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Abstract 
 
In this paper a meshless method of lines is proposed for the numerical solution of time-dependent nonlinear 
coupled partial differential equations. Contrary to mesh oriented methods of lines using the finite-difference 
and finite element methods to approximate spatial derivatives, this new technique does not require a mesh in 
the problem domain, and a set of scattered nodes provided by initial data is required for the solution of the 
problem using some radial basis functions. Accuracy of the method is assessed in terms of the error norms L2, 
L∞ and the three invariants C1, C2, C3. Numerical experiments are performed to demonstrate the accuracy and 
easy implementation of this method for the three classes of time-dependent nonlinear coupled partial diffe-
rential equations. 
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1. Introduction 
 
Nonlinear coupled partial differential equations have nu- 
merous applications in the field of science and engineer-
ing, including solid state physics, fluid mechanics, che- 
mical physics, plasma physics etc. (see [1-3] and the ref-
erences therein). In 1981 Hirota-Satsuma introduced the 
coupled KdV equations, [4] which has many applications 
in physical sciences. Coupled KdV equations describe an 
interaction of the two long waves with different disper-
sion relation. The Burgers’ equations describe phenomena 
such as a mathematical model of turbulence [5] and the 
nonlinear hyperbolic system [6] represents interaction of 
the two waves traveling in the opposite directions. 

In the last decade many authors have studied the nu-
merical and approximate solution of time-dependent 
nonlinear coupled partial differential equations by vari-
ous numerical methods. These include Adomian decom-
position method [7], the local discontinuous Galerkin 
method [8], the variational iteration method [9], the 
Chebyshev spectral collocation method [10] and the 
radial basis functions method [6,11,12]. 

In the last decade, the theory of radial basis functions 

(RBFs) has enjoyed a great success as scattered data in-
terpolating technique. A radial basis function,  
   j jx x x x    , is a continuous spline which de-

pends upon the separation distances of a subset of data 
centers, nX  ,  , 1, 2, ,jx X j N   . Due to sphe- 
rical symmetry about the centers jx , the RBFs are called 
radial. The distances, jx x , are usually taken to be 
the Euclidean metric. 

Hardy [13] was the first to introduced a general scat-
tered data interpolation method, called radial basis func-
tions method for the approximation of two-dimensional 
geographical surfaces. In 1982 Franke [14] in a review 
paper made the comparison among all the interpolation 
methods for scattered data sets available at that time, and 
the radial basis functions outperformed all the other me-
thods regarding efficiency, stability and ease of imple-
mentations. Franke found that Hardy’s multiquadrics 
(MQ) were ranked the best in accuracy, followed by thin 
plate splines (TPS). Despite MQ’s excellent performance, 
it contains a shape parameter c, and the accuracy of MQ 
is greatly affected by the choice of shape parameter c 
whose optimal value is still unknown. Franke [15] used 
the formula  22 21.25c d  where d  is the mean dis-
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tance from each data point to its nearest neighbor. Hick-
ernell and Hon [16] and Golberg et al. [17] had success-
fully used the technique of cross-validation to obtain an 
optimal value of the shape parameter. Various research-
ers have contributed recently to this field (see [18-25] 
ect.) 

The method of lines (MOL) [26] is a general proce-
dure for the solution of time dependent partial differen-
tial equations (PDEs). The basic idea of the MOL is to 
replace the spatial (boundary value) derivatives in the 
PDEs with algebraic approximations. Once this is done, 
the spatial derivatives are no longer stated explicitly in 
terms of the spatial independent variables. Thus only the 
initial value variable, typically time in a physical prob-
lem, remains. In other words, we have a system of ODEs 
that approximate the original PDE. Now we can apply 
any integration algorithm for initial value ODEs to com-
pute an approximate numerical solution to the PDE. Thus, 
one of the salient features of the MOL is the use of ex-
isting, and generally well established, numerical methods 
for ODEs. Very recently Quan Shen [27] use this ap-
proach for the numerical solution of KdV equation. In 
this paper, we will use RBFs approximation method with 
the method of lines (MOL) for the numerical solution of 
time-dependent nonlinear partial differential equations 
given as: 

Class A: Coupled KdV equations 

6 2 ,t xxx x xu u uu vv       

3 ,t xxx xv v uv     

Class B: Coupled Burgers’ equations 

 2 ,t xx x x
u u uu uv    

 2 ,t xx x x
v v vv uv    

Class C: System of nonlinear hyperbolic equations 

,t xu u uv    

,t xv v uv   

where , ,    are positive parameters. 
Rest of the paper is organized as follows: In Section 2, 

The radial basis functions collocation method coupled 
with MOL is presented. Section 3 is devoted to the nu-
merical tests of the method on the problems related to the 
coupled KdV, the coupled Burgers’ equations and the 
system of nonlinear hyperbolic equations. In Section 4, 
the results are concluded. 
 
2. RBFs Meshless Method of Lines 
 
2.1. Coupled KdV Equations 
 
Consider the nonlinear coupled KdV equations, 

6 2 ,

3 ,
t xxx x x

t xxx x

u u uu vv

v v uv

  
 

   

  
          (1) 

with boundary conditions 

       
       

1 2

1 2

, ,  , ,

, , , , 0,

u a t f t u b t f t

v a t g t v b t g t t

 

  
    (2) 

and initial conditions 

   
   

,0 ,

,0 , ,

u x f x

v x g x a x b



  
         (3) 

where , ,    are positive real constants. 
For a given set of N  collocation points   1

N

i i
x


 in 

the domain  ,a b , the RBFs approximation for u  and 
v  of (1) are given by 

       1 2
1 1

, ,
N N

j j
j j

U x r V x r   
 

       (4) 

where  
1

N

j j



 are the unknown constants to be deter-

mined,    j jr x x    can be any well known ra- 

dial basis function and j jr x x   is the Euclidean  

norm between points x  and .jx  Here we are using two 

radial basis functions, the multiquadric   2 2r r c     

and cubic   3.r r   Now for each node  
,  1,2,3, ,ix i N   in the domain  ,a b , (4) can be 

written as 

1 2, , U A V A              (5) 

where 

       1 2 3, , , ,
T

NU x U x U x U x   U  

 1 2 3, , , , , 1,2.
T

i i i iN i    i  

 
 

 

     
   

     

1 1 2 1 11

1 2 1 21

1 1

T
N

T

T
N N N NN

x x xx

x xx

x x xx

  
 

  

   
   
       
   

     


 

   


A






 

         1 2 3, , , , ,T
i i i i N ix x x x x        

where 1,2,3, ,i N  . 
Equation (4) can also be written as 

     
     

1

1

,T

T

U x x

V x x





 

 

A U D x U

A V D x V




       (6)  

where 

         1
1 2, , , .T

Nx D x D x D x    D x A  

Using the approximations  iU t  and  iV t  of the 
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solutions  ,iu x t  and  ,iv x t  given in (6), (1) at each 
node ,  1, 2,3, ,ix i N   can be written as 

    
  

    

d
6

d

          2

d
3

d

i
xxx i i x i

i x i

i
xxx i i x i

U
D x U D x

t

V D x

V
D x U D x

t

 



 

  



  

U U

V

V V



     (7) 

where 

       1 2, , , ,i x i x i Nx iD x D x D x   xD x  

    , 1,2, , ,jx i j iD x D x j N
x


 


  

       1 2, , ,i xxx i xxx i Nxxx iD x D x D x   xxxD x  

   
3

3
, 1,2, , .jxxx i j iD x D x j N

x


 


  

In more compact form (7) can be written as 

   

 

d
6 2 ,

d
d

3 ,
d

xxx x x

xxx x

t

t

  

 

     

   

U
D U U D U V D V

V
D V U D V

  (8) 

where the symbol * denotes component by component 
multiplication of two vectors and 

   
, 1 , 1

, .
N N

x jx i xxx jxxx ii j i j
D x D x

 
       D D  

For simplicity we write (8) as 

   1 2

d d
, , , ,

d d
F F

t t
 

U V
U V U V       (9) 

where 

     1 , 6 2 ,xxx x xF        U V D U U D U V D V  

   2 , 3 .xxx xF     U V D V U D V  

The corresponding boundary conditions are given by 

   
   

1 1 2

1 1 2

,

, ,

N

N

U f t U f t

V g t V g t

 

 
           (10) 

and the initial conditions are as 

       
       

0 1 2

0 1 2

, , ,

, , ,

N

N

t f x f x f x

t g x g x g x

   
   





U

V
      (11) 

Now we solve the system of ODEs (9)-(11) by using 
the well known ODE solvers. 

1) The classical forth order Runge-Kutta method (RK4) 
given by 

 1
1 2 3 4

δ
2 2 ,

6
n n t

K K K K     U U  

 1
1 2 3 42 2 ,

6
n n t

J J J J 
    V V  

where 

   1 1 2 1 1, , 2, ,n n n nK F K F tK   U V U V  

   3 1 2 4 1 3δ 2, , , ,n n n nK F tK K F tK    U V U V  

   1 2 2 2 1, , , 2 ,n n n nJ F J F tJ   U V U V  

   3 2 2 4 2 3, δ 2 , , δ ,n n n nJ F tJ J F tJ   U V U V  

2) Low-storage third-order (TVD-RK3) scheme given 
by [28] 

   1
1δ , ,n n ntF U U U V  

      2 1 1
1

3 1 1
δ , ,

4 4 4
n ntF  U U U U V  

      1 2 2
1

1 2 2
δ , ,

3 3 3
n n ntF   U U U U V  

   1
2δ , ,n n ntF V V U V  

      2 1 1
2

3 1 1
δ , ,

4 4 4
n ntF  V V V U V  

      1 2 2
2

1 2 2
δ , .

3 3 3
n n ntF   V V V U V  

 
2.2. Nonlinear Coupled Burgers’ Equations 
 
Consider the nonlinear coupled Burgers’ equations 

 
 

2 ,

2 ,

t xx x x

t xx x x

u u uu uv

v v vv uv





  

  
         (12) 

with the boundary conditions 

       
       

1 2

1 2

, ,  , ,

, , , , 0,

u a t f t u b t f t

v a t g t v b t g t t

 

  
    (13) 

and initial conditions 

   
   

,0 ,

,0 , ,

u x f x

v x g x a x b



  
       (14) 

where , ,    are positive parameters. The same proce- 
dure as discussed in Section 2.1 can be used for the solu-
tion of (12)-(14). 
 
2.3. Nonlinear Coupled Hyperbolics 
 
Consider the nonlinear hyperbolic system 

, ,t x t xu u uv v v uv             (15) 

with boundary conditions 
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       
       

1 2

1 2

, , , ,

, , , , 0,

u a t f t u b t f t

v a t g t v b t g t t

 

  
   (16) 

and initial conditions 

   
   

,0 ,

,0 , ,

u x f x

v x g x a x b



  
         (17) 

where   is a positive real constant. The same proce-
dure as discussed in Section 2.1 can be used for the solu-
tion of (15)-(17). 
 
3. Numerical Examples 
 
In this section, we apply the RBFs meshless method of 
lines for the numerical solution of three classes of partial 
differential equations, defined earlier. We use the 2L  
and L  error norms to measure the difference between 
the numerical and analytic solutions. The 2L  and L  
error norms of the solution are defined by 

 
1 2

2

2 2
1

δ ,

max ,

N

j

j

L u U x u U

L u U u U



 

 
    

 
   


      (18) 

We examine our results by calculating the following 
three conservative laws. Hirota-Satsuma [4] proved that 
the coupled KdV equations defined in (1) possesses three 
conserved quantities for all values of    and .  

 
       

1

2 2
2

2 23 2
3

d ,

2 d
3

11 d .
2

b

a

b

a

b

x x
a

C u x

C u v x

C a u u uv v x







 

       







(19) 

Later Hirota-Satsuma [29] showed that the system (7) 
has infinitely many conserved quantities for the choice of 

1 2   and arbitrary values of   and .  In our in-
vestigation we consider the conserved quantities 1,C  

2C  and 3C  only. In this section, we apply meshless 
MOL using radial basis functions on the three classes of 
partial differential equations defined earlier. 

Problem 1 We consider the nonlinear coupled KdV 
Equations (1) for v = 3 α = β and with exact solution [20] 

   

   

2

2

1
, sec ,

2

1
, sec .

22

u x t h x t

v x t h x t

  
 

  


 
  

 
 

  
 

     (20) 

where ,   are arbitrary constants. The boundary con-

ditions  , ,u a t   , ,u b t   ,v a t  and  ,v b t  and the 
initial conditions    ,0 , ,0u x v x  are extracted from the 
exact solution (20). We solved the problem in the spatial 
interval 5 5x    by RBFs meshless method of lines 
using RK4 and TVD-RK3 time integration schemes. In 
our computations we used multiquadric (MQ) radial ba-
sis function. The results are presented in Tables 1-4, and 
in Figure 1. It is observed that the two schemes RK4 and 
TVD-RK3 show same order of accuracy, but TVD-RK3 
scheme is more faster than RK4 scheme, and both re-
mained stable for small time step size δt  It is also ob-
served that the three invariants 1,C  2C  and 3C  as 
well as their normalized values, 

      1 1 1 10 0 ,NC C t C C 

      2 2 2 20 0 ,NC C t C C 

      3 3 3 30 0 ,NC C t C C   

are absolutely conserved in time during the computations 
which demonstrates the accuracy of the schemes. We also 
noted that the value of MQ shape parameter for which the 
solution converges belongs to the interval 0.1 0.6c   
as shown in Table 3. The motion of solitary waves u  
and v  is shown in Figure 1, which are initially centered 
at 0x   moving from left to right with the constant 
speed ,  having the amplitudes    and 2   
respectively. 

Problem 2 Consider the nonlinear coupled Burgers’ 
Equations (12), whose exact solution [10] is given by 

   

   

0

0

2 1
, 2 tanh 2 ,

4 1

2 1 2 1
, 2 tanh 2 .

2 1 4 1

u x t a A A x At

v x t a A A x At




 
 

 
       

              

 

(21) 

where       01 2 4 1 2 1 ,A a      0 ,a  ,    
are arbitrary constants. 

The boundary conditions  , ,u a t   , ,u b t   , ,v a t  
 ,v b t  and the initial conditions  ,0 ,u x   ,0v x  are 

extracted from the exact solution (21). We solved the 
problem in the domain 10 10x    by using MOL 
coupled with RBFs collocation method. The classical 
RK4 and TVD-RK3 scheme are used in our computa-
tions. The results are listed in Table 5 and Figure 2, and 
compare with earlier results [10]. It is observed that the 
results are comparable with [10] and well agreed with the 
exact solution. 

Problem 3 Now we consider nonlinear coupled hyper- 
bolic Equations (15). For the sake of comparison [6], we 
take 0.5,a    0.5,b   100   and the initial condi-
tions.   
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  (a)                                                             (b) 

 

     
     (c)                                                              (d) 

Figure 1. Plots of Problem 1 corresponding to α = 0.1, β = 0.1, λ = 0.5, δx = 0.1, δt = 0.001, c = 0.58. Figures 1(a) and 1(b) show 
the motion of the solitary waves u and v moving from left to right, initially centered at x = 0 when t = 0,1,2,3,4,5. Figures 1(c) 
and 1(d) represent numerical solutions u and v over time [0,5]. 

 

     0.5 1 cos 10 , 0.3, 0.1 ;
,0

0, otherwise

x x
u x

        


 (22) 

     0.5 1 cos 10 , 0.1,0.3 ;
,0

0, otherwise

x x
v x

      


  (23) 

and the boundary conditions 

   
   

, , 0,

, , 0.

u a t u b t

v a t v b t

 

 
           (24) 

This problem is solved by RBFs meshless method of 
lines using MQ with RK4 scheme. We take the initial so- 
lutions v  and  ,0v x  which are located at 0.2x    
and 0.2,x   respectively. When 0t   the nonlinear 
term, uv , causes these waves to move without change in 
shape, u  to the right and v  to the left. The two waves 
collide when 0.1t   which results in change of shapes 

of the waves. The two waves overlap each other near 
0.25t   and they separate again at 0.3t   approx-

imately. From this time onwards the linear term becomes 
dominant and the pulses lose their symmetry and expe-
rience a decrease in the amplitude due to nonlinear inte-
raction as shown in the Figures 3(a)-3(f). The numerical 
results of the solutions u  and v  are presented graphi-
cally. Since the exact solution of this problem is not 
known, we use cubic radial basis function 3r  to find the 
numerical solution. These graphical results are agreed 
well with the results obtained by quasi-linear interpola-
tion method [6]. 
 
4. Closure 
 
We have applied the meshless method of lines using 
radial basis functions for the numerical solutions of time- 
dependent nonlinear coupled partial differential equa-   
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Table 1. Error norms and the three invariants for the solutions u, v using MQ when δt = 0.001, N = 100 c = 0.53. α = 0.01, β = 
0.01 and λ = 0.01 corresponding to Problem 1. 

t   L u   2L u   L v   2L v  1C  2C  3C  

RK4        

0.1 9.625E–05 3.676E–05 6.807E–06 2.601E–06 3.94906 2.69268 1.90965 

1 3.368E–05 3.990E–05 2.373E–06 2.829E–06 3.94906 2.69268 1.90965 

5 1.040E–04 1.471E–04 7.392E–06 1.040E–05 3.94896 2.69268 1.90966 

10 2.514E–04 4.711E–04 1.791E–05 3.323E–05 3.94867 2.69267 1.90967 

15 4.427E–04 1.003E–03 3.141E–05 7.109E–05 3.94819 2.69265 1.90968 

20 6.962E–04 1.681E–03 4.916E–05 1.190E–04 3.94754 2.69261 1.90969 

TVD-RK3        

0.1 9.627E–05 3.676E–05 6.807E–06 2.601E–06 3.94906 2.69268 1.90965 

1 3.353E–05 3.977E–05 2.373E–06 2.831E–06 3.94906 2.69268 1.90965 

5 1.046E–04 1.459E–04 7.392E–06 1.041–05 3.94896 2.69267 1.90965 

10 2.535E–04 4.675E–04 1.791E–05 3.326E–05 3.94867 2.69266 1.90965 

15 4.446E–04 1.003E–03 3.141E–05 7.117E–05 3.94819 2.69263 1.90965 

20 6.952E–04 1.679E–03 4.916E–05 1.191E–04 3.94754 2.69258 1.90965 

 
Table 2. The three invariants and its normalized invariants for the solutions u, v using MQ, when, δt = 0.001, N = 100, c1 = 
0.53, c2 = 0.53, α = 0.05, β = 0.05, λ = 0.05 corresponding to Problem 1. 

t  1C  2C  3C  1NC  2NC  3NC   Amp u   Amp v  

RK4         

0.1 3.94906 2.79932 2.08037 1.248E–07 1.199E–08 4.186E–08 1.000 0.158 

0.3 3.94905 2.79932 2.08037 1.570E–06 6.969E–07 2.310E–06 1.000 0.158 

0.5 3.94903 2.79933 2.08038 6.670E–06 1.119E–06 3.999E–06 1.000 0.158 

1 3.94896 2.79933 2.08039 2.409E–05 1.745E–06 8.336E–06 0.999 0.158 

3 3.94819 2.79930 2.08043 2.195E–04 7.809E–06 2.828E–05 0.999 0.158 

5 3.94671 2.79922 2.08046 5.954E–04 3.697E–05 4.491E–05 1.000 0.158 

 
Table 3. Error norms and normalized invariants of the solutions u, v for different values of MQ shape parameter c when t = 
1.0, δt = 0.001, N = 100, α = 0.1, β = 0.1, λ = 0.5 corresponding to Problem 1. 

c   L u   L v  1NC  2NC  3NC  

RK4      

0.1 1.492E–01 3.101E–02 9.986E–05 3.112E–04 3.956E–03 

0.2 8.632E–03 5.410E–04 2.656E–05 3.201E–04 7.502E–04 

0.3 7.789E–03 4.934E–04 1.598E–05 3.202E–04 7.240E–04 

0.4 7.795E–03 4.960E–04 9.505E–06 3.202E–04 7.239E–04 

0.5 7.785E–03 4.944E–04 6.102E–06 3.202E–04 7.240E–04 

0.6 7.816E–03 4.846E–04 7.137E–06 3.200E–004 7.236E–04 
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Table 4. Error norms and normalized invariants of the solutions u, v for different values of time step size δt when t = 1.0, c = 
0.53, N = 100, α = 0.1, β = 0.1, λ = 0.5 corresponding to Problem 1. 

δt   L u   L v  1NC  2NC  3NC  

RK4      

0.001 7.804E–03 4.932E–04 5.485E–06 3.203E–04 7.241E–04 

0.0005 3.880E–03 2.458E–04 4.615E–06 9.281E–05 2.108E–04 

0.0001 7.774E–04 6.294E–05 3.709E–06 8.735E–05 1.956E–04 

0.00005 3.919E–04 6.257E–05 3.817E–06 1.098E–04 2.461E–04 

0.00001 2.779E–04 6.230E–05 3.745E–06 1.277E–04 2.865E–04 

 

Table 5. Error norms of solutions u and v v using MQ, corresponding to Problem 2. 

           L   

 t  δt  δx      a  b  0a  c  RK4 TVD-RK3 ChSC[10] 

U  

0.5 0.001 0.25 0.1 0.3 –10 10 0.05 0.58 4.169E–05 4.169E–05 4.16E–05 

1.0         8.243E–05 8.243E–05 8.23E–05 

0.5 0.001 0.25 0.3 0.03 –10 10 0.05 0.58 4.591E–05 4.591E–05 4.59E–05 

1.0         9.183E–05 9.183E–05 9.16E–05 

V  

0.5 0.001 0.25 0.1 0.3 –10 10 0.05 0.58 2.157E–05 2.157E–05 2.19E–05 

1.0         4.166E–05 4.166E–05 4.10E–05 

0.5 0.001 0.25 0.3 0.03 –10 10 0.05 0.58 1.809E–04 1.809E–04 1.80E–04 

1.0         3.617E–04 3.617E–04 3.59E–04 

 

     
   (a)                                                             (b) 

Figure 2. Comparison of numerical solution using RK4 with MQ versus exact solutions u, v at time t = 1 when α = 1, β = 2, a0 = 
0.1, c = 0.58 and δt =0.001, corresponding to Problem 2. 

 
tions. Two time integration schemes RK4 and TVD-RK3 
are used. The method is stable, efficient and very easy in 

implementation. A large class of time-dependent nonli-
near partial differential equation can be solved by this    
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(a)                                                          (b) 

 

    
(c)                                                          (d) 

 

   
(e)                                                          (f) 

Figure 3. Numerical solution using quintics. Figures 3(a)-3(f) show the motion and interaction of the waves u and v.   
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technique. 
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