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Abstract 
We discuss the generalized Lagrange structure of a deformed Minkowski space (DMS), M , namely 
a (four-dimensional) generalization of the (local) space-time based on an energy-dependent “de-
formation” of the usual Minkowski geometry. In M , local Lorentz invariance is naturally vi-
olated, due to the energy dependence of the deformed metric. Moreover, the generalized La-
grange structure of M  allows one to endow the deformed space-time with both curvature and 
torsion. 
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1. Introduction 
It is well known that symmetries play a basic role in all fields of physics. In particular, in relativity the most 
fundamental symmetry is local Lorentz invariance (LLI). Over the last two decades there have been tremendous 
interest and progress in testing LLI [1] [2] although theoretical speculations on LLI violation can be traced back 
to the early sixties of the past century. The theoretical formalisms admitting for LLI breakdown can be roughly 
divided in two classes: unified theories and theories with modified spacetimes. 

A formalism of this second kind is Deformed Special Relativity (DSR), namely a (four-dimensional) 
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generalization of the (local) space-time structure based on an energy-dependent “deformation” of the usual 
Minkowski geometry [3] [4]. As we shall see, the energy-dependence of the deformed metric in DSR gives rise 
to a natural violation of the standard Lorentz invariance. However, LLI can be recovered in a wider, generalized 
sense. Moreover, the deformed Minkowski space (DMS) M  can be shown to be endowed with an additional 
geometrical structure, that of Generalized Lagrange Space. This allows one to define in M  both curvature and 
torsion. 

The paper is organized as follows. In Section 2, we review the basic features of DSR that are relevant to our 
purposes. Lorentz violation in DSR is discussed in Subsect. 2.2. Section 3 deals with the generalized Lagrange 
structure of M . Conclusions and perspectives are given in Section 4. 

2. Elements of Deformed Special Relativity 
2.1. Energy and Geometry 
The geometrical structure of the physical world-both at a large and a small scale—has been debated since a long. 
After Einstein, the generally accepted view considers the arena of physical phenomena as a four-dimensional 
space-time, endowed with a global, curved, Riemannian structure and a local, flat, Minkowskian geometry. 

However, an analysis of some experimental data concerning physical phenomena ruled by different 
fundamental interactions have provided evidence for a local departure from Minkowski metric [3] [4]: among 
them, the lifetime of the (weakly decaying) 0

sK  meson, the Bose-Einstein correlation in (strong) pion 
production and the superluminal propagation of electromagnetic waves in waveguides. These phenomena 
seemingly show a (local) breakdown of Lorentz invariance, together with a plausible inadequacy of the 
Minkowski metric; on the other hand, they can be interpreted in terms of a deformed Minkowski spacetime, with 
metric coefficients depending on the energy of the process considered [3] [4]. 

All the above facts suggested to introduce a (four-dimensional) generalization of the (local) space-time 
structure based on an energy-dependent “deformation” of the usual Minkowski geometry of M, whereby the 
corresponding deformed metrics ensuing from the fit to the experimental data seem to provide an effective 
dynamical description of the relevant interactions (at the energy scale and in the energy range considered). 

An analogous energy-dependent metric seems to hold for the gravitational field (at least locally, i.e. in a 
neighborhood of Earth) when analyzing some classical experimental data concerning the slowing down of 
clocks. 

Let us shortly review the main ideas and results concerning the (four-dimensional) deformed Minkowski 
spacetime M . 

The four-dimensional “ deformed” metric scheme is based on the assumption that spacetime, in a preferred 
frame which is fixed by the scale of energy E  , is endowed with a metric of the form 

( ) ( ) ( ) ( ) ( )2 2 2 2 2 2 2 2 2 2
0 1 2 3d d d d d d d ;DSRs b E c t b E x b E y b E z g E x xµ ν

µν= − − − =                (1) 

( ) ( ) ( ) ( ) ( )( )2 2 2 2
0 1 2 3, , , ,DSRg E b E b E b E b Eµν = − − −                    (2) 

with ( ) ( )0 1 2 3, , , , , , ,x x x x x ct x y zµ = =  c  being the usual speed of light in vacuum. We named “Deformed 
Special Relativity” (DSR) the relativity theory built up on metric (1), (2). 

Metric (1), (2) is supposed to hold locally, i.e. in the spacetime region where the process occurs. It is 
supposed moreover to play a dynamical role, and to provide a geometric description of the interaction 
considered. In this sense, DSR realizes the so called “Finzi Principle of Solidarity” between space-time and 
phenomena occurring in it1 (see [5]). Futhermore, we stress that, from the physical point of view, E  is the 

 

 

1Let us recall that in 1955 the Italian mathematician Bruno Finzi stated his “Principle of Solidarity” (PS), that sounds “It’s (indeed) neces-
sary to consider space-time TO BE SOLIDLY CONNECTED with the physical phenomena occurring in it, so that its features and its very 
nature do change with the features and the nature of those. In this way not only (as in classical and special-relativistic physics) space-time 
properties affect phenomena, but reciprocally phenomena do affect space-time properties. One thus recognizes in such an appealing “Prin-
ciple of Solidarity” between phenomena and space-time that characteristic of mutual dependence between entities, which is peculiar to 
modern science.” Moreover, referring to a generic N-dimensional space: “It can, a priori, be pseudoeuclidean, Riemannian, non-Riemannian  
But-he wonders-how is indeed the space-time where physical phenomena take place? Pseudoeuclidean, Riemannian, non-Riemannian, ac-
cording to their nature, as requested by the principle of solidarity between space-time and phenomena occurring in it.” 

Of course, Finzi’s main purpose was to apply such a principle to Einstein’s Theory of General Relativity, namely to the class of gravita-
tional phenomena. However, its formulation is as general as possible, so to apply in principle to all the known physical interactions. There-
fore, Finzi’s PS is at the very ground of any attempt at geometrizing physics, i.e. describing physical forces in terms of the geometrical 
structure of space-time. 
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measured energy of the system, and thus a merely phenomenological (non-metric) variable2. 
We notice explicitly that the spacetime M  described by (1), (2) is flat (it has zero four-dimensional 

curvature, at least at this level; but see below), so that the geometrical description of the fundamental 
interactions based on it differs from the general relativistic one (whence the name “deformation” used to 
characterize such a situation). Although for each interaction the corresponding metric reduces to the 
Minkowskian one for a suitable value of the energy 0E  (which is characteristic of the interaction considered), 
the energy of the process is fixed and cannot be changed at will. Thus, in spite of the fact that formally it would 
be possible to recover the usual Minkowski space M  by a suitable change of coordinates (e.g. by a rescaling), 
this would amount, in such a framework, to be a mere mathematical operation devoid of any physical meaning. 

As far as phenomenology is concerned, it is important to recall that a local breakdown of Lorentz invariance 
may be envisaged for all the four fundamental interactions (electromagnetic, weak, strong and gravitational) 
whereby one gets evidence for a departure of the spacetime metric from the Minkowskian one (in the energy 
range examined). The explicit functional form of the metric (2) for all the four interactions can be found in [3] 
[4]. Here, we confine ourselves to recall the following basic features of these energy-dependent phenomenolo- 
gical metrics: 

1) Both the electromagnetic and the weak metric show the same functional behavior, namely 

( ) ( ) ( ) ( )( )2 2 2diag 1, , , ;DSRg E b E b E b Eµν = − − −                  (3) 

( ) ( )1 3
2 0 0

0

, 0
1,

E E E Eb E
E E

 ≤ ≤= 
≤

                         (4) 

with the only difference between them being the threshold energy 0E , i.e. the energy value at which the metric 
parameters are constant, i.e. the metric becomes Minkowskian; the fits to the experimental data yield  

 0, . . 05.0 0.2 eV; 80.4 0.2 GeV;e m wE E= ± µ = ±  (5) 

2) for strong and gravitational interactions, the metrics read:  

 ( ) ( ) ( ) ( ) ( )( )2 2 2 2
0 1 2 3diag , , , ;DSRg E b E b E b E b E= − − −  (6) 

( ) ( )
( )

0
2 2

20, 3,
0 0

1, 0

,

strong

strong strong
strong strong

E E
b E b E

E E E E

≤ <= = 
<

 

 ( ) ( ) ( )
2 22 2

1, 2,2 5 ; 2 5 ;strong strongb E b= =  (7) 

 ( ) ( )
0

2
20,

0 0

1, 0

1 1 ,
4

grav

grav
grav grav

E E
b E

E E E E

≤ <
= 

+ <

 (7’) 

with  
 0 0367.5 0.4 GeV; 20.2 0.1 eV.s gravE E= ± = ± µ  (8) 

Let us stress that, in this case, contrarily to the electromagnetic and the weak ones, a deformation of the time 
coordinate occurs; moreover, the three-space is anisotropic3, with two spatial parameters constant (but different 
in value) and the third one variable with energy in an “over-Minkowskian” way (namely it reaches the limit of 
Minkowskian metric for decreasing values of E , with 0E E> ) [3] [4]. 

As a final remark, we stress that actually the four-dimensional energy-dependent spacetime M  is just a 
manifestation of a larger, five-dimensional space in which energy plays the role of a fifth dimension. Indeed, it 
can be shown that the physics of the interaction lies in the curvature of such a five-dimensional spacetime, in 
which the four-dimensional, deformed Minkowski space is embedded. Moreover, all the phenomenological 

 

 

2As is well known, all the present physically realizable detectors work via their electromagnetic interaction in the usual space-time M. So, 
E  is the energy of the system measured in fully Minkowskian conditions. 

3At least for strong interaction; nothing can be said for the gravitational one. 
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metrics (2), (3) and (5), (6) can be obtained as solutions of the vacuum Einstein equations in this generalized 
Kaluza-Klein scheme [3] [4]. 

2.2. Breakdown of Standard LLI Invariance in DSR 
Let us remark the mathematically self-evident, but physically basic, point that the generalized metric (2) (and 
the corresponding interval (1)) is clearly not preserved by the usual Lorentz transformations. If SRΛ  is the 
4 4×  matrix representing a standard Lorentz transformation, this amounts to say that the similarity 
transformation generated by SRΛ  does not leave the deformed metric tensor DSRg  invariant:  

 ( )T ,SR DSR SR DSRg gΛ Λ ≠  (9) 

(where T  denotes transpose) namely, standard Lorentz invariance is violated. 
However, in DSR it is possible to introduce generalized Lorentz transformations which are the isometries of 

the deformed Minkowski space M  [3] [4]. They are also referred to as deformed Lorentz transformations 
(DLT). If X  denotes a column four-vector, a DLT is therefore a 4 4×  matrix DSRΛ  connecting two inertial 
frames K , K ′   

 ( )DSRX E X′ = Λ  (10) 

and leaving the deformed interval (1) invariant, namely  

 ( ) ( ) ( ) ( )T .DSR DSR DSR DSRE g E E g EΛ Λ =  (11) 

Therefore, unlike the case of a standard LT, a deformed Lorentz transformation generates a similarity 
transformation which preserves the deformed metric tensor. Let us also notice the explicit dependence of DSRΛ  
on the energy E . This means that in DSR Lorentz invariance is recovered, although in a generalized sense. 
The explicit form of the deformed Lorentz transformations can be found in [3] [4]. 

2.3. DSR as Metric Gauge Theory 
It is clear from the discussion of the phenomenological metrics describing the four fundamental interactions in 
DSR that the Minkowski space M  is the space-time manifold of background of any experimental measure- 
ment and detection (namely, of any process of acquisition of information on physical reality). In particular, we 
can consider this Minkowski space as that associated to the electromagnetic interaction above the threshold 
energy 0, . .e mE . Therefore, in modeling the physical phenomena, one has to take into account this fact. The 
geometrical nature of interactions, i.e. assuming the validity of the Finzi principle, means that one has to suitably 
gauge (with reference to M) the space-time metrics with respect to the interaction-and/or the pheno- 
menon-under study. In other words, one needs to “adjust” suitably the local metric of space-time according to 
the interaction acting in the region considered. We can name such a procedure “Metric Gaugement Process” 
(M.G.P.). Like in usual gauge theories a different phase is chosen in different space-time points, in DSR 
different metrics are associated to different space-time manifolds according to the interaction acting therein. We 
have thus a gauge structure on the space of manifolds  

 ( ) ( ) ,
DSR DSRg E M g∈≡ 

   (12) 

where ( )E  is the set of the energy-dependent pseudoeuclidean metrics of the type (2). This is why it is 
possible to regard Deformed Special Relativity as a Metric Gauge Theory [6]. In this case, we can consider the 
related fields as external metric gauge fields. 

However, let us notice that DSR can be considered as a metric gauge theory from another point of view, on 
account of the dependence of the metric coefficients on the energy. Actually, once the MGP has been applied, 
by selecting the suitable gauge (namely, the suitable functional form of the metric) according to the interaction 
considered (thus implementing the Finzi principle), the metric dependence on the energy implies another 
different gauge process. Namely, the metric is gauged according to the process under study, thus selecting the 
given metric, with the given values of the coefficients, suitable for the given phenomenon. 

We have therefore a double metric gaugement, according, on one side, to the interaction ruling the physical 
phenomenon examined, and on the other side to its energy, in which the metric coefficients are the analogous of 
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the gauge functions4. 

3. Deformed Minkowski Space as Generalized Lagrange Space  
We want now to show that the deformed Minkowski space M  of Deformed Special Relativity does possess 
another well-defined geometrical structure, besides the deformed metrical one. Precisely, we will show that M  
is a generalized Lagrange space [7]. As we shall see, this implies that DSR admits a different, intrinsic gauge 
structure. 

3.1. Generalized Lagrange Spaces 
Let us give the definition of generalized Lagrange space [8] [9], since usually one is not acquainted with it. 

Consider a N-dimensional, differentiable manifold   and its (N-dimensional) tangent space in a point, 
( )T ∈x x  . As is well known, the union  

 T T
∈

≡
 x

x 

   (13) 

has a fibre bundle structure. Let us denote by y  the generic element of T x , namely a vector tangent to   
in x . Then, an element u T∈   is a vector tangent to the manifold in some point ∈x  . Local coordinates 
for T  are introduced by considering a local coordinate system ( )1 2, , , Nx x x  on   and the 
components of y  in such a coordinate system ( )1 2, , , Ny y y . The 2N  numbers 
( )1 2 1 2, , , , , , ,N Nx x x y y y   constitute a local coordinate system on T . We can write synthetically 

( ),u = x y . T  is a 2N -dimensional, differentiable manifold. 
Let π  be the mapping (natural projection) ( ): ,uπ = →x y x . ( ∈x  , T∈ xy  ). Then, the tern 

( ), ,T π   is the tangent bundle to the base manifold  . The image of the inverse mapping ( )1π − x  is of 
course the tangent space T x , which is called the fiber corresponding to the point x  in the fiber bundle One 
considers also sometimes the manifold  { }0T T=  / , where 0 is the zero section of the projection π . We 
do not dwell further on the theory of the fiber bundles, and refer the reader to the wide and excellent literature 
on the subject [10]. 

The natural basis of the tangent space ( )uT T  at a point ( ),u T= ∈x y   is ,i jx y
 ∂ ∂
 
∂ ∂ 

,  

, 1, 2, ,i j N=  . 
A local coordinate transformation in the differentiable manifold T  reads  

 
( ) , det 0,

.

i
i i

j

i
i j

j

xx x
x

xy y
x

  ′∂′ ′= ≠  
∂  

′∂ ′ = ∂

x
 (14) 

Here, iy  is the Liouville vector field on T , i.e. i
iy

y
∂
∂

. 

On account of Equation (14), the natural basis of T x  can be written as  

 
,

.

k k

i i k i k

k

j j k

x y
x x x x y

y
y y y

 ′ ′∂ ∂ ∂ ∂ ∂
= + ′ ′∂ ∂ ∂ ∂ ∂


′∂ ∂ ∂ = ′∂ ∂ ∂

 (15) 

 

 

4The analogy of this second kind of metric gauge with the standard, non-Abelian gauge theories is more evident in the framework of the 

five-dimensional space-time 5ℜ  (with energy as extra dimension) embedding M , on which Deformed Relativity in Five Dimensions 

(DR5) is based (see [3] [4]). In 5ℜ , in fact, energy is no longer a parametric variable, like in DSR, but plays the role of fifth (metric) coor-
dinate. The invariance under such a metric gauge, not manifest in four dimensions, is instead recovered in the form of the isometries of the 
five-dimensional space-time-energy manifold 5ℜ . 
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Second Equation (15) shows therefore that the vector basis jy
 ∂
 ∂ 

, 1, 2, ,j N=  , generates a distribution  

  defined everywhere on T  and integrable, too (vertical distribution on T ). 
If   is a distribution on T  supplementary to  , namely  

 ( ) , ,u u uT T u T= ⊕ ∀ ∈     (16) 

then   is called a horizontal distribution, or a nonlinear connection on T . A basis for the distributions 

  and   are given respectively by ix
δ
δ
 
 
 

 and jy
 ∂
 
∂ 

, where the basis in   explicitly reads  

 ( ), .j
ii i jH

x x y
δ
δ

∂ ∂
= −
∂ ∂

x y  (17) 

Here, ( ),j
iH x y  are the coefficients of the nonlinear connection  . The basis { }, ,i ji jx y

δ δ
δ
 ∂

= ∂ 
∂ 

  is called 

the adapted basis. 
The dual basis to the adapted basis is { },i jdx yδ , with  

 ( ), .j j j i
iy dy H dxδ = + x y  (18) 

A distinguished tensor (or d-tensor) field of (r,s)-type is a quantity whose components transform like a tensor 
under the first coordinate transformation (19) on T  (namely they change as tensor in  ). For instance, for 
a d-tensor of type (1,2):  

 .
i r p

i s
jk rps j k

x x xR R
x x x
′∂ ∂ ∂′ =

′ ′∂ ∂ ∂
 (19) 

In particular, both ix
δ
δ
 
 
 

 and jy
 ∂
 
∂ 

 are d-(covariant) vectors, whereas { }idx , { }jyδ  are 

d-(contravariant) vectors. 
A generalized Lagrange space is a pair ( )( ), ,N

ijg= x y  , with ( ),ijg x y  being a d-tensor of type (0,2) 
(covariant) on the manifold T , which is symmetric, non-degenerate5 and of constant signature. 
A function  

 ( ) ( ): , ,L T L∈ → ∈x y x y   (20) 

differentiable on T  and continuous on the null section of π  is named a regular Lagrangian if the Hessian 
of L  with respect to the variables iy  is non-singular. 

A generalized Lagrange space ( )( ), ,N
ijg= x y   is reducible to a Lagrange space N  if there is a 

regular Lagrangian L  satisfying  

 
21

2ij i j

Lg
y y
∂

=
∂ ∂

 (21) 

on T . In order that N  is reducible to a Lagrange space, a necessary condition is the total symmetry of  

the d-tensor ij
k

g
y
∂

∂
. If such a condition is satisfied, and ijg  are 0-homogeneous in the variables iy , then the  

function ( ), i j
ijL g y y= x y  is a solution of system (21). In this case, the pair ( ), L  is a Finsler space6 

 

 

5Namely it must be ( ), =ijrank g Nx y . 
6Let us recall that a Finsler space is a couple ( ),Φ , where   is be an N-dimensional differential manifold and :TΦ ⇒   a 

function ( ),Φ x ξ  defined for ∈x   and T∈ xξ   such that ( ),Φ ⋅x  is a possibly non symmetric norm on Tx .  

Notice that every Riemann manifold ( ),g  is also a Finsler space, the norm ( ),Φ x ξ  being the norm induced by the scalar product 

( )g x .  

A finite-dimensional Banach space is another simple example of Finsler space, where ( ),Φ ≡x ξ ξ . 
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( ),Φ , with 2 LΦ = . One says that N  is reducible to a Finsler space. 
Of course, N  reduces to a pseudo-Riemannian (or Riemannian) space ( )( ), ijg x  if the d-tensor 
( ),ijg x y  does not depend on y . On the contrary, if ( ),ijg x y  depends only on y  (at least in preferred 

charts), it is a generalized Lagrange space which is locally Minkowskian. 
Since, in general, a generalized Lagrange space is not reducible to a Lagrange one, it cannot be studied by 

means of the methods of symplectic geometry, on which—as is well known—analytical mechanics is based. 
A linear  -connection on T  (or on T ) is defined by a couple of geometrical objects 
( ) ( ),i i

jk jkL CΓ =   on T  with different transformation properties under the coordinate transformation (14). 
Precisely, ( ),i

jkL x y  transform like the coefficients of a linear connection on  , whereas ( ),i
jkC x y  

transform like a d-tensor of type (1,2). ( )Γ   is called the metrical canonical  -connection of the 
generalized Lagrange space N . 

In terms of i
jkL  and i

jkC  one can define two kinds of covariant derivatives: a covariant horizontal (h-) 
derivative, denoted by “  ” , and a covariant vertical (v-) derivative, denoted by “ | ”. For instance, for the 
d-tensor ( ),ijg x y  one has  

 

|

;

.

ij s s
ij k sj ik is jkk

ij s s
ij k sj ik is jkk

g
g g L g L

x
g

g g C g C
x

δ
δ


= − −

 ∂ = − − ∂



 (22) 

The two derivatives ij kg   and |ij kg  are both d-tensors of type (0,3). 
The coefficients of ( )Γ   can be expressed in terms of the following generalized Christoffel symbols:  

 

1 ;
2

1 .
2

sj jki is ks
jk k j s

sj jki is ks
jk k j s

g gg
L g

x x x

g gg
C g

x x x

δ δδ
δ δ δ

  
= + +  

  


∂ ∂ ∂ = + +  ∂ ∂ ∂ 

 (23) 

3.2. Curvature and Torsion in a Generalized Lagrange Space 
By means of the connection ( )Γ   it is possible to define a d-curvature in T  by means of the tensors 

i
jkhR , i

jkhS  and i
jkhP  given by  

 

;

;

.

i i
jk jhi r i r i i r

jkh jk rh jh rk jr khh k

i i
jk jhi r i r i

jkh jk rh jh rkh k

i
jki i i r

jkh j h jr khh

L L
R L L L L C R

x x
C C

S C C C C
y y

L
P C C P

y

δ δ
δ δ

= − + − +

∂ ∂
= − + −
∂ ∂

∂
= − +
∂ 

 (24) 

Here, the d-tensor i
jkR  is related to the bracket of the basis ix

δ
δ
 
 
 

:  

 , s
iji sR

xjx y
δ δ

δδ
  ∂

=  ∂ 
 (25) 

and is explicitly given by7  

 .
i i
ji k

jk k j

H H
R

x x
δ δ
δ δ

= −  (26) 

 

 

7 i
jkR  plays the role of a curvature tensor of the nonlinear connection  . The corresponding tensor of torsion is instead  

.
i i
ji k

jk k j

H Ht
y y

∂ ∂
= −
∂ ∂

 



R. Mignani et al. 
 

 
406 

The tensor i
jkP , together with i

jkT , i
jkS , defined by  

 

;

;

i
ji i

jk jkk

i i i
jk jk kj

i i i
jk jk kj

H
P L

y
T L L

S C C

∂
= −
∂

= −

= −

 (27) 

are the d-tensors of torsion of the metrical connection ( )Γ  . 
From the curvature tensors one can get the corresponding Ricci tensors of ( )Γ  :  

 1 2

; ;

,

s s
ij ijs ij ijs

s s
ij ijijs isj

R R S S

P P P P

 = =

 = =

 (28) 

and the scalar curvatures  

 ; .ij ij
ij ijR g R S g S= =  (29) 

Finally, the deflection d-tensors associated to the connection ( )Γ   are  

 
|

;

,

i i i s i
j j j sj

i i i s i
j j j sj

D y H y L

d y y Cδ

 = = − +


= = +

  (30) 

namely the h- and v-covariant derivatives of the Liouville vector fields. 
In the generalized Lagrange space N  it is possible to write the Einstein equations with respect to the 

canonical connection ( )Γ   as follows:  

 

1 1

2 2

1 ; ;
2
1 ; ,
2

H
ij ij ijij ij

V
ij ij ijij ij

R Rg T P T

S Sg T P T

κ κ

κ κ

 − = =

 − = =


 (31) 

where κ  is a constant and 
H

ijT , 
V

ijT , 
1

ijT , 
2

ijT  are the components of the energy-momentum tensor. 

3.3. Generalized Lagrangian Structure of M  
On the basis of the previous considerations, let us analyze the geometrical structure of the deformed Minkowski 
space of DSR M , endowed with the by now familiar metric ( ), .DSRg Eµν  As said in Section 2, E  is the 
energy of the process measured by the detectors in Minkowskian conditions. Therefore, E  is a function of the 
velocity components, d du xµ µ τ= , where τ  is the (Minkowskian) proper time:8  

 
d .
d
xE E
µ

τ
 

=  
 

 (32) 

The derivatives d dxµ τ  define a contravariant vector tangent to M  at x , namely they belong to TM x . 
We shall denote this vector (according to the notation of the previous Subsubsection) by ( )yµ=y . Then, 
( ),x y  is a point of the tangent bundle to M . We can therefore consider the generalized Lagrange space 

( )( )4 , ,M gµν= x y , with  

 
( ) ( )( )

( ) ( )
, , ,

, .
DSRg g E

E E
µν µν =


=

x y x y

x y y
 (33) 

Then, it is possible to prove the following theorem [7]: 
The pair ( )( )4

,, ,DSRM g Mµν= ≡ x y  is a generalized Lagrange space which is not reducible to a 
Riemann space, or to a Finsler space, or to a Lagrange space. 

 

 

8Contrarily to ref. [7], we shall not consider the restrictive case of a classical (non-relativistic) expression of the energy, but assume a general 
dependence of E on the velocity (Equation (32)). 
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Notice that such a result is strictly related to the fact that the deformed metric tensor of DSR is diagonal. 
If an external electromagnetic field Fµν  is present in the Minkowski space M , in M  the deformed 

electromagnetic field is given by ( ) ( ), DSRF g Fµ µρ
ν ρν= x y x . Such a field is a d-tensor and is called the 

electromagnetic tensor of the generalized Lagrange space. Then, the nonlinear connection   is given by  

 ( ), ,H y Fµ ρ µ
ν ν

µ
νρ
 

= − 
 

 x y  (34) 

where 
µ
νρ
 
 
 

, the Christoffel symbols of the Minkowski metric gµν , are zero, so that  

 ( ), ,H Fµ µ
ν ν= −  x y  (35) 

namely, the connection coincides with the deformed field. 
The adapted basis of the distribution   reads therefore  

 ( ), .F
x x y

ν
µµ µ ν

δ
δ

∂ ∂
= +
∂ ∂

 x y  (36) 

The local covector field of the dual basis (cfr. Equation (18)) is given by  

 ( ), .y dy F dxµ µ µ ν
νδ = −  x y  (37) 

3.4. Canonical Metric Connection of M  
The derivation operators applied to the deformed metric tensor of the space 4 M=   yield  

 ,DSR DSR DSR DSRg g g g EF F
Ex x y y

µν µν µν µνσ σ
ρ ρρ ρ σ σ

δ
δ

∂ ∂ ∂ ∂
= + =

∂∂ ∂ ∂
   (38) 

 .DSR DSRg g E
Ey y

µν µν
σ σ

∂ ∂ ∂
=

∂∂ ∂
 (39) 

Then, the coefficients of the canonical metric connection ( )Γ   in M  (see Equation (23 )) are given by  

 

1 ,
2

1 .
2

DSR DSRDSR
DSR

DSR DSRDSR
DSR

g ggEL g F F F
E E Ey

g ggEC g
E E Ey

σρ νρµ µσ α α ασν
νρ ρ ν σα

σρ νρµ µσ α α ασν
νρ ρ ν σα δ δ δ

 ∂ ∂ ∂∂
= + −  ∂ ∂ ∂∂  


∂ ∂ ∂∂ = + −  ∂ ∂ ∂∂  

  

 (40) 

The vanishing of the electromagnetic field tensor, 0Fα
ρ = , implies 0Lµ

νρ = . 
One can define the deflection tensors associated to the metric connection ( )Γ   as follows (cfr. Equation 

(30)):  

 

|

;

.

yD y y L F y L
x

d y y C

µ
µ µ α µ µ α µ
ν ν αν ν ανν

µ µ µ α µ
ν ν ν αν

δ
δ
δ

= = + = +

= = +



  (41) 

The covariant components of these tensors read  

( )

( )

, ,

1 ;
2

DSR DSR

DSR DSR DSR

D g D g F y L

g g gEF x y F F F
E E Ey

σ σ α σ
µν µσ ν µσ ν αν

µσ µνσ α α ασν
µν ν σ µα

= = +

∂ ∂ ∂∂
= + + − ∂ ∂ ∂∂  



  

 

 , ,
1 .
2

DSR DSR DSR
DSR DSR

g g gEd g d g y
E E Ey

µσ µνσ σ α α ασν
µν µσ ν µν ν σ µα δ δ δ

∂ ∂ ∂∂
= = + + − ∂ ∂ ∂∂  

 (42) 
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It is important to stress explicitly that, on the basis of the results of 3.2.1, the deformed Minkowski space M  
does possess curvature and torsion, namely it is endowed with a very rich geometrical structure. This permits to 
understand the variety of new physical phenomena that occur in it (as compared to the standard Minkowski 
space) [3] [4]. Notice that this result follows by the fact that, in deforming the metric of the space-time, we 
assumed the energy as the physical (non-metric) observable on which letting the metric coefficients depend. 
This is crucial in stating the generalized Lagrangian structure of M , as shown above. 

Following ref. [7], let us show how the formalism of the generalized Lagrange space allows one to recover 
some results on the phenomenological energy-dependent metrics discussed in Section 2. 

Consider the following metric ( )1c = :  

 ( ) ( )2 2 2 2 2ds a E dt dx dy dz= + + +  (43) 

where ( )a E  is an arbitrary function of the energy and spatial isotropy ( )2 1b =  has been assumed. In absence 
of an external electromagnetic field ( )0Fµν = , the non-vanishing components Cµ

νρ  of the canonical metric 
connection ( )Γ   (see Equation (40)) are  

 
0 0 0 1 0 2 0 3
00 01 02 03

1 1 2 2 0 3
00 00 00

, , , ,

, , ,

a a a aC y C y C y C y
a a a a

C a y C a y C a y

′ ′ ′ ′ = = − = − =

 ′ ′ ′= − = − = −

 (44) 

where the prime denotes derivative with respect to d: .
d

aE a
E

′ =  

According to the formalism of generalized Lagrange spaces, we can write the Einstein equations in vacuum 
corresponding to the metrical connection of the deformed Minkowski space (see Equations (31)). It is easy to 
see that the independent equations are given by  

 0;a′ =  (45) 

 ( )22 0.aa a′′ ′− =  (46) 

The first equation has the solution consta = , namely we get the Minkowski metric. Equation (46) has the 
solution  

 ( )
2

0
0

1 ,
4

Ea E a
E

 
= + 

 
 (47) 

where 0a  and 0E  are two integration constants. 
This solution represents the time coefficient of an over-Minkowskian metric. For 0 0a =  it coincides with 

(the time coefficient of) the phenomenological metric of the strong interaction, Equation (7). On the other hand, 
by choosing 0 1a = , one gets the time coefficient of the metric for gravitational interaction, Equation (7’). 

In other words, considering M  as a generalized Lagrange space permits to recover (at least partially) the 
metrics of two interactions (strong and gravitational) derived on a phenomenological basis.  

It is also worth noticing that this result shows that a spacetime deformation (of over-Minkowskian type) exists 
even in absence of an external electromagnetic field (remember that Equations (45) and (46) have been derived 
by assuming 0Fµν = ). 

3.5. Intrinsic Physical Structure of a Deformed Minkowski Space: Internal Gauge Fields 
As we have seen, the deformed Minkowski space M , considered as a generalized Lagrange space, is endowed 
with a rich geometrical structure. But the important point, to our purposes, is the presence of a physical richness, 
intrinsic to M . Indeed, let us introduce the following internal electromagnetic field tensors on 4 M=  , 
defined in terms of the deflection tensors:  

 ( ) ( )1 1
2 2

DSR DSRg gED D F y F F
E Ey

µσσ α ανσ
µν µν νµ µν ν µα

∂ ∂∂
≡ − = + − ∂ ∂∂  

 x  (48) 

(horizontal electromagnetic internal tensor) and  
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 ( )1 1
2 2

DSR DSRg gEf d d y
E Ey

µσσ α ανσ
µν µν νµ ν µα δ δ

∂ ∂∂
≡ − = − ∂ ∂∂  

 (49) 

(vertical electromagnetic internal tensor). 
The internal electromagnetic h- and v-fields µν  and fµν  satisfy the following generalized Maxwell 

equations  

( ) ( )2 ,y R C R C R Cα β β β
µν ρ νρ µ ρµν µν βαρ νρ βαµ ρµ βαν+ + = + +      

 ;
F

R g
x
µνβ βσ

µν σ

∂
=

∂
 (50) 

 | | | ;f f fµν ρ νρ µ ρµν µν ρ νρ µ ρµν+ + = + +      (51) 

 | | | 0.f f fµν ρ νρ µ ρµν+ + =  (52) 

Let us stress explicitly the different nature of the two internal electromagnetic fields. In fact, the horizontal 
field µν  is strictly related to the presence of the external electromagnetic field Fµν , and vanishes if 0Fµν = . 
On the contrary, the vertical field fµν  has a geometrical origin, and depends only on the deformed metric 
tensor ( )( )DSRg Eµν y  of 4 M=   and on ( )E y . Therefore, it is present also in space-time regions where 
no external electromagnetic field occurs. As we shall see, this fact has deep physical implications. 

A few remarks are in order. First, the main results obtained for the (abelian) electromagnetic field can be 
probably generalized (with suitable changes) to non-abelian gauge fields. Second, the presence of the internal 
electromagnetic h- and v-fields µν  and fµν , intrinsic to the geometrical structure of M  as a generalized 
Lagrange space, is the cornerstone to build up a dynamics (of merely geometrical origin) internal to the 
deformed Minkowski space. 

The important point worth emphasizing is that such an intrinsic dynamics springs from gauge fields. Indeed, 
the two internal fields µν  and fµν  (in particular the latter one) do satisfy equations of the gauge type (cfr. 
Equations (51) and (52)). Then, we can conclude that the (energy-dependent) deformation of the metric of M , 
which induces its geometrical structure as generalized Lagrange space, leads in turn to the appearance of 
(internal) gauge fields [6]. 

Such a fundamental result can be schematized as follows:  

 ( )( ) ( )( ) ( )4, , , , ,DSRM M g E M g M fµν µν µν µν= ⇒ = ⇒ x y   (53) 

(with self-explanatory meaning of the notation). 

4. Conclusions and Perspectives 
In Deformed Special Relativity, two kinds of breakdown of Lorentz invariance occur. One is straightforward, 
and is due to the very dependence on energy of the metric coefficients. The second is more subtle, and is related 
to the mathematical structure of Generalized Lagrange space, which allows one to endow deformed Minkowski 
space-time with both curvature and torsion. 

This is a basic result, not only from the theoretical, but also from the experimental side. Indeed, a number of 
experiments carried out in the last two decades have shown that a variety of new physical phenomena do occur 
in deformed space-time [4] [11]. In all the experiments performed so far, a remarkable space anisotropy has 
been observed. This deserves a thorough theoretical and experimental investigation. 
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