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Abstract 
We establish that [1]’s parameters are universally unidentified and a subset of their parameteri- 
zation is over identified. As a solution to the problem with the identifiability, we propose a new 
representation of double-regime three-factor GDTSMs whose parameters are just-identified when 
the number of the pricing-with-error yields equals 2. This new parametrization has another ad- 
vantage over [2] in that we can back out   parameters and   parameters separately and 
make the estimation of structural parameters easier. Finally, we show that regime-switching 
three-factor arbitrage-free dynamic Nelson-Siegel model is a restricted special case of our model. 
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1. Introduction 
After [2] proposed the single factor Gaussian affine term structure model. The class of Gaussian affine term 
structure models (GDTSMs) has been generalized and developed by, [3] [4], and [5] and has become the basic 
workhorse in macroeconomics and finance for purposes of using a no-arbitrage framework for studying the rela- 
tions between yields on assets of different maturities. [4] and [5] find the Gaussian form of three-factor affine 
term structure model describes US treasury yields better than other forms. However, there is an extensive em- 
pirical literature on bond yields (particularly short-term rates) that suggests that “switching-regime” models de- 
scribe the historical interest rate data better than single-regime models (see, for example, [1] [6] and [7]). 

[1] develop a discrete-time multi-factor DTSM with the following features: 1) within each regime the 
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short-term interest rate follows a three-factor Gaussian model with state-dependent market prices of factor risks; 
2) there are two regimes characterized by low (L) and high (H) volatility, and the transitions between these re- 
gimes under the historical measure P are governed by a Markov process with regime-shift probabilities

( ), ,
ij

t i j H Lπ =  that depend on the risk factors underlying changes in the shape of the yield curve; and 3) re- 
gime-shift risks are priced. This model yields exact closed-form solutions for bond prices, and an analytic re- 
presentation of the likelihood function that they use in their empirical analysis of US. Treasury zero-coupon 
bond yields. Expected excess returns are decomposed into two components, which are associated with re- 
gime-shift and factor risks, respectively. 

But in the practical experience of those who have used DSY model are tremendous numerical challenges in 
estimating the necessary parameters from the data due to highly non-linear and badly behaved likelihood sur- 
faces. For example, [1] reported: 

… Even with these normalizations/constraints, the resulting maximally flexible ( )0 3RSA  model (with restric- 
tions for analytical pricing) involves a high dimensional parameter space… 

Another problem with DSY model is its identification. We find that DSY model parameters are universally 
unidentified. If there are some parameters in the model that are unidentified, then it will be wrong to make con- 
clusions from its parameters’ estimate, let us say about how regime-shift risks are priced. 

This paper proposes solution to them and other problems with regime-switching affine term structure model 
of [1] based on what we will refer to as their reduced-form representation. For a popular class of re- 
gime-switching Gaussian affine term structure models—namely, those for which the model is claimed to price 
exactly a subset of N  linear combinations of observed yields, where N  is the number of unobserved pricing 
factors—this reduced form is a restricted regime-switching multivariate linear regression in the observed set of 
yields.  

One implication is that the parameters of these reduced-form representations contain all the observable impli- 
cations of [1] regime-switching Gaussian affine term structure model for the sample of observed data, and can 
therefore be used as a basis for assessing identification. If more than one value for the parameter vector of inter- 
est is associated with the same reduced-form parameter vector, then the model is unidentified at that point and 
there is no way to use the observed data to distinguish between the alternative possibilities. [8] has applied this 
idea to affine term structure models with single regime. In this paper, we use it to demonstrate that [1] is in fact 
unidentified, an observation that our paper is the first to point out. This issue of identification is one factor that 
contributes to the numerical difficulties for conventional methods. 

A second and completely separate contribution of the paper is that we propose our canonical representation of 
GDTSMs, which is then used in double-regime environment as a new form of regime-switching GDTSMs. Us- 
ing this form of representation, it is possible for the parameters of interest to be inferred directly from estimates 
of the reduced-form parameters themselves. This is a very useful result because the latter are often simple re- 
gime-switching OLS coefficients. Although translating from reduced-form parameters into structural parameters 
involves a mix of analytical and numerical calculations, the numerical component is far simpler than that asso- 
ciated with the usual approach of trying to find the maximum of the likelihood surface directly as a function of 
the structural parameters. 

There have been several other recent efforts to use new development in GDTSMs for multi-regime considera- 
tion. [9] developed a no-arbitrage representation of a dynamic Nelson-Siegel model of interest rates that gives a 
convenient representation of level, slope and curvature factors. For example, [10] presents an affine, arbi- 
trage-free, regime-switching dynamic Nelson-Siegel model of the term structure (Regime-Switching AFNS). 
We show that it is a special case of our new form of regime-switching GDTSMs. 

The chief difference between this paper and other relevant papers is that they focus on how the re- 
gime-switching GDTSMs should be represented, whereas we also examine how the parameters of the regime- 
switching GDTSMs are to be estimated. 

The rest of the paper is organized as follows. Section 2 describes [1] regime-switching Gaussian affine term 
structure model. Section 3 investigates the mapping from structural to reduced-form parameters. We establish 
that the canonical forms of [1] are universally unidentified and a subset of their parameterization is over identi- 
fied. In Section 4, we propose a new representation. We establish when this representation is just-identified and 
how the parameters are to be estimated. In Section 5, we examine Regime-Switching AFNS’s representation. 
We establish that it is the constrained special case of our representation. Section 6 concludes. 
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2. Regime-Switching Gaussian Affine Term Structure Model 
In this section, we just briefly describe the model set by [1]. Given the time t + 1 regime 1tS j+ = , under the 
risk-neutral measure (hereafter denoted by  ), [1] assumes that the N-dimensional state (factor) vector Y fol- 
low the process 

1 1Σ
jQ j

t t tY µ+ += +   

where ( )     j jQ Q Q
t t tY Yµ κ θ= + − , Σ j  is a volatility matrix that is regime-dependent but not dependent on time, 

and ( )1 0,t NN I+ ∼  is standard normal. 
The regime-switching   probabilities Qπ  is state-independent.  

jkQπ  is the (j, k) element of Qπ , denot- 
ing the   probability of switching from regime tS j=  to regime 1tS k+ = . 

The continuously compounded yield on a one-period zero-coupon bond in regime j is assumed to be the affine 
function of tY , that is, ( ) 0,j j

t t t Y tr r Y S j Yδ δ= = = + . 
Letting ( ), ,t n n t tD D Y S=  denote the time t price for a zero-coupon bond with maturity of n periods, and 
,
j

t nD denote the price when the current regime is tS j= . Then, as is proved by [1], we have, 

( ), expj j
t n n n tD A B Y= − −  

where, 

( )1 0
0

1 log e
2

kj jk
n

s
Aj j Q Q j j Q

n n n
k

nA B B Bδ κ θ π −
+

=

 ′= + − Σ
′ ′Σ −  

 
∑  

1
Q

n Y n nB B Bδ κ+ = + − ′  

with initial conditions: 0 00, 0jA B= = . When n denotes maturities in months, the annualized yields are given by 

( ), ,log 12j j j
t n n tnn tR D n a b Y= − × = ′+                             (1) 

where ,
12 12

j
j n n

n n
A B

a b
n n

== . 

The market prices of factor (MPF) risks in regime j, j
tΛ , take a form of [5]’s essentially affine, assuming that 

( ) ( )1

0
j j j j
t Y tYλ λ

−
Λ = Σ + . 

Given the time t + 1 regime 1tS j+ = , under the historical measure (hereafter denoted by P), the N-dimen- 
sional state (factor) vector Y follows the process 

1 1Σ
jP j

t t tY µ+ += +   

where ( )j j jP P P
t t tY Yµ κ θ= + − , Σ j  is a volatility matrix that is regime-dependent but not dependent on time,  

and ( )1 0,t NN I+ ∼  is standard normal. 
The regime-switching P probabilities P

tπ  is state-dependent. 
jkP

tπ  is the (j, k) element of P
tπ , denoting the 

P probability of switching from regime tS j=  to regime 1tS k+ = . For the two-regime case, they assume, 

( )
0

1 , 1
1 e

jk jk jj jk

jk jk
tY

P P
t t
P P

t tY
Y

η η
π π π π

+
= = = −

+
 

where j ≠ k. And then, the market price of regime-shift (MPRS) risk from tS  to 1tS + is as, 

( )log , , .
jk jkjk P Q

t t t j kπ πΓ = ∀  

3. Identification of [1]’s Model 
[1] assumes that the yields on a collection of N  zero-coupon bonds are priced without error, and the yields on 
a collection of M  zero-coupon bonds are priced with error. Let ˆ

tR  be the 1N ×  vector of yields for the 
bonds priced exactly by the model and tR  be the remaining 1M ×  vector of yields for the bonds priced with 
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error. 
[1] belongs to the class of state space models. Any regime-switching Gaussian affine term structure model in 

which exactly N  yields are assumed to be priced without error takes the form of a restricted regime-switching 
multivariate linear regression (LR). The mapping from the affine-pricing parameters to the LR parameters al- 
lows us to evaluate the identifiability of a given structure. If two different values for the structural parameters 
imply the identical reduced-form parameters, there is no way to use observable data to choose between the two. 
Based on this idea, [8] demonstrates that [4] [11] and [12] are in fact unidentified. We now explore the implica- 
tions of this fact for [1] described in the previous section. 

Given the time t regime tS j= , according to (1), we have 

ˆˆ ˆ j j
t tR a bY= +                                    (2) 

where ˆ ja  is a regime-dependent 1N ×  vector, b̂  is a regime-independent N N×  factor loading matrix. 
Inverting (2) results in 

( )1ˆ ˆ ˆj j
t tY b R a−= −  

Then, 

1 0 1 1
ˆˆ ˆ ˆ ˆ ˆ ˆˆ j j j j j

t t t t tR a bY R K K R− −= + = + + + Σ   

 
where, 

1
0

ˆ ˆ ˆˆ ˆ
j j jj P P P jK b b b aκ θ κ −= +  

1
1

ˆ ˆˆ jj PK b bκ −= −  

ˆˆ j jbΣ = Σ  

( )0,t NN I∼  

The remaining M  yields can be expressed as follows, 

0 1
ˆj j j j j

t t t t tR a bY u K K R u= + +Ω = + +Ω
  

  

where, 
1

0
ˆ ˆj j jK a bb a−= − 

  

1
1

ˆK bb−=   

( )0,t Mu N I∼  

The P-measure regime-switching probability 
jkP

tπ  can be transformed as follows, 

0 0
ˆˆ ˆ

1 1

1 e 1 e

jk

jk jk jk jk
t tY R

P
t Y Rη η η η

π
+ +

= =
+ +

 

 
where, 

1
0 0

ˆˆ ˆjk jk jk j
Y b aη η η −= − ; 

1ˆˆ jk jk
R Y bη η −=  

Letting { }ATSM 0 0 0Θ , , , , , , , , , ,
j jj P P j j j j Q jk jk

Y Y Yδ δ κ θ λ λ π η η= Σ Ω  be the vector of parameters relevant for re- 

gime-switching affine pricing and { }LR 0 1 0 1 0
ˆ ˆ ˆ ˆ ˆ, , , , , , ,Θ j j j j j j jk jk

RK K K K η η= Σ Ω   be the vector of parameters in the 

regime-switching multivariate linear regression model. LRΘ  is an implicit function of ATSMΘ . We know that 
ATSMΘ  have one-to-one correspondence to observations and thus are identifiable. Therefore, we examine whe- 

ther the mapping from ATSMΘ  to LRΘ  is one-to-one or not to determine the identifiability of ATSMΘ . If it is a 
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multi-to-one mapping, then ATSMΘ  is unidentified; if it is a one-to-one mapping, then ATSMΘ  is just-identified; 
and if a one-to-multi mapping, then ATSMΘ  is over identified. 

However, which kind of mapping it may be is not inherent in the model but depends on the data structure used. 
For example, if the dimension of tR  (that is M) increases (or decreases) by 1, then the number of parameters in 

0
jK  of LRΘ  will increase (or decrease) by 1, and the number of parameters in 1K  will increase (or decrease) 

by N . On the other side, all subsets of ATSMΘ  but jΩ  remain the same size. Therefore, the number of M  
is crucial for the identification of ATSMΘ . 

[1] estimates a two-regime, three-factor ( )3N =  model. The vector ˆ
tR  includes the yields on bonds with 

maturities of 6, 24, and 120 months, and M = 1 with tR  chosen to be the yield on the 60-month bond. The two 
regimes are denoted L and H, corresponding to “low” and “high” values of the diagonal entries of Σ j . 

Firstly, let us look at the flexibility of [1]’s empirical model. They set 
LPκ , L

Yλ  and H
Yλ  as free parameters  

in their model. Consequently, Qκ  as well as 
HPκ  are derived parameters using equations 

LQ P L
Yκ κ λ= +  

and  
LHP P L H

Y Yκ κ λ λ= + − . Furthermore, they set 
LPκ  to a lower triangular matrix which has 6 free parame- 

ers, and L
Yλ  to a form of 

12 13

23

31 33

0
0 0

0

L L
Y Y

L
Y

L L
Y Y

λ λ
λ

λ λ

 
 
 
 
 

 which has 5 free parameters. However, even though Qκ  is  

unrestricted full matrix, Qκ  only has 9 parameters which is less than the sum of the number of parameters 
contained in 

LPκ and L
Yλ . In this case, there would be more than one set of 

LPκ  and L
Yλ  that fulfill the equa- 

tion 
LQ P L

Yκ κ λ= +  for some real Qκ , making parameters 
LPκ  and L

Yλ  unidentified. On the other hand, if  
LPκ  is determined by fitting the P distribution of tY , then Qκ  only has as many free parameters as L

Yλ , 
therefore making Qκ  an over-identified matrix. In this case, the model would be not so flexible. 

Secondly, let us look at the total number of parameters for both models. Table 1 lists the number of free pa- 
rameters contained in ATSMΘ  which is 49. Besides, they fix some subsets of ATSMΘ  a priori, that is,  

0 0.004417Lδ = ; 0 0.00767
HH P

Yδ δ θ′+ = ; ( )0 0 0
LPθ ′=  and 

1
12Σ 1

1

L
 
 =  
 
 

. These constraints re- 

duce the total number of free parameters in ATSMΘ  to 41. Table 2 lists the number of free parameters contained 
in LRΘ  which is 34. Therefore, the only kind of mapping from ATSMΘ  to LRΘ  is multi-to-one, and there 
must be some parameters in ATSMΘ  which are unidentified. 

4. A New Representation and Its Estimation 
Due to the problems with identifiability of [1] parameters, we develop our “HW” canonical representation of re- 
gime-switching GDTSMs. Here, we use “HW” to represent [8], because they first propose this normalization for 
three-factor GDTSMs. However, they do not further examine this form of normalization.  

In [8], they have proposed that for any 3 × 3 real-valued matrix: 

11 12 13

21 22 23

31 32 33

ρ ρ ρ
ρ ρ ρ ρ

ρ ρ ρ

 
 =  
  

 

there exist H  that makes 1H Hγ ρ −= , where γ  takes following form: 

11

21 23

31 32

0 0
a

a

γ
γ γ γ

γ γ

 
 =  
  

 

with 23 32γ γ≤ . 
Although, as is pointed out in [8], this form cannot be extended to higher dimension, it has an advantage over 

others in that it can deal with the situation of Qκ  having complex eigenvalues. This form is enough for us to  
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Table 1. The number of free parameters in ATSMΘ .                                                            

Coefficient  
estimated 

Number of free  
parameters 

Coefficient  
estimated 

Number of free  
parameters 

Coefficient  
estimated 

Number of free  
parameters 

LPκ  6 LPθ  3 HPθ  3 
L

Yλ  5 H
Yλ  5 0

Lλ  3 

0
Hλ  3 ΣH  3 ΣL  3 

Yδ  3 0
Lδ  1 0

Hδ  1 
LHQπ  1 HLQπ  1 0

LHη  1 

0
HLη  1 LH

Yη  2 HL
Yη  2 

LΩ  1 HΩ  1   

 
Table 2. The number of free parameters in LRΘ .                                                             

Coefficient  
estimated 

Number of free  
parameters 

Coefficient  
estimated 

Number of free  
parameters 

Coefficient  
estimated 

Number of free  
parameters 

0
ˆ LK  3 ˆ HΣ  3 0

HK  1 

0
ˆ HK  3 Σ̂L  3 1K  3 

1
ˆ LK  9 0

LK  1 HΩ  1 

1
ˆ HK  9   ΩL

  1 

 
study regime-switching three-factor GDTSMs. Next, we propose an alternative normalization in the following 
Theorem. 

Theorem 1. Every three-factor canonical GDTSM is observationally equivalent to the three-factor canonical 
GDTSM with 

1 ΣQ
t t x tX Xγ −∆ = +                                     (3) 

0 1 1
P P

t t x tX Xγ γ −∆ = + + Σ                                   (4) 

t tr r l X∞ ′= +                                       (5) 

where, Qγ  takes the following form: 

11

21 23

31 32

0 0Q

Q Q Q

Q Q

a
a

γ
γ γ γ

γ γ

 
 
 

 

=


 

0
Pγ  is a 3 × 1 vector, 1

Pγ  is a 3×3 factor loading matrix, l  represents ( )1 1 1 ′ , r∞  is a scalar. 
Proof: 
Assuming some three-factor canonical GDTSM takes the following form: 

0 1 1

0 1 1

0 .

,

,

Q Q
t t Y t

P P
t t Y t

t Y t

Y Y

Y Y
r Y

κ κ

κ κ
δ δ

−

−

∆ = + + Σ

∆ = + + Σ

= +



  

For ease of exposition, we assume we have found H , making 1
1
QH Hγ κ− = , and γ  takes the form： 

11

21 23

31 32

0 0
a

a

γ
γ γ γ

γ γ

 
 =  
  

 

Then, letting ( )( )11
1 0
Q Q

t tX v Y κ κ
−−= + , where ( )( )1diag Yv H Hδ −′= × . We can regard tX  as a new state 
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factor, because the mapping from tY  to tX  is one-to-one. The   dynamic process of tX  can be obtained 
as follows, 

( )
( ) ( )( )

1 1
0 1 1

1 1
1 1

1
1

Δ    Σ

diag diag Σ

Σ  

Q Q
t t t Y t

Q
Y Y t Y t

Q
x Y t

X v Y v Y

H H H H X v

X v

κ κ

δ κ δ

γ

− −
−

− −
−

−
−

=

=

∆ = + +

′ ′ ′× × +

+=







 

where, ( ) ( )( )1diag diagQ
Y YH Hγ δ γ δ −′ ′= × ×  which also takes the same form as γ , that is, 

11

21 23

31 32

0 0Q

Q Q Q

Q Q

a
a

γ
γ γ γ

γ γ

 
 
 

 

=


 

Likewise, the   dynamic process of tX  can be obtained as follows, 

( )1 1 1
0 1 1 Y 0 1 1Δ Σ ΣP P P P

t t t t t Y tX v Y v Y X vκ κ γ γ− − −
− −∆ = + + + += =   

where, ( ) 11 1
0 0 1 1 0
P P P Q Pv vγ κ κ κ κ

−− −= − , 1
1 1
P Pv vγ κ−= . Both 0

Pγ  and 1
Pγ  are unrestricted vector and matrix be- 

cause we do not impose any restriction on either 0
Pκ  or 1

Pκ . 
Finally, we can transform the short rate as an affine function of the new state variables as follows, 

( )( )1

0 0 1 0
Q Q

t Y t Y t tY vX r Xr lδ δ δ δ κ κ
−

∞ ′= + +== + −  

where, ( ) 1

0 1 0
Q Q

Yr δ δ κ κ
−

∞ = −  which is a scalar. 

By Theorem 1, we will establish the reparametrization of [1] regime-switching three-factor GDTSM as fol- 
lows. 

Given the time t regime tS j= , under  , we assume that the three-dimensional state vector tX  follow the 
process, 

1 ΣQ j
t t x tX Xγ −∆ = +   

where Qγ  takes the form of 
11

21 23

31 32

0 0
 

Q

Q Q

Q Q

a
a

γ
γ γ
γ γ

 
 
 
 
 

, Σ j
x  is a volatility matrix that is regime-dependent but not de- 

pendent on time, and ( )30,t N I∼  is standard normal. Unlike [1], we do not have to set the intercept term. In 
order to have closed-form solutions for zero-coupon bond prices, we still set Qγ  to be state-independent. 

Like [1], the regime-switching   probabilities Qπ  is state-independent. 
jkQπ  is the (j, k) element of Qπ , 

denoting the   probability of switching from regime tS j=  to regime 1tS k+ = . 
Unlike [1], the continuously compounded yield on a one-period zero-coupon bond in regime j is assumed to  

be a different affine function of tX , that is, ( ),j j
t t t tr r Y S j r l X∞ ′= = = + . 

Then, given the time t regime tS j= , the time-t price for a zero-coupon bond with maturity of n periods 
,
j

t nD  is computed as follows, 

( ), expj j
t n n n tD A B X= − −  

where, 

1
0

1 log e
2

kjk
n

s
Aj j j j Q

n n X X n
k

A r B B π −
+ ∞

=

 ′= − Σ Σ −  


′


∑  

1
Q

n n nB l B Bγ+ = + − . 

with initial conditions: 0 00, 0jA B= = . When n  denotes maturities in months, the annualized yields are given 
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by 

( ),
,

log
1

12

j
t

n
nj j

t n n t

D
R b X

n
a ′+== −

×
                              (1) 

where ,
12 12

j
j n n

n n
A B

b
n

a
n

= = . 

Given the time t regime tS j= , under  , tX  follows the process 

0 11
j jP P j

t t x tX Xγ γ −∆ = + Σ+   

where 0
jPγ , 1

jPγ  and j
xΣ  are state-dependent parameters.  

Like [1], the regime-switching   probabilities P
tπ  is state-dependent. For the two-regime case, we still 

assume, 

( )
0

1 , 1 ,
1 e

,
jk jk jj jk

jk jk
tY

P P P P
t t t tX

X j L H k L
η η

π π π π
+

= = = − = ≠
+

 

And then, the market price of regime-shift (MPRS) risk from 1tS −  to tS  is as, log , ,
jk

jk

P
jk t
t Q

t

j k
π

π

 
 Γ = ∀
 
 

. 

Like [1], we could set the market prices of factor risks in regime j, ( ) ( )1

0
j j j j
t Y tYλ λ

−
Λ = Σ + . However, we do  

not set 0
jλ  and j

xλ  to be free parameters. Instead, we set Qγ , 0
jPγ  and 1

jPγ  as free parameters in our mo-  
del. Consequently, 0

jλ  as well as j
xλ  are derived parameters using equations 1 

jj Q P
xλ γ γ= −  and 0 0

jj Pλ γ= − .  
A distinctive feature of this reparametrization is that, in estimation, there is an inherent separation between the 
parameters of the   and   distributions of tX . In contrast, when the risk factors are latent, estimates of the 
parameters governing the   distribution necessarily depend on those of the   distribution of the state, since 
the pricing model is required to invert the model for the fitted states (when N bonds are priced perfectly). We 
will formalize this “separation property” of our reparametrization in the following contents. 

As in [1], we assume that the yields on a collection of three zero-coupon bonds are priced without error, and 
the yields on a collection of M  zero-coupon bonds are priced with error. In this data structure, we will prove 
that, for two-regime model, the sufficient condition of just-identification of our normalization is 2M = . 

Let ˆ
tR  be the 3 1×  vector of yields for the bonds priced exactly by the model and tR  be the remaining 

2 1×  vector of yields for the bonds priced with error. 
Given the time t regime tS j= , according to (1), we have 

ˆˆ ˆ j j
t tR a bX= +                                       (2) 

where ˆ ja  is a regime-dependent 3 1×  vector, b̂  is a regime-independent 3 3×  factor loading matrix. 
Inverting (2) results in 

( )1ˆ ˆ ˆj j
t tb R aX −= −  

Then, 

1 0 1 1
ˆˆ ˆ ˆ ˆ ˆ ˆˆ j j j j j

t t t t tXR a b R K K R− −+ + ++ Σ= =   
where, 

1
1

0 0
ˆ ˆ ˆˆ ˆ ,

j jj P P jK b b b aγ γ −= +  

1
1 1

ˆ ˆˆ jj PK b bγ −= − , 

ˆˆ j j
XbΣ = Σ , 

( )0,t NN I∼ . 
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The remaining 2 yields can be expressed as follows, 

0 1
ˆj j j j

t t t
j

t ta bX Ru uR K K= += + ++Ω Ω  


  

where, 

0
1ˆ ˆjj ja b aK b−= − 

 , 
1

1
ˆbbK −=  , 

( )0,t Mu N I∼ . 

The  -measure regime-switching probability 
jkP

tπ  can be transformed as follows, 

0 0 ˆ ˆˆ

1 1

1 e 1 e

jk

jk jk jk jk
t R tX R

P
t Xη η η η

π
++

= =
+ +

 

where, 
1

0 0
ˆˆ ˆjk jk jk j

X b aη η η −= −  
1ˆˆ jk jk

XR bη η −=  

In summary, we can use the method proposed in [13] to estimate the parameters 

{ }0 1 0 1 0LR , ,ˆ ˆ ˆ ˆ, , ,Θ , ˆ,j j j k jj j j k
RK KK K η ηΩΣ=   , then we can back out our state-space parameters 

ATSMΘ  = { }0 1 0, ,, , ,, ,
j j jkj Q P P j Q jk jk

X Xr γ γ γ π η η∞ Σ  as follows. 

Step 1. The estimate of the 6 unknowns in  Qγ  is obtained by numerically solving the 6 equations in 
1

1
ˆbbK −=  . 

Step 2. The estimate of j
XΣ  is obtained analytically by the equation ˆˆ j j

XbΣ = Σ , that is 1ˆ ˆj j
X b−Σ = Σ . 

Step 3. The estimate of the 4 unknowns in { }, , ,
LH HLL H Q Qr r π π∞ ∞  is obtained by numerically solving the 4 eq- 

uations in 
1

0 1
ˆ ˆ ˆL L L L La bb aK a aK−= − = −

 

   

and, 

0 1 ˆH H HK Ka a= − 

  

Step 4. The estimate of 1
jPγ  is obtained analytically by the equation 1

11
ˆ ˆˆ jj PK b bγ −= − , that is  

1
1 1

ˆ ˆˆjP jb K bγ −= − . 

Step 5. The estimate of 0
jPγ  is obtained analytically by the equation 0 0 0 1

1
1

ˆ ˆ ˆ ˆˆ ˆˆ ˆ
j j jj P P P jj jK b b b a b K aγ γ γ−= + = − , 

that is ( )1
0 0 1

ˆ ˆ ˆ ˆ
jP j j jb K K aγ −= + . 

Step 6. The estimate of jk
Xη  is obtained analytically by the equation 1ˆˆ jk jk

R X bη η −= , that is ˆjk jk
X R bη η= . 

Step7. The estimate of 0
jkη  is obtained analytically by the equation 1

0 0 0
ˆˆ ˆˆ ˆjk jk jk j jk jk j

X Rb a aη η η η η−= − = −  that  

is 0 0ˆ ˆ ˆjk jk jk j
R aη η η= + . 

In every step, the solving processes can be invertible, so we can also obtain LRΘ  from ATSMΘ . That is the 
mapping relation between LRΘ  and ATSMΘ  is one-to-one, and the parameters of our normalization are just- 
identified. 

When M = 1, the situation is different. In Step 1, there are still 6 unknowns in Qγ , while there are only 3 equ- 
ations in 1

1
ˆbbK −=  ; in Step 3, we still need estimate the 4 unknowns in { }, , ,

LH HLL H Q Qr r π π∞ ∞  ,while there are  

only 2 equations in 0 1 ˆLL LaK aK= − 

  and 0 1 ˆHH HaK aK= − 

 . The mapping from ATSMΘ  to LRΘ  is mul- 
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ti-to-one and so the parameters of our normalization are unidentified. 
When 3M ≥ , we will see our state-space parameters ATSMΘ  to be over identified. In Step 1, there will be at 

least 3 × 3 = 9 equations, but we still need to estimate only 6 unknowns in Qγ . In Step 3, there will be at least 3 
× 2 = 6 equations in 0 1 ˆLL LaK aK= − 

  and 0 1 ˆHH HaK aK= − 

 , but we there are still only 4 unknowns in 

{ }, , ,
LH HLL H Q Qr r π π∞ ∞ . This means that the mapping from ATSMΘ  to LRΘ  is one-to-multi and so the parameters 

of our normalization are over identified. 
The next question is how to obtain the standard error for these state-space parameters ATSMΘ . [8] has proved 

that under the usual regularity conditions, we could use Delta Methods to obtain the asymptotic standard errors 
of the structural parameters. 

Within [1]’s parametrization, the   parameters control the cross-sectional relationship among the yields 
and the latent factors are fitted from observed yields, so the estimates of the parameters governing the   dis- 
tribution will necessarily depend on those of the   distribution of the state. On the other hand, [1]’s parame- 
trization also makes the   parameters as derived parameters from   parameters. Therefore, we cannot back 
out   parameters and   parameters separately in [1]’s model, while our model’s parametrization makes this 
“separation property” possible. 

5. Regime-Switching Three-Factor Arbitrage-Free Nelson-Siegel Model. 
In this section, we will show that the regime-switching extension on the AFNS model of [9] is a constrained spe- 
cial case of our representation.  

By [9], under  , the three-dimensional state vector tZ  follow the process, 
1 1

1
2 2

2
3 3

3

0 0 0
0
0 0

Q
t t

Q
t t z t

Q
t t

dZ Z
dZ Z
dZ Z

θ
λ λ θ ω

λ θ

       
       = − − + Σ       

               

                      (6) 

where ΣZ  is a volatility matrix and ( )30,t N Iω ∼  is standard normal. The short rate depends only on the first 
two latent pricing factors, that is, 

1 2
t t tr Z Z= +                                     (7) 

First, we let Q
t tF Z θ= −  to be a new state vector. Replacing tZ  with tF  in (6) and (7), we have, 

1 1

2 2

3 3

0 0 0
0
0 0

t t

t t z t

t t

dF F
dF F
dF F

λ λ ω
λ

    
    = − + Σ    

    −    

                          (8) 

( )

1

2

3

1 1 0
t

t t

t

F
r r F

F
∞

 
 

= +  
 
 

                                 (9) 

where  

1 2
Q Qr θ θ∞ = + . 

Second, let t tX GF= , with 
1 0 0
0 1
0 0

G λ
λ

 
 = − 
  

. Premultiply both sides of (8) by G , we have, 

1 1

2 2

3 3

0 0 0
0
0 0

t t

t t X t

t t

dX X
dX X
dX X

λ λ ω
λ

    
    = − + Σ    

    −    

                         (10) 
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where X ZGΣ = Σ . Inserting 1

1 0 0
0 1 1

10 0

t t tF XXG

λ

−

 
 
 

= =  
 
 
 

 into（7）produces 

t tr r l X∞ ′= +                                      (11) 

where ( )1 1 1l ′= . 
Comparing (10) with (3), we find that the regime-switching AFNS model is the constrained special case of  

the our normalization with 11 0Qγ = , 21 0Qγ = , 31 0Qγ = , 32 0Qγ =  and 23
Q aγ = − . 

Sometimes, we want to test if these constraints are valid. We could set regime-switching AFNS model as the 
null model and our representation as the alternative model, and then, under a desired statistical significance level, 
we compare likelihood ratio to the chi squared value with degrees of freedom equal to 5. 

6. Conclusions 
[1]’s regime-switching three-factor affine term structure model, when we assume that the yields on a collection 
of three zero-coupon bonds are priced without error, is simply a restricted regime-switching linear regression. 
We use this correspondence to demonstrate that [1]’s parameters are in fact universally unidentified and a subset 
of their parameterization is over identified. As a solution to the problem with the identifiability, we propose a 
canonical representation of GDTSMs based on [8]’s proposal, which is then used in double-regime environment 
as a new form of regime-switching GDTSM. We also demonstrate that the parameters of our new form of re- 
gime-switching GDTSM are just-identified when the number of the pricing-with-error yields M equals 2. Our 
model’s parametrization has another advantage over [1] in that we can back out   parameters and   para- 
meters separately and make the estimation of structural parameters easier. Finally, we show that regime- 
switching three-factor arbitrage-free dynamic Nelson-Siegel model is a restricted special case of our model. 

Besides, due to the tremendous numerical challenges in estimating the necessary parameters, we hope that our 
method will help to make these models a more effective tool for research in better describing the historical in- 
terest rate data. 
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