

# **Physical Features of Some Selected Nigerian Maize Cultivars**

# Awoyinka Olayinka Anthony

Department of Medical Biochemistry, Ekiti State University, Ado Ekiti, Nigeria Email: <u>olayinka.awoyinka@eksu.edu.ng</u>

Received 13 December 2013; revised 22 March 2014; accepted 7 April 2014

Copyright © 2014 by author and Scientific Research Publishing Inc. This work is licensed under the Creative Commons Attribution International License (CC BY). <u>http://creativecommons.org/licenses/by/4.0/</u> © Open Access

Abstract

A morphological characteristic feature of one hundred Nigerian maize cultivars was established. This repository sought a baseline upon which Nigerian maize cultivars could be classified based on kernel morphology, germinating properties such as shoots length and percent of growth. Out of all the maize cultivars, forty eight were classified as Dent maize, five were found to be Pop maize, thirteen were Waxy maize and six were also classified as Sweet maize while fourteen were found to be Floury and Flint maize respectively. The information would serve as reference for the selection of appropriate Nigerian maize cultivars for specific use in food processing and allied industries.

# **Keywords**

Dent Maize; Pop Maize; Waxy Maize; Floury and Flint Maize

# **1. Introduction**

Maize (*Zea mays* L.) belongs to the cereal family (*Graminea*). It originated in central and south America [1]. It is otherwise known as corn which literally means "that which sustains life" [2]. It is a versatile cereal crop growing across a range of agroecological zones. The plant is primarily a cross pollinating specie and this feature has contributed to its ability to grow well under the most varied condition unlike Barley, Wheat and Sorghum which are limited by climate [3]. It is the cereal with the highest yield potential and cheaper than other cereals hence corn ranks third following wheat and rice in the world production of cereal crop [1]. It is mostly cultivated for its edible fruit otherwise known as grains or kernels. The fruit is easy to process, readily digested and known to be the most important cereals crop in sub-Saharan Africa [4]. These grains are good source of dietary fiber, essential fatty acids, and other important nutrients [5]. The grains are known to have several major groups namely Floury corn, Popcorn, Waxy Corn, Pod Corn, Dent Maize, Flint Maize and Sweet Maize [6] [7]. In Western countries where maize for human food is industrially processed, these aforementioned features contri-

bute to the extent of their exploitation to form different food and allied products [8] [9]. The knowledge of physical properties constitutes important data in the design of processes and potential utilization [10] [11]. The value of this basic information is important to food scientist, processors and other scientists who may want to exploit these properties and find new uses [12]. Hence there is a need for detailed information on the physical properties of these maize seeds within the kernel characteristics for processing. It is on this basis that this study was carried out so as to promote our local maize cultivar and bridge the gap of information on our locally cultivated maize as regards their exploration in the industry for the benefits of man. In course of the present study, a repository of the characteristic features of one hundred Nigerian maize cultivars after third day of germination was established. This repository established relevant germinative properties such as shoots length and percent of growth. The information would serve as reference for the selection of appropriate Nigerian maize cultivars for specific use in food and allied processing industries.

## 2. Material and Methods

# 2.1. Cultivar Collection

One hundred maize cultivars were obtained from the International Institute of Tropical Agriculture (IITA) Ibadan, Nigeria. The cultivars were handpicked to obtain uniform grains and exclude broken kernel and extraneous materials.

#### 2.2. Physical Characteristics Tests

The method of Rooney and Miller [13] was modified to carry out the physical features on the entire hundred maize cultivars. These include colour, kernel classification, number of grains per 100g dry weight of each cultivar, and endosperm-pericarp ratio. One hundred kernels were randomly selected from each of the cultivar and mass were recorded with a top loading weighing balance. The pericarp-endosperm ratio was determined after staining the longitudinal sectioned seed with iodine solution. The length of the starchy pericarp was recorded over the length of the endosperm which turns blue-black.

The modified method of Institute of Brewing [14] as reported by Awoyinka [15] was adopted to investigate the germinative properties of each of the cultivar. 250 grams of each grain was steeped to give a grain/water ratio 3:4 in a cycle comprising six hours wet and three hours dry for sixty-five hours. After the steeping regime the cereal was spread in germination boxes in the dark and made to grow for three days in an atmosphere of near water saturation at room temperature to encourage sprouting as described by Morral *et al.* [16]. Shoot length was taken with a graduated meter rule and manual counting of percentage growth of the respective maize cultivar.

#### 2.3. Statistical Analysis

A total of nine readings collated from three successive replicated experiments at three separate periods but same laboratory conditions were analyzed for their means using Sigma Plot [17].

# 3. Results and Discussion.

The selected physical characteristic on all the hundred maize cultivar is shown in the **Table 1**. Generally, the maize kernel color is in two major forms namely white and yellow. From the observations recorded a total number of fifty-nine of the cultivar were pure white while seven of the cultivar was found to have dull-white coloration. Twenty-three of all the maize cultivar obtained was of deep yellow coloration while the remaining eleven were light yellow. It is a known fact that colour of kernel may contributes significantly to the overall appearance after processing [18]. This may also be a factor by which a product made from maize could be appealing and accepted for consumption by an individual.

As shown in the **Table 1** the pericarp-endosperm ratio for both Dent and Floury maize on the average ranged between 0.3/0.6 cm and 0.3/0.7 cm respectively. Except for waxy maize that has its pericarp-endosperm ratio at 0.3/0.6 cm the pericarp-endosperm ratio for both Flint and Sweet maize was found to be between 0.2/0.5 cm and 0.3/0.6 cm respectively. The pericarp-endosperm ratio is an estimation of the amount of starch present in a kernel [19].

# A. O. Anthony

| Table 1. Physical characteristics of the maize cultivars. |                                             |              |                          |                                  |                              |                      |                      |
|-----------------------------------------------------------|---------------------------------------------|--------------|--------------------------|----------------------------------|------------------------------|----------------------|----------------------|
| Nos                                                       | Cultivars Name                              | Colour       | Grains<br>Classification | Pericarp/Endosperm<br>Ratio (cm) | Number of Grain<br>per 100 g | Shoot Length<br>(cm) | Percent of<br>Growth |
| 1                                                         | Acr 20 tzl comp <sub>4</sub> c <sub>4</sub> | Light-yellow | Flint                    | 0.3/0.7                          | 387                          | 2.1                  | 71.7                 |
| 2                                                         | Acr 89 dmr esr-w                            | White        | Dent                     | 0.6/0.8                          | 376                          | 0.9                  | 40.8                 |
| 3                                                         | Acr 94 tze comp 5-w                         | Dull white   | Waxy                     | 0.4/0.7                          | 399                          | 2.3                  | 19.2                 |
| 4                                                         | Acr 95 tze comp $4c_3$                      | White        | Dent                     | 0.3/0.8                          | 312                          | 2.4                  | 96                   |
| 5                                                         | Acr 96 str syn-y                            | White        | Dent                     | 0.3/0.7                          | 234                          | 2.7                  | 77.1                 |
| 6                                                         | Acr 97 tze comp 3 * 4                       | Light-yellow | Floury                   | 0.3/0.7                          | 385                          | 2.7                  | 50.2                 |
| 7                                                         | Acr 97 tze comp $4c_3$                      | Yellow       | Dent                     | 0.3/0.8                          | 394                          | 0.8                  | 34.6                 |
| 8                                                         | Acr9449 str                                 | White        | Sweet                    | 0.2/0.5                          | 375                          | 0.9                  | 58.6                 |
| 9                                                         | Advance ncre str                            | White        | Floury                   | 0.4/0.7                          | 209                          | 2.0                  | 100                  |
| 10                                                        | Aflato syn var $_1f_2$                      | White        | Dent                     | 0.4/0.7                          | 412                          | 0.8                  | 46.5                 |
| 11                                                        | Ak 95 dmr esr-w                             | White        | Dent                     | 0.3/0.8                          | 366                          | 0.3                  | 24.8                 |
| 12                                                        | Ak 9522 dmsr                                | White        | Dent                     |                                  | 336                          | 2.7                  | 92.4                 |
| 13                                                        | Ak 96 dmr sr-w                              | White        | Dent                     | 0.2/0.8                          | 240                          | 2.3                  | 95.8                 |
| 14                                                        | Ama tzbr-wc <sub>2</sub> $af_1$             | Yellow       | Flint                    | 0.3/0.7                          | 474                          | 1.7                  | 78.1                 |
| 15                                                        | Ama tzbr-wc <sub>2</sub> af <sub>1</sub>    | Dull White   | Waxy                     | 0.3/0.8                          | 256                          | 2.4                  | 75.3                 |
| 16                                                        | Ama tzbr-y-1                                | White        | Dent                     | 0.2/0.7                          | 396                          | 3.1                  | 76.3                 |
| 17                                                        | Atp-sr                                      | Yellow       | Dent                     | 0.4/0.8                          | 300                          | 2.1                  | 65.3                 |
| 18                                                        | Bdp-sr-bc5                                  | White        | Pop                      | 0.5/0.7                          | 304                          | 0.4                  | 86.8                 |
| 19                                                        | Br 922 dmr $sf_2$                           | Yellow       | Pop                      | 0.3/0.8                          | 178                          | 2.7                  | 35.5                 |
| 20                                                        | Br 9943-dmsr                                | White        | Dent                     | 0.4/0.7                          | 332                          | 2.0                  | 76.5                 |
| 21                                                        | Btsr-y                                      | Yellow       | Floury                   | 0.4/0.8                          | 309                          | 1.8                  | 53.4                 |
| 22                                                        | Busola str                                  | White        | Dent                     | 0.2/0.7                          | 290                          | 2.6                  | 97.9                 |
| 23                                                        | Cam-1-str-1                                 | Yellow       | Dent                     | 0.5/0.8                          | 238                          | 1.9                  | 96.6                 |
| 24                                                        | Dmr esr-w-1c $_1f_2$                        | White        | Dent                     | 0.4/0.7                          | 327                          | 3.2                  | 98                   |
| 25                                                        | Dmr esr wqpm                                | White        | Floury                   | 0.4/0.8                          | 243                          | 2.6                  | 100                  |
| 26                                                        | Dt sr-w-z                                   | White        | Waxy                     | 0.3/0.8                          | 218                          | 1.1                  | 82.6                 |
| 27                                                        | Dt variety kamp.<br>88 pool                 | White        | Dent                     | 0.3/0.8                          | 204                          | 1.7                  | 97.3                 |
| 28                                                        | Dtsr wc1f2 0/c 14426                        | White        | Waxy                     | 0.3/0.8                          | 350                          | 2.1                  | 96.8                 |
| 29                                                        | Dt-sr-y-1                                   | Yellow       | Dent                     | 0.4/0.8                          | 218                          | 1.8                  | 86.3                 |
| 30                                                        | Early strain                                | White        | Floury                   | 0.3/0.6                          | 258                          | 2.1                  | 40.8                 |
| 31                                                        | Early strain                                | White        | Dent                     | 0.4/0.7                          | 334                          | 2.5                  | 76.0                 |
| 32                                                        | Ev 8766 sfbc6 qpm                           | Yellow       | Dent                     | 0.3/0.7                          | 476                          | 0.9                  | 35.6                 |
| 33                                                        | Ev99 qpm                                    | Yellow       | Flint                    | 0.2/0.5                          | 379                          | 2.1                  | 83.6                 |
| 34                                                        | Evdt 97 str co                              | White        | Sweet                    | 0.4/0.6                          | 371                          | 1.1                  | 58.8                 |
| 35                                                        | Fetzee-w-str                                | White        | Dent                     | 0.3/0.8                          | 378                          | 0.8                  | 58.1                 |
| 36                                                        | Heipang 97 tze comp<br>3*4                  | White        | Dent                     | 0.3/0.8                          | 243                          | 1.0                  | 75                   |
| 37                                                        | Icz 5bl 2a 9450f1                           | White        | Dent                     | 0.5/0.8                          | 456                          | 0.7                  | 15.7                 |
| 38                                                        | K9350 str                                   | Dull white   | Floury                   | 0.7/0.8                          | 314                          | 2.7                  | 100                  |
| 39                                                        | Ku 1409 str                                 | Yellow       | Dent                     | 0.4/0.7                          | 396                          | 0.8                  | 1.5                  |
| 40                                                        | Lnp c <sub>3</sub> -yf <sub>1</sub>         | Light yellow | Dent                     | 0.4/0.6                          | 190                          | 1.1                  | 96.8                 |
| 41                                                        | Lnp w. Wxlntpf <sub>1</sub>                 | White        | Floury                   | 0.4/0.6                          | 210                          | 2.3                  | 100                  |
| 42                                                        | Lnp wx nttpf1                               | White        | Waxy                     | 0.4/0.8                          | 392                          | 1.5                  | 94.6                 |
| 43                                                        | Lnp wxlntps1c1f1                            | White        | Waxy                     | 0.4/0.8                          | 224                          | 2.4                  | 87.5                 |
| 44                                                        | $Lnpc_2f_2$                                 | White        | Dent                     | 0.4/0.7                          | 394                          | 2.5                  | 82.2                 |

| Cont | inued                                                  |              |        |         |     |     |      |
|------|--------------------------------------------------------|--------------|--------|---------|-----|-----|------|
| 45   | Maka-srbc5                                             | White        | Flint  | 0.3/0.5 | 342 | 1.7 | 86.6 |
| 46   | Mok pioneer white                                      | White        | Dent   | 0.3/0.7 | 386 | 0.2 | 39.4 |
| 47   | Obatampa qpm                                           | White        | Dent   | 0.8/0.9 | 214 | 1.2 | 93.5 |
| 48   | Pool 18-sr/ak 94<br>dmr/esr-                           | Yellow       | Sweet  | 0.3/0.8 | 262 | 1.4 | 79.4 |
| 49   | Pop 66 sr/tzusr-w-sgy<br>qpm                           | White        | Flint  | 0.3/0.7 | 240 | 1.9 | 100  |
| 50   | Prol. W pool $cof_1$                                   | Dull white   | Waxy   | 0.4/0.8 | 208 | 1.0 | 100  |
| 51   | Samaru inb-y-str                                       | Yellow       | Flint  | 0.3/0.8 | 274 | 0.1 | 47.7 |
| 52   | Sb syn wf2                                             | White        | Dent   | 0.3/0.8 | 414 | 0.9 | 44.7 |
| 53   | Spe                                                    | White        | Рор    | 0.4/0.8 | 236 | 1.2 | 94.9 |
| 54   | Spmat                                                  | Light-yellow | Dent   | 0.6/0.8 | 288 | 0.7 | 49.3 |
| 55   | Temp. * trop. * prolific $c_1 f_1$                     | Light-yellow | Dent   | 0.4/0.7 | 246 | 1.1 | 77.2 |
| 56   | Tzbr-syn w/y co                                        | Light-yellow | Floury | 0.5/0.8 | 317 | 2.6 | 65   |
| 57   | Tzbr eld <sub>1</sub> c <sub>4</sub>                   | Yellow       | Floury | 0.4/0.7 | 355 | 2.1 | 42.0 |
| 58   | Tzbr eld $4 \text{ co } f_1$                           | Light yellow | Floury | 0.3/0.7 | 398 | 0.7 | 35.1 |
| 59   | Tzbr eld4 cof <sub>2</sub>                             | Yellow       | Dent   | 0.2/0.7 | 360 | 2.5 | 85.6 |
| 60   | Tzbr $eld_4cowf_2$                                     | White        | Flint  | 0.4/0.8 | 468 | 1.4 | 55.4 |
| 61   | Tzbr ses1 c3-w                                         | White        | Pop    | 0.5/0.8 | 371 | 2.0 | 56.7 |
| 62   | Tzbr ses <sub>3</sub> $c_4 1 f_2$                      | Yellow       | Dent   | 0.3/0.7 | 340 | 1.4 | 60   |
| 63   | $Tzbr\;ses_{3}c_{4}f_{2}$                              | White        | Dent   | 0.3/0.8 | 340 | 2.6 | 75.3 |
| 64   | Tzbr syn wf <sub>1</sub> $1/1$                         | White        | Dent   | 0.3/0.7 | 380 | 2.2 | 45.8 |
| 65   | Tzbr syn-y                                             | White        | Floury | 0.3/0.5 | 212 | 1.4 | 93.4 |
| 66   | Tzbreld1 c <sub>8</sub> -yf <sub>2</sub>               | Light yellow | Sweet  | 0.4/0.7 |     | 0.6 | 53.6 |
| 67   | Tze comp3 c3                                           | White        | Dent   | 0.8/1.0 | 214 | 2.8 | 100  |
| 68   | Tze $comp_3 dt cof_2$                                  | Dull white   | Waxy   | 0.6/0.9 | 353 | 0.5 | 50.3 |
| 69   | Tze comp3*4 syn f <sub>2</sub>                         | White        | Waxy   | 0.3/0.4 | 206 | 1.7 | 84.6 |
| 70   | Tze $comp_4c_2$                                        | White        | Sweet  | 0.4/0.8 | 318 | 2.8 | 65.2 |
| 71   | Tze comp4c4 f2                                         | White        | Waxy   | 0.4/0.8 | 320 | 2.1 | 100  |
| 72   | Tze y pop dt str c4                                    | Yellow       | Dent   | 0.2/0.7 | 458 | 2.6 | 73.8 |
| 73   | $Tzecomp_4c_2$                                         | White        | Waxy   | 0.3/0.6 | 192 | 0.8 | 42.3 |
| 74   | $Tzecomp_4c_3$                                         | Light-yellow | Floury | 0.2/0.5 | 456 | 2.3 | 56.7 |
| 75   | Tzecomp5c <sub>2</sub> f <sub>2</sub>                  | Light yellow | Flint  | 0.3/0.7 | 414 | 1.8 | 85.2 |
| 76   | Tzee w pop str c4f1                                    | White        | Dent   | 0.4/0.8 | 442 | 1.8 | 63.0 |
| 77   | Tzee w srbc <sub>5</sub>                               | White        | Dent   | 0.3/0.8 | 322 | 3.9 | 100  |
| 78   | Tzee * tzee-w*<br>demarscus * tzee-w                   | White        | Dent   | 0.6/0.9 | 268 | 2.6 | 100  |
| 79   | Tzl comp 1 syn-w $_1f_2$                               | White        | Floury | 0.3/0.6 | 410 | 2.6 | 97.2 |
| 80   | $Tzl \ comp \ c_2f_2$                                  | White        | Dent   | 0.3/0.7 | 350 | 0.9 | 57.1 |
| 81   | Tzl comp $c_5$                                         | White        | Flint  | 0.2/0.5 | 276 | 2.1 | 100  |
| 82   | Tzl comp <sub>1</sub> * zdiplo<br>bc synf <sub>1</sub> | White        | Floury | 0.4/0.7 | 270 | 0.7 | 32.3 |
| 83   | Tzl comp4c <sub>1</sub>                                | Dull white   | Waxy   | 0.3/0.4 | 212 | 2.3 | 100  |
| 84   | Tzm comp.32                                            | White        | Flint  | 0.3/0.6 | 268 | 0.6 | 94.7 |
| 85   | Tzmi 205                                               | White        | Flint  | 0.2/0.5 | 262 | 0.8 | 93.6 |
| 86   | Tzpb-sr-prol $c_3f_1$                                  | Dull white   | Waxy   | 0.3/0.8 | 226 | 1.0 | 86.7 |
| 87   | Tzutsr sgy syn $\mathrm{f}_2$                          | Yellow       | Dent   | 0.3/0.8 | 278 | 3.6 | 100  |
| 88   | Yellow syn var-f2                                      | Yelow        | Dent   | 0.4/0.7 | 336 | 0.8 | 57.8 |

#### A. O. Anthony

| Continued |                |        |       |          |     |     |      |
|-----------|----------------|--------|-------|----------|-----|-----|------|
| 89        | Z diplo syn-1  | White  | Dent  | 0.4/0.9  | 277 | 3.5 | 100  |
| 90        | 1368 * 1393    | White  | Flint | 0.3/0.8  | 232 | 0.5 | 3.5  |
| 91        | 1393           | White  | Dent  | 0.2/0.8  | 230 | 1.1 | 98.3 |
| 92        | 2000 syne.e. w | White  | Dent  | 0.3/0.7  | 214 | 1.5 | 95   |
| 93        | 4001 str       | Yellow | Рор   | 0.4/0.6  | 454 | 1.2 | 91.6 |
| 94        | 9021-18 str    | White  | Flint | 0.3/0.9  | 272 | 1.0 | 98.5 |
| 95        | 9022-13        | White  | Dent  | 0.5/0.9  | 386 | 2.6 | 49.2 |
| 96        | 9043 dmsr      | White  | Dent  | 0.4/0.8  | 340 | 0.9 | 54   |
| 97        | 9071           | White  | Flint | 0.6//0.8 | 298 | 3.0 | 82.6 |
| 98        | 9450 str       | Yellow | Dent  | 0.4/0.8  | 290 | 1.3 | 85.5 |
| 99        | 98 tzee-wstr   | White  | Dent  | 0.3/0.7  | 276 | 3.8 | 100  |
| 100       | 99 tzee-y-str  | Yellow | Sweet | 0.3/0.6  | 389 | 2.3 | 70   |

\*values are means of replicated experimental readings.

In this study Dent maize cultivar  $\text{Ev8766sfbc}_6$  qpm was found to have the highest number of grains with 476 per 100 g weight closely followed was Flint Tzbreld<sub>1</sub>c<sub>4</sub> with 468 per 100 g weight while Br922dmrsf<sub>2</sub> has the least number with 178 per 100 g of the grains. At third day germination the cultivar with highest shoot length was Tzeewsrbc<sub>5</sub> with the value 3.9 cm (**Figure 1**), while Samaru inb-y-str have the least shoot length with the value 0.1 cm (**Figure 2**). The determination of sprouting rates as a function of amylase content is important for an analytical prediction of diastatic power otherwise known as combined effect of  $\alpha$  and  $\beta$  amylases [20] [21]. The high amylase content of barley compare to other cereal like maize confer on it high diastatic power which has made the grain the choice cereal in brewing [22].

Observation made on the type of maize in this study in terms of the type of kernel indicates that forty-eight of the cultivar was Dent. The kernels contain a hard form of starch at the sides and a soft type in the centre. The crown of the kernel consists of soft starch hence moisture loss form this area as the kernel ripens causes a slight collapse in volume resulting in a characteristics dent and generally higher yielding than other maize types. Most of the cultivated Dent maize is either white grain which is preferred as human food or yellow grain which is largely used for animal feed [3]. Fourteen percent of the cultivar was Floury their endosperm is composed entirely of soft starch which can easily be scratched with a thumbnail. Floury maize is known to be industrially processed into starch of which a considerable proportion is used for high fructose corn syrup. However, other by-products from Floury maize, such as fodder protein and vegetable oil, also have a good market [5] [23]. A total number of fourteen of the cultivar was also found to be Flint. Characteristically the kernels are round, hard and smooth with only some starch in the very centre of the grain. It is known that Flint maize is most preferred for human fermented food [24]. Five of the entire cultivars used in this study were Pop maize. Pop Corn is an extreme form of Flint maize with a hard endosperm occupying most of the kernel and a small amount of starch in the basal part of the grain. The kernels are small with thick pericarp that varies in shape from round to oblong. The crop is grown primarily for human consumption as freshly popped corn and is the basis of popcorn confections [7]. The moisture trapped in the flour starch expands upon heating and burst through the hard kernel. The ability to pop seems to be conditioned by the unique quality of the endosperm which resists the steam pressure when heated to about 170°C [22].

A total number of thirteen cultivars showed a characteristic feature of waxy maize. Waxy maize otherwise known as ornamental maize is currently grown in the tropics in a small area in pockets where natives prefer it as a food crop. The endosperm has a dull wax-like appearance. The starch of these maize types differs chemically from common corn starch in that it lacks amylase and is made up of amylopectin [25]. The starch of waxy corn is used for food or for making adhesives such as the gums applied to stamps, envelopes, gummed tape, corrugated paper boxes, and plywood [5] [8]. However, six percent of the cultivars in this study possess the feature of Sweet maize. The grains are high in sugar content and Sweet in taste while fresh. It is also characterized by translucent, horny appearance when immature and a wrinkled condition when dry. This type of maize is known to have high cash value as a processed vegetable in industrial economies [26].



Figure 1. Tzee-w-srbc<sub>5</sub>, maize cultivar showing high shoot length after the steeping regime and third day of germination.



Figure 2. Samaru inb-y-str, maize cultivar showing a low shoots length after the steeping regime and third day of germination.

# 4. Conclusion

The empirical data from this study have practical applications in food and allied industries in which any of the maize cultivar could be preferentially exploited to useful products for human consumptions.

#### References

- [1] Sigmund, R. and Gustav, E. (1991) The Cultivated Plants of the Tropic and Subtropics: Cultivation, Economic Value, Utilization. Priese Gmbh, Berlin, 19-20.
- [2] Martinez, B.F., Figueroa, J.D.C., Larois, S.A. (1996) High Lysine Extruded Products of Quality Protein Maize. *Journal of Science Food and Agriculture*, **71**, 151-155. http://dx.doi.org/10.1002/(SICI)1097-0010(199606)71:2<151::AID-JSFA562>3.0.CO;2-X
- [3] Ignatius, U.O. (1989) Maize: It's Agronomy, Diseases, Pest and Food values. Intec. Printer Limited, Enugu, 3-163.
- [4] FAO (1992) Food and Agricultural Organization of the United Nations Focus on Maize in Human Nutrition. http://www.fao.org/docrep
- [5] Inglet, G.E. (1982) Maize: Recent Progress in Chemistry and Technology. Academic Press, New York, 1-3.
- [6] Staackmann, J.M. and Matz, S.A. (1977) Elements of Food Technology. In: Dresrosier, N.M., Ed., AVI Publishing Company Inc., Westport, 148-154.
- [7] Guy, R. (1987) Maize. 2nd Edition, Macmillan Publishers Ltd., 5-13.
- [8] Watson, S.A. (1987) Corn: Chemistry and Technology. 2nd Edition, AACC International, St. Paul, 5-12.
- [9] Martinez, B.F., Sevilla, P.E. and Bjarnason, M. (1996) Wet Milling Comparison of Quality Protein Maize and Normal Maize. *Journal of Science Food and Agriculture*, **71**, 156-162. http://dx.doi.org/10.1002/(SICI)1097-0010(199606)71:2<156::AID-JSFA561>3.0.CO;2-V
- [10] Awoyinka, O.A. and Adebawo, O.O. (2008) Quality Assessment and Potential Utilization of High Amylolytic Nigerian Maize Cultivars. *African journal of Biotechnology*, 7, 4331-4335.
- [11] Sobukola, O.P., Kajihausa, O.E., Onwuka, V.I. and Esan, T.A. (2013) Physical Properties of High Quality Maize (Swam 1 Variety) Seeds (*Zea mays*) as Affected by Moisture Levels. *African Journal of Food Science*, 7, 1-8. <u>http://dx.doi.org/10.5897/AJFS11.167</u>
- [12] Isik, E. and Unal, H. (2007) Moisture Dependent Physical Properties of White Speckled Red Kidney Bean Grains. *Journal of Food Engineering*, **60**, 475-479.
- [13] Rooney, L.W. and Miller, F.R. (1982) Variation in the Structure and Internal Characteristics of Sorghum. *Proceedings* of International Symposium International Crop Research Institute for the Semi-Arid Tropics, Hyderabad.
- [14] IOB (1981) Report of the Analysis Committee of the Institute of Brewing. Institute of Brewing, London, 14-15.
- [15] Awoyinka, O.A. (2010) Purification and Characterization of  $\beta$  Amylase Isolated from TZEE\*TZEE-W\*DEMARSCUS \*TZEE-W Maize Cultivar. Olabisi Onabanjo University, Nigeria.
- [16] Morral, P., Boyd, K., Taylor, J. and Vanater, W. (1986) Effect of Germination Time, Temperature and Moisture on Malting Sorghum. *Journal of Institute of Brewing*, 92, 439-445. <u>http://dx.doi.org/10.1002/j.2050-0416.1986.tb04437.x</u>
- [17] Sigma Plot (1994) Statistical Software. Jandel Corporation, Las Vegas.
- [18] Rooney, L.W. and Murty, D.S. (1982) Color of Sorghum Food Products. *Proceedings of International Symposium on Sorghum Grain Quality Patancheru*, Patancheru, 28-30 October 1981, 323-324.
- [19] MacGregor, A.W. and Balance, D.L. (1980) Hydrolysis of Large and Small Starch Granules from Normal and Waxy Barley Cultivars by α Amylases from Barley. *Cereal Chemistry*, **57**, 397-402.
- [20] Egwim, E.C. and Oloyede, B.O. (2006) Comparison of *α* Amylase Activity in Some Sprouting Nigerian Cereals. *Biochemistry*, **18**, 15-20.
- [21] Awoyinka, O.A. and Adebawo, O.O. (2007) Influence of Variety and Malting Period on Alpha and Beta Amylases in Different Nigerian maize Cultivars. *Technical Quarterly—The Master Brewers Association of Americas*, **44**, 252-255.
- [22] Palmer, G.H. (1989) Cereal Science Technology. Aberdeen University Press, Aberdeen, 147-149
- [23] Lawani, M. and Babalaye, T. (1992) Recent Development in Cereal Production in Nigeria. IART Newsletter.
- [24] Hart, E.R. (1985) Cereal Processing. US Patent 4555409.
- [25] Ziegler, P. (1999) Cereal beta amylase. Journal of Cereal Science, 29, 195-204
- [26] Ripsudan, L.P., Gonzalo, G.H. (2000) Tropical Maize Improvement and Production. Thomas Nelson Publishers, Nashvile, 1-87.