
Open Journal of Discrete Mathematics, 2014, 4, 36-43 
Published Online April 2014 in SciRes. http://www.scirp.org/journal/ojdm 
http://dx.doi.org/10.4236/ojdm.2014.42006  

How to cite this paper: Chen, S.H.L. (2014) Symmetric identities from an Invariant in Partition Conjugation and Their Appli-
cations in q-Series. Open Journal of Discrete Mathematics, 4, 36-43. http://dx.doi.org/10.4236/ojdm.2014.42006  

 
 

Symmetric Identities from an Invariant in 
Partition Conjugation and Their  
Applications in q-Series 
Sandy H. L. Chen1,2 

1School of Science, Tianjin Chengjian University, Tianjin, China 
2Center for Combinatorics, LPMC-TJKLC, Nankai University, Tianjin, China 
Email: chenhuanlin@mail.nankai.edu.cn  
 
Received 21 January 2014; revised 19 February 2014; 17 March 2014 

 
Copyright © 2014 by authors and Scientific Research Publishing Inc. 
This work is licensed under the Creative Commons Attribution International License (CC BY). 
http://creativecommons.org/licenses/by/4.0/ 

   
 

 
 

Abstract 
For every partition λ  and its conjugation ′λ , there is an important invariant ( )dl λ , which de- 
notes the number of different parts. That is, ( ) ( )′d dl lλ λ= . We will derive a series of symmetric 
q -identities from the invariant in partition conjugation by studying modified Durfee rectangles. 
The extensive applications of the several symmetric q -identities in q -series [1] will also be dis-
cussed. Without too much effort one can obtain much well-known knowledge as well as new for-
mulas by proper substitutions and elementary calculations, such as symmetric identities, mock 
theta functions, a two-variable reciprocity theorem, identities from Ramanujan’s Lost Notebook 
and so on. 

 
Keywords 
Integer Partitions, Conjugation, Invariant, q -Series, Symmetric Identities 

 
 

1. Definitions and Combinatorial Interpretations 
We shall first present some basic definitions and combinatorial interpretations for basic hypergeometric series 
and integer partition. For simplicity, unless stated otherwise we shall assume that n  is a nonnegative integer 
and < 1q , let 

( ) ( )( ); 1 1 .a q a aq
∞
= − −   

Definition 1.1 For any integer n, the q-shifted factorial is defined by 
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( ) ( )
( )

;
; .

;n n

a q
a q

aq q
∞

∞

=  

Definition 1.2 A partition λ  of a positive integer n  is a finite nonincreasing sequence of integers 
1 2, , , rλ λ λ , such that 1

r
ii nλ

=
=∑ . λ′  is the conjugate partition of λ . The largest part, the number of parts, 

as well as the sum of the parts are denoted by ( )a λ , ( )l λ  and λ , respectively.  
An effective device for studying partitions is the graphical representation. For a partition λ , its m n×  

Durfee rectangle is the maximum rectangle contained in the Ferrers diagram of λ . Conjugation and the several 
invariants have been used in a variety of ways over the years, see Andrews’s encyclopedia [2]. It is worth 
pointing out that there is a fundamental invariant which despite its simplicity has not received too much 
attention. This is ( )dl λ , the number of different parts of λ . For all partitions λ  and its conjugation λ′ , 

( ) ( ).d dl lλ λ′=                                     (1) 

In this paper, we shall show how (1) could be used to obtain a series of symmetric identities by studying 
modified Durfee rectangles. Consider the expansion 

( )( )2 2 3 31 1 1 1 .
1 1

i i i i
i i i

i i

abq bq bq abq a bq b q b q
bq bq

− − + −
= = + − + + +

− −
  

We interpret this as an expansion involving only one part, namely i , where the power of b  records ( )l λ , 
while that of ( )1 a−  indicates whether the part occurs or not. Thus, we interpret 

( )
( ) ( )

( ) ( ) ( )1 dl ln

a nn

abq
a b q

bq
λ λλ

λ ≤

= −∑                              (2) 

as the generating function of partitions λ  into parts less than or equal to n , such that the power of b  records 
( )l λ , while that of ( )1 a−  indicates ( )dl λ . Then it follows that the three-parameter generating function for 

all unrestricted partitions λ , namely, the function 

( ) ( ) ( ) ( ) ( ) ( )( )
( )

1

1

1
, , ; 1 1 .d

n n
l l a n

n n

a abq bc q
G a b c q a b c q

bq
λ λλ λ

λ

∞
−

=

−
= − = +∑ ∑               (3) 

We consider all partitions λ  for which ( )a nλ = . This accounts for the term n nc q  in (3). Since λ  
contains n  as a part, we have the factors ( )1 a−  and b  in the numerator. The part n  may repeat, which is  

given by 1
1 nbq−

. The repetition of n  will not contribute to ( )dl λ  and so there is no further power of  

( )1 a−  contributed by the part n . The part 1, 2, , 1n −  could repeat and their contribution to the generating 
function is given by the term 

( )
( )

1

1

.n

n

abq
bq

−

−

 

Formula (3) follows. 

2. Symmetric Expressions for ( ), , ;G a b c q  
In this section, we give several symmetric expansions for ( ), , ;G a b c q  via modified Durfee rectangles analysis 
of partition. 

Theorem 2.1 

( ) ( ) ( ) ( ) ( ) ( )
( ) ( )

21 2 1
1

1 1

1 11
, , ; 1 .

1

n n n n n
n n

n n n

a b c q abq acq abcqbcq a
G a b c q

cq bq cq

+ + +
∞

−

= +

− −−
= + +

− ∑  

Proof. For every partitions λ  and 1n ≥ , the Ferrers graph contains a largest ( )1n n× +  Durfee rectangle 
with side n  horizontally by 1n +  vertically. Then to the right of the Durfee rectangle, we have a partition aλ  
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which has at most 1n +  parts, or equivalently, aλ′ , the conjugate of aλ , with largest part 1n≤ + . Below the 
Durfee rectangle we have a partition bλ  whose parts n≤ . We now divide our consideration into four cases.   

1) ( ) ( )1, 1a bl n a nλ λ= + ≤ −  
We consider the contribution of the partition aλ  to ( ), , ;G a b c q  by utilizing its conjugate aλ′ . 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
( )

( ) ( )
( )

11

1
1

11
1 1 .

1
d a d aa a a a

a a

nn
l la l n n

n
n n

acq a cq acqa cq
a c q a c q

cq cqcq
λ λλ λ λ λ

λ λ

++
′ ′ ′

+
′ +

−−
− = − = =

−∑ ∑  

The factor 1ncq +  in the numerator arises from the column of length 1n +  lying to the right of the Durfee 
rectangle. Because aλ  contributes nothing to ( )l λ , we omit b . 

The contribution of the partition bλ  to ( ), , ;G a b c q  is 

( ) ( ) ( ) ( )
( )

1

1

1 .d b b b

b

l a n

n

abq
a b q

bq
λ λ λ

λ

−

−

− =∑  

Note that the parameter c  is absent because the partition bλ  has no contribution to ( )a λ . 
Meanwhile, the contribution of the modified Durfee rectangle to ( ), , ;G a b c q  is 

( )11 .n nn nb c q ++  

Thus, we derive the generating function of every unrestricted partitions λ : 

( ) ( ) ( )
( ) ( )

21 1 2 1
1

1 1

1
.

n n n n
n n

n n

a b c q abq acq
bq cq

+ + + +
−

− +

−
 

2) ( ) ( ), .a bl n a nλ λ≤ =  
The generating function of every unrestricted partitions λ : 

( ) ( ) ( )
( ) ( )

22 2
11

.
n n n n

n n

n n

a b c q abq acq
bq cq

+ +
−

−
 

3) ( ) ( ), 1.a bl n a nλ λ≤ ≤ −  
The generating function of every unrestricted partitions λ : 

( ) ( ) ( )
( ) ( )

21
1

1

1
.

n n n n
n n

n n

a b c q abq acq
bq cq

+ +
−

−

−
 

4) ( ) ( )1, .a bl n a nλ λ= + =  
The generating function of every unrestricted partitions λ : 

( ) ( ) ( )
( ) ( )

22 2 1 3 1
1

1

1
.

n n n n
n n

n n

a b c q abq acq
bq cq

+ + + +
−

+

−
 

Summing these four generating functions for 1n ≥ , we get an expression for ( ), , ;G a b c q : 

( ) ( ) ( ) ( ) ( ) ( )
( ) ( )

21 2 1
1

1 1

1 11
, , ; 1 .

1

n n n n n
n n

n n n

a b c q abq acq abcqbcq a
G a b c q

cq bq cq

+ + +
∞

−

= +

− −−
= + +

− ∑  

Remark 2.2 Under partition conjugation, ( )l λ  and ( )a λ  are interchanged, it follows that b  and c  
are symmetric in ( ), , ;G a b c q .  

Theorem 2.3 From formula (3) and the symmetry of b  and c , we have 

( ) ( )( )
( )

1

1

1
, , ; 1

n n
n

n n

a abq bc q
G a b c q

bq

∞
−

=

−
= +∑                           (4)

 

( )( )
( )

1

1

1
1

n n
n

n n

a acq cb q
cq

∞
−

=

−
= +∑                           (5) 
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Theorem 2.4 From Theorem 2.1 and the symmetry of b  and c , we have 

( ) ( ) ( ) ( ) ( ) ( )
( ) ( )

21 2 1
1

1 1

1 11
, , ; 1

1

n n n n n
n n

n n n

a b c q abq acq abcqbcq a
G a b c q

cq bq cq

+ + +
∞

−

= +

− −−
= + +

− ∑              (6) 

( ) ( ) ( ) ( ) ( )
( ) ( )

21 2 1
1

1 1

1 11
1

1

n n n n n
n n

n n n

a b c q abq acq abcqbcq a
bq bq cq

+ + +
∞

−

= +

− −−
= + +

− ∑             (7) 

( ) ( ) ( ) ( )
( ) ( )

2 2
1 1

1

1 1
1 ,

n n n n
n n

n n n

a b c q abq acq abcq

bq cq

∞
− −

=

− −
= +∑                         (8) 

where (8) results from the n n×  Durfee square analysis. 

3. The Applications of the Symmetric Identities in q-Series 
In this section, we shall explore the extensive applications of formulas (4) to (8) in q -series. Without too much 
effort one can obtain much well-know knowledge as well as new formulas by proper substitutions and 
elementary calculations. It will be overly clear that the list of nice application is sheer endless. 

3.1. Symmetric Identities 
From (4) and (5), we get the following beautiful symmetric identity.  

Corollary 3.1 

( )
( ) ( ) ( )

( ) ( )
0 01 1

.n nn n

n nn n

abq acq
cq bq

bq cq

∞ ∞

= =+ +

=∑ ∑                             (9) 

Taking , ,a q abcd b ac q c bc q= = =  in (9), we derive the following identity, from which Liu [3] proved 
an identity of Andrews.  

Corollary 3.2 

( ) ( )
( ) ( ) ( ) ( )

( ) ( )
0 0

1 1 .n nn n

n nn n

q bd q ad
bc bc ac ac

acq bcq

∞ ∞

= =

− = −∑ ∑                      (10) 

Setting 2q q→  and then taking ,a aq b c t= =  in (4) and (5), we have  
Corollary 3.3 

( )
( ) ( )

3
2

3 2
1 2 2 1 2 2

2 2 2 2
0 0

1 1

;;
,

; ;
n n n nn n

n n
n n

atq qaq q b
bt q tb q

bq q tq q

∞ ∞
+ + + +

= =
+ +

 
 
 =∑ ∑                    (11) 

which was first stated and proved by N. J. Fine [4]. Andrews derived it combinatorially from the consideration 
of partitions without repeated odd parts in [5]. 

3.2. Mock Theta Functions 
In his famous last letter to Hardy [6], Ramanujan introduced 17 mock theta functions without giving an explicit 
definition, among which, one third order mock theta function is as follows 

( )
( )

2

2
0

.
n

n
n

qf q
q

∞

=

=
−

∑                                     (12) 

In 1966, Andrews [7] defined the following generalization of ( )f q  

( ) ( ) ( )

2

0
; .

n n n

n n n

qf q
q
αα

α

−∞

=

=
− −∑                               (13) 
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Moreover, Watson [8] added three functions to the list of Ramanujan’s third order mock theta functions and 
the following identity is just one of them 

( )
( )

( )
2 1

220
1

.
;

n n

n
n

qq
q q

ω
+∞

=
+

= ∑  

By proper substitutions in Theorem 2.3 and 2.4, we obtain much simpler expressions for the above mock theta 
functions. Through the specializations 0, 1a b= = −  and 1c qα −= −  in (4) and (8), we derive a simpler 
transformation formula for ( );f qα : 

Corollary 3.4 

( ) ( )
( )
( )

2

0 0

1
2 .

n nn n n

n nn n n

q
q q

αα
α

−∞ ∞

= =

−
= −

− − −∑ ∑                           (14) 

Taking qα =  in (14), a representation for ( )f q  follows, with the powers diminished 

( )
( )
( )

2

2
0 0

1
2 .

n nn

n n nn

qq
qq

∞ ∞

= =

−
= −

−−
∑ ∑                              (15) 

Fine [1] first derived (15) by applying some transformation formulas and Liu [[9], Theorem 3.7] proved it 
combinatorially by an application of involution. Changing q  to 2q  and then putting 0, , 1a b q c q= = =  in 
(4) and (6), we get a new expression for )(qω , with the powers diminished:  

Corollary 3.5 
( )

( ) ( )
2 1

2 220 0
11

.
;;

n n n

n n
nn

q q
q qq q

+∞ ∞

= =
++

=∑ ∑                            (16) 

3.3. A Two-Variable Reciprocity Theorem 
Taking 1 ,a bc b a= − = −  and then letting 0c →  in (4), we have 

( ) ( ) ( )

( )

1 2

0

11, 1 .
n n n n n

n n

q a b
a b

b aq
ρ

+ −∞

=

− = +  − 
∑  

In his lost notebook [10], Ramanujan offers a beautiful reciprocity theorem 

( ) ( ) ( ) ( ) ( )
( ) ( )

1 1, , .
aq b bq a q

a b b a
b a aq bq

ρ ρ ∞ ∞ ∞

∞ ∞

 − = −  − − 
                   (17) 

After the same substitutions in (5) and (7), respectively, we get  
Corollary 3.6 

( ) ( )
0

1 1, 1 n

n n

a b aq
b b

ρ
∞

=

 = + − − 
 

∑                            (18) 

( ) ( ) ( )
( )

3 1 22 1 2 1

0 1

1 1
1 .

n nn n n
n

n n

b a b q aq b

aq

+− − +
∞

= +

− −
= +

−∑                    (19) 

Formula (18) is a slightly simpler representation of ( ),a bρ . From (19) and the above reciprocity theorem 
(17), we get the following two variable generalization of the Quintuple Product Identity [[11], Theorem 3.1] 
without any proof:  

Corollary 3.7 A Two-Variable Generalization of the Quintuple Product Identity 
For , na b q−≠ , 1 <n≤ ∞ , 
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( ) ( ) ( )
( ) ( )

( ) ( ) ( ) ( )
( )

( ) ( ) ( ) ( )
( )

3 1 2 3 1 21 2 2 1 2 1 2 1

0 01 1

1 1

1 1 1 1 1 1
.

n nn n n nn n n n n n
n n

n nn n

aq b bq a q
a b aq bq

a a b q bq a b a b q aq b

bq aq

∞ ∞ ∞

∞ ∞

+ +− − + − − +
∞ ∞

= =+ +

 − 
 

− − − −
= −∑ ∑

    (20) 

3.4. Identities from Ramanujan’s Lost Notebook 
By special substitutions, we could go through a series of important Entries in Ramanujan’s Lost Notebook [12]. 
We take several of them as examples, for their combinatorial proofs, see [13]. The function 

( )
( )

( )
1 2

0
,

n nn

n n

a qa
bq

φ
+∞

=

= ∑  

is defined by Ramanujan. Setting , ,a a bc b b= − =  and then letting 0c → , then (4) and (6) can be reduced to  
Corollary 3.8 (Entry 9.2.2) 

( )
( ) ( ) ( )

( )

3 1 2 2 1

0

1
.

n nn n n
n

n n

aq b a b q aq
a

bq
φ

+ +
∞

=

− +
= ∑  

The same substitutions in (4) and (8), we have  
Corollary 3.9 (Entry 9.2.3) 

( )
( ) ( ) ( )

( )

3 1 21 2
1

0

1
.

n nn n n
n

n n

aq b a b q aq
a

bq
φ

−−
∞

−

=

− +
= ∑  

Putting ,a b b a= = −  and c a= , and then setting 0b →  in (4) and (8), we have  
Corollary 3.10 (Entry 9.2.4) 

( )
( ) ( )

22

2 2 2
0 1

1
1 .

;

n n n n n

n n nn

a q a qa
aqa q q

∞ ∞

= =

−
= −

−∑ ∑  

For the above identity, it is interesting to note that the terms in a  and q  on the right side are the same as 
those on the left side, but with the powers diminished. In (4) and (6), we replace q  by 2q  and take 

,a b b aq= =  and c a q= − , and then set 0b → , the Entry 9.2.5 in Ramanujan’s Lost Notebook [12] follows:  
Corollary 3.11 (Entry 9.2.5) 

( )
( )

( )
( )

22 2 2

2 2 2 4
0 0

1 1

1 1
.

; ;

n nn n n n n

n n
n n

a q a q
aq q a q q

+∞ ∞

= =
+ +

− −
=∑ ∑  

Berndt and Yee [13] proved the above two corollaries combinatorially by accounting for partitions into 
distinct parts. Replacing q  by 2q  and taking ,a q b a= =  and c a q=  in (4) and (6), then we get the 
following Entry. Berndt and Yee [13] derived it by employing 2 -modular partitions.  

Corollary 3.12 ( Entry 9.3.1) 

( ) ( )
( ) ( ) ( )2

2
1 22 2 2 1

2 2
0 0 0

;
1 .

;

n

n nn n n n nn

n n n
n

aq q aq
a q aq a q

aq q

∞ ∞ ∞
++ +

= = =

= + =∑ ∑ ∑  

In (4) and (6), we take ,a a c b a= − = − , and then set 0c → , Entry 9.4.1 follows:  
Corollary 3.13 (Entry 9.4.1) 

( ) ( )

( )
( ) ( )

1 22
3 1 23 2 2 1

0 0

1
1 .

;

n n nn
n nn n

n nn

a q
a q a q

aq q

+∞ ∞
+ +

= =

−
= −

−∑ ∑                    (21) 

This identity was derived from Franklin involution by Berndt and Yee [13] and was also got from two entries 
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by Warnaar [14], where analytic methods were employed. 

3.5. Further Consequences 
Corollary 3.14 

( ) ( ) ( )26 4 4 2
2

0 0
1

1 1 .
;

n
n n n n

n n
n

q q q
q q

∞ ∞
+ +

= =
+

= − +
−

∑ ∑                          (22) 

Proof. Taking 2q q→ , and then letting 0, 1a b q= = −  and 1c q=  in (4) and (8), we have 

( )
( )
( )

( ) ( ) ( ) ( ) ( )

2

2 2

2 2

2 2 4
0 1

1

6 4 8 6 4 4 2

0 0

1
; ;

1 1 1 by  1 1 .

n n nn

n n
n n

n nn n n n n n

n n

qq
q q q q

q q q q

−∞ ∞

= =
+

∞ ∞
− + +

= =

−
= −

−

= − − − = − +

∑ ∑

∑ ∑
              (23) 

Identity (22) is a false theta series identity. Results like these were studied by L. J. Rogers [15], however, the 
elegant result appears to have escaped him. Andrews [16] proved identity (22) by using three transformation 
formulas and showed that (22) implied a partition identity like that deduced from Euler’s Pentagonal Number 
Theorem ([2], p. 10). 

Taking 0, 1a b= = −  and 1c =  in (4) and (5), we generalize the not at all deep but elegant identity:  
Corollary 3.15 

( )
( )
( ) ( )0 0

1 12 2 .
; ; ;

n nn

n nn n

qq
q q q q q q

∞ ∞

= = ∞

−
= − = −

− −∑ ∑                      (24) 

Taking 1 1, ,a a b c
a a

= − = = , and then setting a →∞ , (4) and (8) can be reduced to the famous Gauss 

triangle series  

Corollary 3.16 

( ) ( )2 2 1 22 2 2

1 0
1 1 n nn n n n n

n n n
q q q q

∞ ∞ ∞
+− −

= =−∞ =

+ + = =∑ ∑ ∑                     (25) 
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