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Abstract

In this paper we derived a continuous linear multistep method (LMM) with step number k = 5
through collocation and interpolation techniques using power series as basis function for ap-
proximate solution. An order nine p-stable scheme is developed which was used to solve the third
order initial value problems in ordinary differential equation without first reducing to a system of
first order equations. Taylor’s series algorithm of the same order was developed to implement our
method. The result obtained compared favourably with existing methods.
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1. Introduction

Linear multistep methods (LMM) for solving first order initial value problems (ivps) is of the form
k k
Zajynﬂ- =h2ﬂjfn+j M
=0 Jj=0

where «; and f; are uniquely determined and o, + S, #0,a; =1

Conventionally, they are used to solve higher order ordinary differential equations by first reducing them to a
system of first order. This approach has been extensively discussed in [1]-[5]. However the method of reducing to
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a system first order has some serious drawback which includes wastage of human effort and computer time [6].
The LMM in (1) generates discrete schemes which are used to solve first order odes. Various forms of this

LMM have been developed [ 1]-[4]. Other researchers have introduced the continuous LMM using the continuous

collocation and interpolation technique. This has led to the development of continuous LMM of form

k k
Y(x)=2a,(t)y,.; +hd B, (1) 1., @)

j=0 j=0
a; and f, are expressed as continuous functions of t and are at least differentiable once.

The introduction of continuous collocation methods as against the discrete schemes enhances better global error
estimation and ability to approximate solution at all interior points [6]-[10]. In this study, we shall develop con-
tinuous multistep collocation method for the solution of third order ordinary differential equations using power
series as the basis function.

Power Series Collocation

In [6] [8] [9], some continuous LMM of Type (2) were developed using power series of form
k
Y(x)zZajx/ : (3)
j=0
In [10] Chebyshev polynomial function of the form
£ X—X
()= () 5 @

=0 h

where T; (x) are some Chebyshev function used to develop continuous LMM.

The use power series as basis function for derivation of continuous LMM are based on the property of analytic
function that given the Taylor’s polynomial of the form

p(x)zgw (5)

r!

The approximate function p(x) reducesto Y(x) as n—oo
In this study we proposed the polynomial function of the form in [7]:

k .
Y(x)=2a,(x=x,) (©6)
Jj=0
which is of Type (3) to develop a continuous LMM for the solution of initial value problem of the form:
y'=f(wy ") (@) =y y'(a)=0,,5"(a) =0, (7)

This paper is organized as follows: Section 1 consists of introduction and background of study; Section 2, we
derive a continuous approximation to Y (x) for exact solution y(x) , and specific methods; Section 3 consists
of the analysis and implementation followed by numerical examples.

2. Derivation of the Method

Consider the third order differential Equation (7), we proposed an approximate solution of the form:
M
ve(x)=2aw, () @®)
j=0

where y (x)=(x—x, )j ,j=0.
The derivative of (8) up to the third order yield

W)= 2= -2)aw, (%) ©)

Jj=0
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And a<x<b where a;s are the parameters to be determined. By substituting (8) and (9) into (7) we have
k
2/ (7=D(=2)ay; 5 (x)= f(x0.5.5") (10)
j=0

Collocating (10) at x =x,,,,i =0(1)m and interpolating (8) at x=x,,,,i =0(1)m—1 we obtained the system

of equations given below

Yay (%)= )
=0
2i(-D(-2)ay, 5 (x)=1. (12)

=0

~

The above equations are solved to obtain the values of a;.s which when substituted into Equation (6) yield a
method of the form in Equation (13)

OENACINET) WACY. (13)

The continuous polynomial obtained when the values of a;.s are substituted into (6) and simplified is as
follows

Y(x)= W[S%ZOW‘) ~3305158%° (x—x, ) +5968895h" (x—x, )" —81468004° (x —x, )’

+8869224h° (x—x, )’ —4685898h* (x—x, )’ +1424760%° (x—x, ) h" — 253425k (x—x, )"
+24490h(x—x,)’ ~1024(x~x,)" |,

1
59520h'°
~17084088%° (x—x, ) +9069483h* (x—x, )’ —27709204" (x —x, )’ +495075h* (x—x, )’

+

[621 1314° (x—x, )~ 11400365/ (x—x, )’ +1562776004° (x—x, )’

~48030h(x - x, )9 +1952(x—x, )10 } Vst
P

59520h"
+907074h* (x—x,)" —235800h° (x - x, ) +35325h% (x—x,)’ —2850h(x—x, ) +96(x-x, )m]ym

[898062!19 (x—x,)-1582514° (x—x,)" +199800h° (x—x,)" ~1963080/° (x—x, )’

1 2 4
+ oo520n | -73119628° (x~x, ) +13490545)" (x— 3, )" ~182916004° (x - x, )

+19701528h° (x - x, )’ —10278870h* (x—x, )" +30853204° (x—x,) —542175h* (x—x, )’
+51830h(x—x,) —2080(x—x, )‘0} v
1
+—
3999744004’
~503597204° (x—x, )" +518336784h° (x—x, ) —269004260h* (x - x, )’ +811250404° (x—x,)’

[—160164924/19 (x-x,)+27846271h° (x—x,)" +6666240h" (x - x, )’

~14366570h* (x—x, )" +98910h(x - x, )9]—56000(x—xn )wan

PR
39997440047

+277436282904° (x—x, )’ ~146724166104" (x - x, )" —44636351204° (x—x, )’

[—9863776238119 (x—x,)+184189065604" (x —x, )’ —25437064780h° (x - x, )’

~794196650h* (x —x, ) +5482910h(x —x, ) —3109568(x - x, )IOJf,H,

(=)
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PR
399974400/
+64857656850h° (x - x, ) —34104473030/4* (x—x, )’ +10321466720h" (x - x, )’

[—235560931 17° (x—x, ) +438096486304° (x —x, )’ —598235567804° (x - x, )’

+18282597004° (x —x, )" +12572860/(x—x,) —7107968(x - x, )“’} Lo

PR
3999744004
+29987527570h° (x —x, ) ~157505754790h* (x - x, ) +47324395204° (x - x, )’

[—10969770700119 (x—x,)+20392494160/° (x—x,)’ —27749220780/° (x —x, )’

+8345353004 (x—x, )" +5715660/ (x—x,) —3219328(x - x, )IO]fM

PR
3999744004
—449080800/° (x—x, ) +4861367844° (x —x, )’ —255405332A* (x—x, )’

+773583204° (x—x, ) +13746850/% (x—x, )" +95110A(x—x, )’ —54208(x—x, )“’} foa
1

[—177230988}:9 (x—x,)+3295125104" (x—x, )’

[—2399724};" (x—x,)+4458670h" (x—x, )’ —5990880/° (x—x,)’ +6383440%° (x—x, )’

+ 7
3999744004
~3620852h* (x—x, )" +941680%° (x—x, ) —154930h> (x—x, )’ +950h(x—x, ) —448(x—x,)" } foss .
Evaluating (14) at x =x,, the following discrete method is obtained
9, 8 68 29
yn+5 31yn+4 31yn+3 31yn+2 31yn+l yn (15)
21 1177 1921 1921 1177 21
=h + + + + +
(2480 Jus 2480 Tusa 1240 S 1240 Tusa 2480 S 2480 f"j
3. Analysis and Implementation of the Method
3.1. Basic Properties of the Method
The method (15) is a specific member of the conventional LMM which can expressed as
k k
za‘/’yni—j :h3zﬂjyr:”+j (16)
Jj=0 j=0
Following [1] [2], we define the local truncation error associated with (16) by the difference operator
k
LLy(x):k]= X[ e,y (x, + jh)= I B,y" (x, + jh) ] (17)
j=0

where y(x) is assumed to have continuous derivatives of sufficiently high order. Therefore expanding (23) in
Taylor series about the point x to obtain the expression

L[y(x);h] = Coy(x)+Chy' (x)+ Cyhy" (x)+-+C k7 y? (x)+C, by (x)+ C, ,h" 2y (x) (18)

where the C,,C,,C,,---,C ,, are defined as

P
k

L . 1 & 1 . .
G=2a;, C=2ja;, G :5212“‘/" ¢, :_,[qua/ —a(g-1)(¢-2) 25,/
J=0 J=0 = Q= =
In the sense of [ 1], we say that the method (20) is of order p and error constant C,,, #0 if
G=¢=¢=-=C,=0C,,#0

Using the concept above, the method (19) has order p =9 and error constant given by

(=)
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C,,, =-0.005403C, ,

3.2. Zero-Stability of the 5-Step Method

Considering the first characteristics polynomial of the method of Equation (15) given as

P(r) =7 —gf‘ —ﬁr3 +§r2 +§r—1 =0
31 31 31 31
Putting » = l,p(r) =0 implying that »—1 is a factor. Therefore solving the polynomial it is found that
(r—l)3 is also a factor of the polynomial and » =1,1,1. The other roots which are called spurious roots are
r=-0.776216472 and —1.28829956.

3.3. Region of Absolute Stability of the 5-Step Scheme

Applying the boundary locus method, we have that

p(r):r5 2 rt - %8 3+§r2 2 r-1=0
31 31 31 31

(217° +1177r* +38427° + 3842175 (r) +1177r +21)

h3
o(r)= 2480

In the spirit of Lambert (1973),

By letting r =¢'’ = cos@+isin@ and substituting this into the express above to yield
() 2480{cos 50 — 29 cos 46 — 68 cos 30 + 68 cos 20 + 29 cos 0 + 1}
X =
21cos560+1177cos46 +3842cos30 +3842cos260+1177 cosb
At 6=0" and 6=180" for 0" <@ <180 ataninterval of 30° we have that X (8)=(0,%0). The method is
therefore said to be p-stable.

3.4. Implementattion

Single step method can be used to solve higher order ordinary differential equations directly without the need to
first reducing it to an equivalent system of first order.

Consider the initial value problem in (7). For our method of order p =9, Taylor series expansion is used to
calculate.

VostsVuinsVass and their first, second, third derivatives up to order p=9.

yn+jE (xn+jh)

h 2 oy h 3 h 4 .
y(x,,)+jhy’(xn)+(J );}!(xn)-i-(] 3)'f”+(1 z'f”

(Jh) £ (Jh) - (Jh) . (Jh) /) (Jh) .

I

Vi, =V (x, + k)= ' (x,)+ jhy" (x

TN v NS i 2\ pvii
+(Jh) f, +(]h) /, +(Jh) f
7! 8! 9!
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yr'l'ﬂ_ = y"(xn +jh)
h h
;y”(xn)+jhfn+(] 2)!f +(J 3)!f
L0/ L0 L S ) S W) W VL)
4! 5! 6! 7! 8! 9!

yr,,"+j Eym(xn +]h)
h) 1y () 17 (h)' 1y
21

= f, +jhf] + 3 4l
JURN A G )R G A () 1
5! 6! 7! 8! 9!

Then the known values of x, and y, are substituted into the differential equations. Next the differential
equation is differentiated to obtain the expression for higher derivatives using partial differentiation as follows

ym :f(x,y’yr,yn):f-j

) 0 o ,0 0
= [tV AV M = —+y +Y'—+f— |=Df;
oy oy oy

yo=fo+(y ) s+ )fy‘ + 2 o 2V 29 o + 21
+2y'y”f}y,+2yﬁyy~+2y'ffy,y”+Df.(f,)+f.(y”+f,)
=D+ (£ ) D+ £ (57 1), = D2+ (f) DS+ 1, (74 ),

where

D= i.,_y'£+y”£+fi and D> =D(D)
ox ay ay; ayr/

D’ f; where p is the order of the method.

3.5. Numerical Experiments

Our methods of order p=9 were used to solve some initial value problems of both general and special nature
using Taylor’s series. Our results were compared with the results of other researchers in this area as seen in Table 1.
In Table 2 and Table 3, the accuracy of our method is seen in the small error values.

The following initial value problems were used as our test problems:

3.6. Problem 1

y"'==y,y(0)=1,y"(0)=-1,y"(0)=1.
0<x<Lh=0.1

—X

Exact solution: y(x)=e

3.7. Problem 2

" =2y"=3y"+10y = 34xe>* —16e > —10x + 6x +34.
¥(0)=3,y"(0)=0,»"(0)=0,0<x<1

Exact solution: y(x)=x’¢"—x*+3.
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3.8. Problem 3

Exact solution: 2+2x” +e*

Table 1. Showing the result of test problem 1.

X Exact solution New result method (P =9) Error in our for (P =9) Errorin [11] (P=9)
0.1 0.904837 0.940837 0.0000+00 2.1760E-12
0.2 0.818731 0.818731 2.7756E-14 1.3935E-11
0.3 0.740818 0.740818 1.5838E—-12 3.4443E-11
0.4 0.670320 0.670320 2.7879E-11 6.4477E-11
0.5 0.606531 0.606531 2.9477E-11 1.0316E-10
0.6 0.548812 0.548812 8.5048E—-11 1.4979E-10
0.7 0.496585 0.496585 8.0357E-11 2.0486E-10
0.8 0.449329 0.449329 1.6601E-10 2.6756E-10
0.9 0.406570 0.406570 1.1176E-10 6.9382E—-10
1.0 0.367879 0.367879 1.4871E-10 1.4224E-10

Table 2. Showing the result of test problem 2.

X Exact solution New result method (P =9) Error in our for (P =9)
0.1 0.299819E+01 0.299819E+01 6.6218E-13
0.2 0.298681E+1 0.298681E+01 6.2238E—-11
0.3 0.295939E+01 0.295939E+01 3.5134E-09
0.4 0.291189E+01 0.291189E+01 6.1100E-07
0.5 0.284197E+01 0.284197E+01 6.4183E-07
0.6 0.274843E+01 0.274843E+01 1.8082E-06
0.7 0.263083E+01 0.263083E+01 1.3511E-06
0.8 0.248921E+01 0.248921E+01 1.3367E-06
0.9 0.232389E+01 0.232390E+01 7.9041E-06
1.0 0.213534E+01 0.213537E+01 3.7360E—-05

Table 3. Showing the result of test problem 3.

X Exact solution New result method (P =9) Error in our for (P =9)
0.1 0.321517E+01 0.321517E+01 0.0000E+00
0.2 0.330140E+01 0.330140E+01 2.8422E-13
0.3 0.352980E+01 0.352980E+01 1.6729E-12
0.4 0.381182E+01 0.381182E+01 2.9983E-11
0.5 0.414872E+01 0.414872E+01 3.1673E-11
0.6 0.454212E+01 0.454212E+01 9.1899E-11
0.7 0.499375E+01 0.499375E+01 8.9531E-11
0.8 0.550554E+01 0.550554E+01 1.9168E-10
0.9 0.607960E+01 0.607960E+01 2.1110E-10
1.0 0.671828E+01 0.671828E+01 4.9398E-10
1.1 0.742417E+01 0.742417E+01 8.6728E-10
1.2 0.820012E+01 0.820012E+01 2.3764E-09
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4. Discussion of Result

We have developed and implemented our methods using Taylor series of the same order as the schemes that we
developed. Some special and general third order initial value problems (ivps) were used to test the efficiency of
our methods. Our method was found to be zero stable, consistent and convergent. The better accuracy of our
method can be shown from the numerical examples.
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