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Abstract 
Quantum energies which are used in applications are usually composed of repulsive and attractive 
terms. The objective of this study is to use an accurate and efficient fitting of the repulsive energy 
instead of using standard parametrizations. The investigation is based on Density Functional 
Theory and Tight Binding simulations. Our objective is not only to capture the values of the repul-
sive terms but also to efficiently reproduce the elastic properties and the forces. The elasticity 
values determine the rigidity of a material when some traction or load is applied on it. The pair- 
potential is based on an exponential term corrected by B-spline terms. In order to accelerate the 
computations, one uses a hierarchical optimization for the B-splines on different levels. Carbon 
graphenes constitute the configurations used in the simulations. We report on some results to 
show the efficiency of the B-splines on different levels. 
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1. Introduction 
Nanotechnology is a very important field which has emerged in the last decades and developed very quickly in 
several directions. It has important applications in various disciplines including aircraft, automobile, electronic 
and medical engineerings. Nanomaterials admit several important properties which can be exploited in 
applications. For instance, electric conductivity of nanomaterials is applied in electronic components so that the 
materials conduct electricity more efficiently than diamonds. Thermal resistivity of nanomaterials can be used to 
reduce or accelerate heat conduction. It also has a good thermic property so that materials can be designed to 
resist heat at a very high intensity. Graphene has obtained a significant attention from scientists in the last 
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decades for several reasons. Its material property can be controlled for that it can become a stronger material 
than steel. The objective in this paper is to use an accurate and efficient fitting of the repulsive energy instead of 
using a standard parametrization. Many approaches have been proposed to represent empirical estimation of 
repulsive terms. Before presenting our method, let us briefly survey some traditional repulsive methods. 
Molecular dynamics employing the Lennard-Jones potential have been well understood so far. It is based upon 
the well-known potential  

( )
12 6

4U r
r r
σ σ    = −    
     

                                  (1) 

which is decomposed into attractive and repulsive components. Since it is only expressed in terms of the 
inter-atomic distances, it is easy to handle. Due to the simple expression of the potential, it can be differentiated 
easily and it is not computationally expensive to evaluate. Another important parameterization is the Harrison 
parametrization:  

( ) ( ) 0
0 .

r
h r h r

rα α
 =  
 

                                   (2) 

The screened Harrison parametrization is an improvement of the former one as provided by  

( )
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r h
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r r r
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α µ
 =    − +   

                              (3) 

where cr  controls the range of the interaction and µ  is some parameters obtained by experiments or a fitting 
process. Sawada parameterization uses the expression  

( ) ( )
( )0

1 1 .
exp 1c

h r D r
r r rα α ν µ

=
 − + 

                            (4) 

The most currently used parametrization is the GSP parameterization (Goodwin-Skinner-Pettifor) which is 
expressed as  

( ) 0 0exp
e en nn

n
c c

r rrh r n n
r rrα

    
 = − +   
     

                            (5) 

where n , en  and cr  are fitting parameters. Several other methods have been also suggested to achieve some 
desired properties. Some approaches use certain combinations of known ones. 

Our motivation is to generate a system which is both accurate and fairly inexpensive to evaluate. We are 
interested in graphenes and its properties including energy, force and elastic stress. Geometrically, graphenes 
admit a honeycomb pattern in form of repeated organized hexagons as illustrated in Figure 1(a). They are 
controlled by the chirality which is a couple of integers ( ),n m  so that 0 m n≤ ≤ . In the case n m= , one has 
an armchair graphene while 0m =  corresponds to the case of a zigzag graphene as in Figure 1(b). Suppose 

3a  designates the carbon bond length of the graphene. Define a  and b  the directive vectors of the 
honeycomb describing a 2D-lattice so that ( )3 2, 2a a=a  and ( )3 2, 2a a= −b . The chirality indices 
( ),n m  produce the chirality vector n m= +C a b . For the generation of the unit cell, one needs a translational 
vector T  perpendicular to the chiral vector C . Let d  designate the greatest common divisor of n  and m . 
Define : 3dρ =  if ( ) [ ]0 3n m d− ≡  while : dρ =  otherwise. The translational vector is expressed  

by 2 2m n n m
ρ ρ

   + +
= −   
   

T a b . In the following sections, scaling a graphene amounts to enlarging the unit  

cells by scaling its primitive vectors. The coordinates of the centers of carbon atoms in the unit cell provided as 
fractional coordinates within [ ]0,1  remain unchanged. We are interested in the property of the graphenes as 
they are confined or stretched as illustrated in Figure 1(c) where we consider a graphene of chirality ( )2,1 . For 
significantly confined graphenes, the repulsive energy is very large. For extremely stretched ones, the repulsive 
energy vanishes so that the energies are the sum of the energies of all constituting atoms. 
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(a)                                                   (b) 

 
(c) 

Figure 1. (a) Nanosheet: chiral vector C  and translational vector T ; (b) Armchair and Zigzag graphene; (c) Ground 
state energy for graphenes. Confining and enlarging the volume of the graphenes.                                 

2. Quantum Repulsive Representation 
We consider the Born-Oppenheimer or adiabatic approximation assumption stating that the mass and the volume 
of the atoms are very large in comparison to those of the electrons. The atoms move comparatively slower than 
the electrons. Thus, we treat the time-independent Hamiltonian operator with respect to the a set of nuclei 
{ } 1

uN
i i=

a  which are supposed to be stationary:  
21

2
gen

1 1 1 1 1
2 12

e e u e

i

N N N N j
e j e

e
i i j j ii j i j

q Z q
m

−

= = = = =

= − ∆ + +
− −

∑ ∑∑ ∑∑ x x a x x
                     (6) 

where the coordinates of the i -th electron are denoted by ( ),1 ,2 ,3, ,i i i ix x x=x  and 3 2 2
,1: i jj x

=
∆ = ∂ ∂∑ix . The 

above formula describes the kinetic energy along with the nuclear-electron interaction and the inter-electron 
interaction. Several simplifications of the stationary Hamilton operators have already been proposed. Our 
proposed potential energy uses two of such simplifications which we survey below. 

For the DFT(Density Functional Theory), one solves one equation for each electron. The Kohn-Sham 
formalism [1] consists in replacing the complicated single problem into several simpler ones. For each 

1, , ei N=    

( ) ( ) ( )eff
1
2 i i iV Eψ ψ − ∆ + = 

 
x x x                            (7) 



M. Randrianarivony 
 

 
78 

where effV  is the effective potential energy which depends implicitly on the total electron density 
( ) ( ) 2

1
eN

iiρ ψ
=

= ∑x x  such that ( ) ( ) ( )eff effV V ρ=   x x x . The problem is then reduced from dimensions 3 eN  
to eN  sets of smaller problems of dimension 3D . The influence of one electron with respect to the other 
electron is measured by the total electron density. These approaches enable the treatment of Hamiltonian 
problem even for an electronic structure having a large number of particles on a single desktop. The eigenvalue  

problem in (7) is nonlinear because its variational [2] [3] operator ( )2
eff

1
2

V− ∇ +Ψ x Ψ  depends on ρ   

which in turn depends on iψ . It is solved by using a sequence of the linear eigenvalue problems SCF (Self 
Consistent Field). The effective potential is constituted of the Hartree potential HV , the exchange correlation 
potential XCV  and the external electrostatic field such as  

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )eff extH XCV V V Vρ ρ ρ ρ= + +              x x x x x x x x  

in which the Hartree potential is the inverse of the Poisson operator such as ( ) ( )4πHV x ρ∆ = − x . For its 
evaluation, either a Poisson problem is solved or one convolves with the Green fundamental solution such as 

( ) ( ) dHV ρ= −∫   x x x x x . The main feature of DFT is that one has to approximate the potential by using some 
correction terms known as exchange-correlation potential [4] [5]. That is usually done by LDA (Local Density 
Approximation) or GGA (Generalized Gradient Approximation). Analytic expressions of the correlation energy 
are only known in a few special cases which mainly consist of the high and low density limits. The external 
electrostatic field potential extV  is provided by the kernel 1

uN
i ii z

=
−∑ x x . The above exchange-correlation 

potential is related to the exchange-correlation energy by XC XCV Eδ δρ=  where one expresses XC X CE E E= +  
as the exchange and the correlation parts. In term of the exchange-correlation energy density XCε  one has  

[ ] [ ]( ) ( )dXC XCE ρ ε ρ ρ= ∫ x x x                      (8) 

where XC X Cε ε ε= + . For the local density approximation (LDA), the exchange energy density is expressed as  

( ) ( )( )1 3
0.75 3 πLDA

Xε ρ ρ= − x  so that [ ] ( )
1 3

4 330.75 d
πXE ρ ρ = −  

  ∫ x x . Analytic values of the correlation  

energy density are only known for some extreme cases. For the high density limit, the exchange correlation energy 
density is approximated by ( ) ( )( )ln lnC s S SA r B r C r Dε = + + +  when the Weigner-Seitz radius sr  is very 
small. For the low density limit where sr  is very large, one has ( ) ( ) ( )( )3 2 5 2

0 1 20.5C s s sg r g r g rε = + + + . 
For other values of sr , some interpolation of those extreme values is considered. For example, by using the 
VWN-approximation (Vosko, Wilk, Nusair) as in [6], one has  

( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )4 4, ,0 1 ,1 ,0
0

VWN
C s C s a s C s C s

f
r r r r r f

f
ζ

ε ζ ε ε ζ ε ε ζ ζ = + − + − ′′
 

where ( ) ( ) ( )( ) ( )4 3 4 3 1 30.5 1 1 2 2 1f ζ ζ ζ= + + − − −  while each one of ( ),0C rε , ( ),1C rε  and ( )a rε  is 
of the form  

( ) ( ) ( )
( )

( )
( )22

0 00

0

2 22ln arctan ln arctan
2 2 2 2C a

x x b xbxA x b Q A Qx
X x Q x b X x X x Q x b

ε
   − +
 = + − +    + +   

 

in which sx r= , ( ) 2X x x bx c= + +  and 24Q c b= − . The constants A , 0x , b , c  are fitting 
parameters which are different for ( ),0C rε , ( ),1C rε  and ( )a rε . Once the solutions iE  to (7) become 
known for all 1, , ei N=  , the Khon-Sham approach uses the approximation to E  of (6) by  

( ) ( ) ( ) ( ) ( )( )
1

1 d d .
2

eN

KS i H XC XC
i

E E V E Vρ ρ ρ ρ
=

= − + −      ∑ ∫ ∫x x x x x x x  

The main improvement from LDA to GGA is that the exchange-correlation energy does not depend only on the 
total electron density but also on its gradient such as [ ]( ),GGA GGA

XC XCE E ρ ρ= ∇ x . 
As a second simplification, we survey the semi-empirical (SE) method using Hueckle method. Consider the 

spherical coordinates ( ), ,r θ φ  such that ( )sin cos , sin sin , cosr r rθ φ θ φ θ=r . The spherical harmonics mY


 
is provided by  
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The atomic orbitals sharp (s), principal (p), diffuse (d) and fundamental (f) correspond to linear combinations 
of ( ),mY θ φ



 for 0,1, 2,3, 4=  respectively. The basis functions centered at the origin are [7] defined by 
( ) ( ) ( ), ,m

n m nR r Yϕ θ φ=
  

r  where the radial function ( ),nR r


 is given by  

( ) ( ) ( ) ( ) ( ) ( )
1

2 1 2 1
, 1 1 1 2 2 22 exp 2 exp .

2 !

n
n n

n
rR r C r C r

n
η η η η

− −
+ + = − + − 





 

The parameters 1 2 1 2, , ,C Cη η  are specified for each atomic orbital. Since one has a set of atomic centers ia , 
one associates to each center ia  several atomic orbitals and indices nmα =  . The overlap matrix entry for the 
centers ia  and ja  is designated by , , ,i j i jS α β α βϕ ϕ= . For the on-site case where the bases are centered at 
the same atom ia , the SE Hückle method provides , ,i iS α β α βδ= . That is, the on-site bases are mutually 
orthonormal. For the nondiagonal values or off-site cases centered at two different atoms ia  and ja , the 
entries are computed by a Slater-Koster table lookup where the values are functions of the interatomic 
coordinates ij j i= −a a a . In fact, the overlap matrix entries can be expanded as ( ) ( ), , , ,i j ij ij i jS C s d Z Zα β α β= ∑ a   
where one uses the inter-atomic distance ij i jd = −a a . Computing the integrals by quadrature is too expensive.  

One stores the expansion coefficients ( ), ijCα β a . The value of ( ), ,i js d Z Z  are stored in Slater-Koster table. It 
does not depend on the coordinates of ia  and ja  but only on the inter-distance (see [7] for similar discussion). 
For the Hamiltonian of the SE Hückle, the on-site situation with respect to the center ia  is  

( ), ,H ii i E Vα α β α βα β δ δ δ= + a  

where Eα  is approximately the eigenenergy for index α . The off-site term is  

( )( ) ( ) ( )( ), ,
1 1 .
4 2i j i j H i H j i ji j E E S V V Sα β α β α βα β β β δ δ= + + + + a a  

The value of HVδ  is the solution to ( ) ( )( ) ( )HV nε δ δ−∇ ∇ =  x x x . This partial differential equation 
needs to be solved for every evaluation of the Hartree term ( )( )HVδ x . In the Atomistix Toolkit package [7], 
that is solved by a fast multigrid solver. The coefficient ( )ε x  is a dielectric coefficient [8] and ( )nδ x  is a 
certain induced electron density. 

As a matter of fact, the SE empirical method is much more efficient than the DFT method in term of 
computational speed. But the DFT computation produces much more accurate results. As a consequence, one 
searches a certain correction term for the SE method in such a way that the resulting method keeps the efficiency 
of the SE method while approximating the quality of the DFT approach. The ultimate objective is thus to find a 
repulsive term to add to the SE energy as described below. We want to generate a repulsive term which 
conserves most of the properties from the DFT computation. For a configuration { } 1

N
i i=

a , we intend to conserve 
the energy ( )min min 1, , NE E= a a  such that minEΨ = Ψ . In addition, we are also interested in 
approximating the forces. For each atom ( ),1 ,2 ,3, ,i i i ia a a=a , the corresponding force is ( ),1 ,2 ,3, ,i i i iF F F=F   

such that ( ), min 1
,

, ,i j N
i j

F E
a
∂

=
∂

a a . In addition, we focus also on the elastic property of the graphenes [9]. In  

general, this property determines the rigidity of a graphene when a traction is applied on it. The strain tensor 
which is  

LL LT LN

TL TT TN

NL NT NN

ε ε ε
ε ε ε
ε ε ε

 
 =  
  

ε                              (9) 
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is represented in the longitudinal, transversal and normal components. The stress σ  is also represented in a similar 
tensor way. The strain is related to the displacement u  having components iu  by ( )0.5ij i j j iu x u xε = ∂ ∂ + ∂ ∂ . 
The correlation between the strain ε , stress σ  and displacements u  is governed by some elasticity equation 
[9]. Practically, the stress contains implicitly some property of the second derivatives of the energy for the 
reason that it is the derivative of the energy with respect to strains which are functions of the gradients of the 
displacements ( )0.5ij i j j iu x u xε = ∂ ∂ + ∂ ∂ . 

For a set   of graphene configurations, the ideal objective functional for the nonlinear optimization is  

( )
( ) ( )

( )
( ) ( )

( )
( ) ( )

2 2

2
.

E F

S

DFT SE DFT SE
E F

DFT SE
S

E E F Fλ λ λ λ λ λ
λ λ

λ λ λ
λ

µ ω µ ω

µ ω ε ε

∈ ∈Λ ∈Λ

∈Λ

 − + −


+ − 


∑ ∑ ∑

∑

c c c

c

c c c c

c c

          (10) 

In the above expression, λc  designates a scaling of a configuration ∈c  by a factor of > 0λ . In addition, 
( )EΛ c , ( )FΛ c , ( )SΛ c  are sets of scaling factors with respect to the reference configuration ∈c  for the 

energy, force and stress respectively. Now, we show the construction of ( )EΛ c  and ( )FΛ c  where considers 
the interval [ ]min max,λ λ  which prescribes the range of interest. That interval contains the optimal factor  

( )
[ ]

( )
min max

opt
,

argmin DFTE λ
λ λ λ

λ
∈

=c c  obtained from a geometry optimization. The construction is performed in several  

steps as depicted in Figure 2. As a first step, one refines the interval [ ]min max,λ λ  uniformly. Afterwards, one 
refines gradually in the vicinity of the optimal scaling factor ( )optλ c  of the configuration c . The principal 
objective for that construction is to accumulate many points in the neighborhood of the optimum ( )optλ c . The 
determination of the stress is computationally more intensive compared to the computation of the energies. That 
situation holds even for the case of semi-empirical Hueckle method. The computation of stress for the DFT case 
is even more intensive but it needs only be done once and stored during the whole optimization. As a 
consequence, one needs only to handle elastic properties at a few positions in the course of the optimization 
computation. Otherwise, the whole optimization execution would be too slow since the evaluation of the 
objective functional would be very intensive. For example, the stress is only applied in the neighborhood of the 
minimal energy in our computation. Generally, ( )SΛ c  is smaller in size than ( )EΛ c  and ( )FΛ c . Not all 
the range of the scaling factor ( )λ ∈Λ c  is of the same importance. The vicinity of the optimal scaling factor 

optλ  is more valuable because the equilibrium takes place there. As a consequence, one introduces some 
positive weights to the scaling factors. For our implementation, we used some Gaussian functions centered at the 
optimal value added by some minimal shift shift > 0δ  such as  

( )2
opt shift2

1 1exp .
2cλω λ λ δ

σ
 = − − +  

                    (11) 

The purpose of shiftδ  is to prevent the value of λω  from being practically zero when λ  is far from optλ . 
In our case, we have taken the parameter values to be 0.005c σ= =  and shift 1δ = . Since the objective 
function (10) is very intensive to evaluate, we use in practice its simplification where the forces are provided by 
finite difference of the energy. Now we would like to describe the parameters with respect to which the 
nonlinear optimization is performed. The semi-empirical energy with zero repulsive term 0

SEE  behaves as a 
pure attractive energy. That is, in order to obtain an energy comparable to the DFT energy, one appends a  
 

 
Figure 2. Construction of ( )Λ c .                             
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repulsive energy in form of sums of pairwise potential terms such as  

( )0 , .DFT SE SE
i j

i j
E E E

<

≈ + =∑ a a  

That is, the function   acts pairwise on the carbon atoms with nuclei coordinates ia  and ja  such that 
( ) ( ),i j i j= − a a a a . In other words, the whole process amounts to replacing the repulsive term of the SE 

energy by an optimal potential energy ( )< ,i ji j∑  a a . We search for the optimal pair potential function in the form  

( ) ( )
0

e
n

bt n
i i

i
t a d N t−

=

= +∑                                 (12) 

in which n
iN  designates B-spline basis functions such that we obtain an energy that behaves very similarly to 

the DFT in term of energy, force and stress. 
In the expression (12), the function e bta −  captures the general behavior of the pair potential function  . 

The role of the B-spline ( )0
n n

i ii d N t
=∑  is to correct the small imperfection produced by the principal function 

e bta − . Some cut-off radius Cr  is used so that the pair potential function   vanishes beyond that value. In our 
situation, a cut-off radius of about 4.0Cr =  Å suffices completely. In order to obtain zero value and derivative 
( ) ( ) 0C Cr r′= =  , we insert a short transition function next to the cut-off radius Cr . One extends   next to 

the cut-off radius Cr  by a polynomial so that one obtains a smooth transition toward zero. 
Since the unknown pair potential function is partly expressed in B-spline basis as in (12), we recall briefly 

some important properties of a B-spline setting. It is in fact a very flexible way of representing piecewise 
polynomials on any interval of definition [ ],a b . Consider two integers ,n k  such that 1n k≥ ≥ . Suppose the 
interval [ ],a b  is subdivided by the knot sequence ( ) 0

n k
i i

ζ +

=
=ζ  such that 1<i iζ ζ +  for 1, , 1i k n= − −  

while 0 1k aζ ζ −= = =  and n n k bζ ζ += = = . One defines the B-spline basis functions for 0, ,i n=   as  

( ) ( )[ ]( ) 1, , k
i i k i i i kN t tζ ζ ζ ζ ζ −

+ + +
= − ⋅−  

where one employs the divided difference 1, , ,i i p fζ ζ ζ+    in which the truncated power functions ( )kt
+

⋅ −  
are given by  

( ) ( ) if ,:
0 if < .

k
k x t x tx t

x t+

 − ≥− = 


 

We only focus on B-splines which are internally uniform: except for the boundary multiple knots, all knot 
entries iζ  are uniformly spaced. The integer k  controls the smoothness of the B-spline for which the 
resulting function admits an overall smoothness of 2k−  so that the case 1k =  corresponds to discontinuous 
piecewise constant functions. The integer n  controls the number of B-spline functions. In Figure 3(a), we see 
some illustration of B-spline bases on an internally uniform knot sequence. Figure 3(b) displays an instance of a 
B-spline curve defined on [ ]0,1 . In Figure 3(c), the knot sequence has been refined uniformly by increasing n  
to 2n  while keeping 2k = . That is achieved by introducing a new knot entry between every two knots of the 
B-spline in the former Figure 3(b). For our application, we insert several knots at once so that the new knot 
sequence is again internally uniform. A new knot entry is inserted between two consecutive old ones. The 
evaluation of B-spline functions is not calculated by using the above definition but rather by means of the 
de-Boor algorithm. Since the knot sequence is internally uniform, we use the notation n

iN  instead of iN ζ  in 
(12). We will describe next the procedure of inserting new knots into existing ones. That is important when one 
needs to increase the degree of freedom in the pair potential function in (12). The principal objective is to 
efficiently express a function defined on the coarse knot sequence in term of B-splines on a fine one. Consider 
two knot sequences ( )0 , , n kζ ζ += ζ  and ( )0 , , n kζ ζ +=




 

ζ  such that ⊂ ζ ζ . For both knot sequences, the 
smoothness index k  is conserved intact. The following discrete B-splines enable the expression of a coarse 
basis iN ζ  as a linear combination of the fine basis pN ζ . Choose ),i j j ka ζ ζ +∈ 

   and define  

( ) ( ) ( )
( )
( )

0

0

0

( : ,

: 1  if  > ,

: 0  if  .

k k
i i i

i i

i i
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φ
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(a) 

 
(b) 

 
(c) 

Figure 3. (a) B-spline bases; (b) Original B-spline; (c) a finer B-spline 
which has the same parametrization as the original B-spline.            
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where ( ) ( ) ( )1 1:k
i i i kt t tζ ζ+ + −Ψ = − − 


. One has  

( ) ( ) ( ), ,

0

m
k k k
i i p

p
N x p N xα

=

= ∑ ζ ζ  

where ( ) ( )[ ]: , ,k k
i i k i i i k ppα ζ ζ ζ ζ φ+ += −  . The discrete B-splines ( )k

i pα  are evaluated by using the 
recurrence  

( ) )
( ) )
( ) ( ) ( ) ( ) ( )

1

1

1 1
1 1 1

1  if  ,

0  if  ,

i j i i j

i j i i j

k k k
i j k i i i k j k i

j

j

j j j

α ζ ζ ζ

α ζ ζ ζ

α ζ ζ β ζ ζ β

+

+

− −
+ − + + − +

= ∈ 
= ∈/ 

= − + −





 

 

in which  

( ) ( ) ( ) for  >
:

0 otherwise.

k
k i i k i i k i
i

jj α ζ ζ ζ ζ
β + + −

= 


 

In our simulation, we took 3k =  which corresponds to continuously differentiable pair potentials. In Figure 
4, we observe some illustration of such knot insertions. Not only the two B-spline functions admit the same 
image but their parametrizations from their interval of definition [ ]0,1  are completely identical. 

The whole process of the determination of the repulsive energy is performed in increasing levels as follows. 
First, one determines the optimal value for e bta −  without the B-spline part in (12) by using a global optimizer. 
Then, one fixes the resulting optimal values of ( ),a b  during the subsequent computation. Second, one searches 
the optimal B-spline ( )0

n n
i ii d N t

=∑  where 4n =  by starting a local optimization with the initial guess 
( )0 4, ,INIT INITd d = 0 . Now, one repeats the following steps iteratively. Inject the optimal value ( )0

n n
i ii d N t

=∑   
into ( )2 2

0
n INIT n

i ii d N t
=∑  by using the above knot insertion technique where n  is increased into 2n . Apply then  

a local optimization with respect to ( )0 2, , nd d  by using, ( )0 2, ,INIT INIT
nd d  as initial guess. 

3. Computer Implementation 
In this section, we report on some practical results of the formerly proposed method. The implementation of the 
method was realized by combining ATK, NLOPT and python. The ATK (Atomistix ToolKit) has some GUI 
extension well known as VNL (Virtual NanoLab). We use NLOPT for the diverse nonlinear optimization 
operations [10] in which both global and local optimizers are involved. A global optimizer searches for the best 
parameters among all possibilities while a local one searches only inside a local neighborhood of a certain 
provided starting initial guess. For the global optimizer, we use the NLOPT option GN-CRS2-LM standing for 
Controlled Random Search with Local Mutation. The local optimizers are performed by using BOBYQA 
algorithm which is an efficient gradient-free method available in NLOPT. In order to facilitate the combinations 
of options, we implemented several python classes. The class for the reference configurations organizes the 
graphene structures to be used together with their respective optimization weights. There is also a class for the 
optimization parameters specifying the property such as orders and levels of B-splines as well as the abortion 
criterion. It controls the contribution of the energy, force and stress ( ), ,E F Sµ µ µ  in the optimization functional 
(10). The construction of the sets ( )Λ c  as well as the interval for the range of interest has been equally 
supported by some python classes. In order to save computations, one needs to precompute and store the data for 
the DFT as well as the semi-empirical with zero pair potential. 

As a first test, we consider multiple computations for different configurations of graphenes. The configuration 
n  is based upon the first index n  of the chirality parameters ( ),n m  where m  is allowed to vary. That is, 

each configuration n  is composed of all graphenes admitting chirality ( ),n m  such that 0 m n≤ ≤ . In 
Figure 4(a), we observe some comparisons for graphenes in n  where 1n = . Most values align on the diagonal 
which implies the agreement between the outcomes provided by the DFT and the SE methods. Similar tests for 
graphenes where 2n =  and 3n =  are depicted respectively in Figure 4(b), Figure 4(c). The resulting SE 
energies do not exactly provide the same results as the DFT but the current SE energies should be more reliable 
in comparison to the empirical potential in (1)-(5) which contain very few parameters. In addition, the speed of 
computation is much faster for the currently presented SE than the one for DFT. In fact, the execution time of  
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(a)                                                     (b) 

 
(c) 

Figure 4. (a) Configuration consists of graphene of chirality ( ) ( ), 1,*n m = ; (b) ( ) ( ), 2,*n m = ; (c) ( ) ( ), 3,*n m = .      

 
the SE in comparison to DFT has a speed of factor 10  or more. Due to that acceleration gain, the method is in 
many aspects good to attain efficiency. If the accuracy is not satisfactory, then one has to use the direct DFT 
with the cost of much more computing time. 

As a further test, we investigate the decrease of the objective function with regard to the B-spline levels. We 
consider again the three configurations n  above for 1, 2,3n = . The results of such tests are displayed in 
Table 1 where the initial line describes the SE with zero pair potential (PP). The next one is the SE with 
exponential pair potential ( ) e btt a −=  without B-splines. The following ones are the pair potentials with more 
and more B-splines as in (12). The error barely drops down after level 4  for all graphene configurations n . 
In fact, the minimal value of the function in (10) is not always zero. As a consequence, one cannot expect an 
arbitrarily accurate approximation. As a next test, we consider the complex band structures for using the DFT 
and SE computations whose results are respectively displayed in Figure 5(a), Figure 5(b) for the graphene with 
chirality ( )1,0 . The plots depict band lines which are not shown as continuous curves but as sets of sampling 
points. The points which are purely real and explicitly complex are depicted in red and green respectively. In 
order to provide more validation for the efficiency of the proposed method, some comparison of the elastic 
properties was performed when computed by means of the DFT and SE methods. In Figure 6, we observe the 
elastic properties corresponding to the two methods. In general, the stress tensor σ  is presented in three 
directions similar to (9). Nevertheless, we omit the normal components of the stress tensor σ  in this particular  
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(a)                                                (b) 

Figure 5. Complex band structures. The purely real values are shown differently for 0κ = : (a) Using DFT; (b) Semi- 
empirical.                                                                                           

 

  
(a)                                     (b) 

Figure 6. Longitudinal and transversal elastic stress components: (a) graphene ( )1,0 ; (b) graphene ( )1,1 .               

 
Table 1. Errors at each B-spline level.                                                                       

LEV  1   2   3   

No PP  2.14 01e +   1.48 01e +   1.81 01e +  

e bta −   2.42 01e −   1.31 01e −   1.55 01e −  

1   3.50 02e −   4.38 02e −   3.85 02e −  

2   3.83 04e −   5.50 04e −   5.03 04e −  

3   5.00 06e −   1.06 04e −   1.35 04e −  

 
case of the graphene configurations which are planar. In addition, the stress components LTσ  and TLσ  are 
practically zero for both the DFT and SE computations. As a result, it remains to consider the longitudinal 
component LLσ  and the transversal component TTσ . That is, we need only to compare between DFT

LLσ  and 
SE
LLσ  as well as DFT

TTσ  and SE
TTσ . We concentrate only on 1  because the other configurations produce similar 

results. The cases of graphenes admitting chiralities ( )1,0  and ( )1,1  are respectively shown in Figure 6(a), 
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Figure 6(b) where one observes the alignments of DFT and SE elasticities. The two results for ( )1,0  and 
( )1,1  are almost similar except that ( )1,0LLσ  corresponds to ( )1,1TTσ . Geometrically, the transversal 
direction of the chirality ( )1,0  corresponds to the longitudinal direction of the chirality ( )1,1 . 

4. Conclusion 
A method was presented to determine the optimal pair potential for the repulsive quantum energy. We concen-
trated on configurations which are constituted of carbon graphenes. The method was based upon hierarchical 
B-splines layered on different levels. The principal objective function consists of terms involving not only ener-
gies but also forces and elastic stresses. Several computer results validate the reliability of the newly proposed 
method as compared to outcomes from Density Functional Theory. 
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