we propose a
canonical representation of GDTSMs based on [8]’s proposal, which is then used in double-regime environment
as a new form of regime-switching GDTSM. We also demonstrate that the parameters of our new form of re-
gime-switching GDTSM are just-identified when the number of the pricing-with-error yields M equals 2. Our
model’s parametrization has another advantage over [1] in that we can back out Q parameters and P para-
meters separately and make the estimation of structural parameters easier. Finally, we show that regime-
switching three-factor arbitrage-free dynamic Nelson-Siegel model is a restricted special case of our model.

Besides, due to the tremendous numerical challenges in estimating the necessary parameters, we hope that our
method will help to make these models a more effective tool for research in better describing the historical in-
terest rate data.
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