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Abstract 
 

In this paper, the generalized 
G

G

 
 
 

-expansion method is used for construct an innovative explicit traveling  

wave solutions involving parameter of the generalized FitzHugh-Nagumo equation     1t xxu u u u a t u    , 

for some special parameter  a t  where  =G G   satisfies a second order linear differential equation  

= 0G G G    ,     = p t x q t  , where  p t  and  q t  are functions of  t . 
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G

G
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1. Introduction 
 
Phenomena in physics and other fields are often des- 
cribed by nonlinear evolution equations (NLEEs). When 
we want to understand the physical mechanism of phe- 
nomena in nature, described by nonlinear evolution equa- 
tions, exact solutions for the nonlinear evolution equa- 
tions have to be explored. For example, the wave phe- 
nomena observed in fluid dynamics [1,2], plasma and 
elastic media [3,4] and optical fibers [5,6], etc. In the 
past several decades, many effective methods for obtain- 
ing exact solutions of NLEEs have been proposed, such 
as Hirota’s bilinear method [7], Backlund transformation 
[8], Painlevé expansion [9], sine-cosine method [10], 
homogeneous balance method [11], homotopy pertur- 
bation method [12-14], variational iteration method 
[15-18], asymptotic methods [19], non-perturbative me- 
thods [20], Adomian decomposition method [21], tanh- 
function method [22-26], algebraic method [27-30]. Jacobi 
elliptic function expansion method [31-33], F-expansion  

method [34-36] and auxiliary equation method [37-40]. 
Recently, Wang et al. [41] introduced a new direct me-  

thod called the 
G

G

 
 
 

-expansion method to look for  

travelling wave solutions of NLEEs. The 
G

G

 
 
 

-expan-  

sion method is based on the assumptions that the 
travelling wave solutions can be expressed by a poly-  

nomial in 
G

G

 
 
 

, and that  =G G   satisfies a second  

order linear ordinary differential equation (LODE): 

= 0G G G    , where 
 d

=
d

G
G




 , 
 2

2

d
=

d

G
G




 ,  

= x Vt  , V  is a constant. The degree of the poly- 
nomial can be determined by considering the homoge- 
neous balance between the highest order derivative and 
nonlinear terms appearing in the given NLEE. The 
coefficients of the polynomial can be obtained by solving 
a set of algebraic equations resulted from the process of  
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using the method. By using the 
G

G

 
 
 

-expansion method,  

Wang et al. [41] successfully obtained more travelling 
wave solutions of four NLEEs. Very recently, Zhang et al.  

[42] proposed a generalized 
G

G

 
 
 

-expansion method  

[42] to improve the work made in [41]. The main pur-  

pose of this paper is to use generalized 
G

G

 
 
 

-expansion  

method to solve the generalized FitzHugh-Nagumo 
equation. The performance of this method is reliable, 
simple and gives many new solutions, its also standard 
and computerizable method which enable us to solve 
complicated nonlinear evolution equations in mathema- 
tical physics. The paper is organized as follows. In sec-  

tion 2, we describe briefly the generalized 
G

G

 
 
 

-expan-  

sion method, where  =G G   satisfies the second order 
linear ordinary differential equation = 0G G G    , 

   = p t x q t   In section 3, we apply this method to 
the FitzHugh-Nagumo equation. In section 4, some con- 
clusions are given. 
 
2. Description the Generalized  

 
 
 

G

G
-Expansion Method 

 
Suppose that we have the following nonlinear partial 
differential equation 

 , , , , , , = 0,t x tt xt xxP u u u u u u           (2.1) 

we suppose its solution can be expressed by a polyno-  

mial 
G

G

 
 
 

 as follows:  

       0
1

=    ,   0,
in

i j
i

G
u t t t

G
   



    
 

    (2.2) 

where  0  t  and   j t  are functions of t   
( = 1,2, , )j n  and  = ,x t   is a function of x, t to 
be determine later,  =G G  satisfies the second order 
linear ordinary differential equation 

      = 0,G G G                 (2.3) 

To determine u  explicitly we take the following four 
steps. 

Step 1. Determine the integer n  by balancing the 
highest order nonlinear term(s) and the highest order 
partial derivative of u  in Equation (2.1). 

Step 2. Substitute Equation (2.2) along with Equation 
(2.3) into Equation (2.1) and collect all terms with the  

same order of 
G

G

 
 
 

 together, the left hand side of  

Equation (2.1) is converted into a polynomial in 
G

G

 
 
 

.  

Then set each coefficient of this polynomial to zero to 
derive a set of over-determined partial differential equa- 
tions for  0 t ,  i t  and  . 

Step 3. Solve the system of all equations obtained in 
step 2 for  0 t ,  i t  and   by use of Maple. 

Step 4. Use the results obtained in above steps to 
derive a series of fundamental solutions of Equation (2.3)  

depending on 
G

G

 
 
 

, since the solutions of this equation  

have been well known for us, then we can obtain exact 
solutions of Equation (2.1). 
 
3. The FitzHugh-Nagumo Equation 
 

In this section, we apply the generalized 
G

G

 
 
 

-expan-  

sion method to solve the generalized FitzHugh-Nagumo 
equation, construct the traveling wave solutions for it as 
follows: 

Let us first consider the generalized FitzHugh-Nagumo 
equation  

    1t xxu u u u a t u             (3.1) 

where  a t  is a function of t . In order to look for the 
traveling wave solutions of Equation (3.1) we suppose 
that 

       , = , =u x t u p t x q t         (3.2) 

Suppose that the solution of Equation (3.1) can be ex-  

pressed by a polynomial in 
G

G

 
 
 

 as follows  

     0
1

=   
in

i
i

G
u t t

G
  



   
 

         (3.3) 

Considering the homogeneous balance between xxu  
and 3u  in Equation (3.1) we required that 2 = 3n n , 
then = 1n . So we can write Equation (3.3) as  

     0= .
G

u t t
G

  
   

 
          (3.4) 

Substituting Equation (3.4) into Equation (3.1) along 
with Equation (2.3). We obtain the following equations  

by comparing coefficients of 
G

G

 
 
 

. When = 3j  then  

.2=0 3
1

2
1  p             (3.5) 
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We solve the equation by setting 1 = 2 p  (we could  

also set 1 = 2 p  ). The equation for = 2j  is  

  2 2 2 2
1 1 0 1 1 1= 3 3 .p x q p a               (3.6) 

We see from this equation that  p t  must be a con- 
stant and then  1 t  is also constant. Therefore, equa- 
tion Equation (3.6) simplifies to  

2 2 2 2
1 1 0 1 1 1= 3 3 .q p a                (3.7) 

The equation for = 1j  is  
2 2 2

1 1 1 0 1

2
0 1 0 1 1

= 2 2

3 2 .

q p p

a a

       

    

  

  
      (3.8) 

We substitute Equation (3.7) into Equation (3.8) and 
obtain (after dividing by 1 ) 

2 2 2
1 0 1 1 0 0

2
0

3 2 2 3

2 2 = 0.

a p

a p a

         

 

     

  
   (3.9) 

We solve this equation for a  and obtain 

 
2 2 2 2

1 0 1 0 0

1 0

3 2 2 3 2
= .

2 1

p p
a t

        
  

    
 

(3.10) 

The equation for = 0j  is 

2 2 2 3
0 1 1 0 0 0 0= .q p a a                (3.11) 

If we substitute Equation (3.7) and Equation (3.10) 
into Equation (3.11) we obtain  

   
 
 

4 3
0 1 0 0 0 1

2 2 2 2 2
0 1 1

2 2 2 2 2
0 1 1 1

2 2 2 2 2
1 1 1

2 1 2 2

3 3 1 2 2

3 4 2 2

2 2 = 0.

p p

p p p

p p

       

      

        

     

     

    

     

  

 (3.12) 

Now Equation (3.12) is an ordinary differential equa- 
tion for 0 . Therefore, 0  must have a special form in 
order to be a solution of this equation which means that 
the function  a t  expressed in terms of  0 t  by 
Equation (3.10) must also of a special form. This shows 
that we cannot solve all the equations if  a t  is an 
arbitrary function. 

We can still try to find solutions for some special 
 a t . For example, we choose 

1
= , = 1, = 0.

2
p    

Then 1 = 1  and Equation (3.12) simplifies to  

2 3
0 0 0 0

3 1
= 0.

2 2
        

One solution is  

 0

1
= 1 .

1 t
t

e
 


 

We find  a t  from Equation (3.7) as 

  1 3
= 1

2 2
ta t e            (3.13) 

   = 3arctan 1 .tq t h e   

We choose 

  = 1 .G e    

Then 

1
= 1

11 t

e
u

ee







 


        (3.14) 

with 

 = 3arctan 1
2

tx
h e    

is a solution of equation Equation (3.1) when  a t  is 
given by Equation (3.13). Once can check with the com- 
puter that u  given by Equation (3.14) is really a solu- 
tion of Equation (3.1). It is shows that this method is 
powerful in constructing exact solutions of NLEEs. 
 
4. Conclusions 
 

This study shows that the generalized  
G

G

 
 
 

-expansion  

method is quite efficient and practically will suited for 
use in finding exact solutions for the problem considered 
here. New and more general excat solutions with 
arbitrary function  a t  of the generalized FitzHugh- 
Nagumo equation are obtained, from which some expo- 
nential function solutions are also derived when setting 
the arbitrary function as special values. We construct an 
innovative explicit traveling wave solutions involving 
parameter of the generalized FitzHugh-Nagumo equation. 
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