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Abstract 

A new lower bound on the tenacity ( )T G  of a graph G in terms of its connectivity ( )Gκ  and ge- 

nus ( )Gγ  is obtained. The lower bound and interrelationship involving tenacity and other well- 
known graphical parameters are considered, and another formulation introduced from which 
further bounds are derived. 
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1. Introduction 
The concept of graph tenacity was introduced by Cozzens, Moazzami and Stueckle [1] [2], as a measure of 
network vulnerability and reliability. Conceptually graph vulnerability relates to the study of graph intactness 
when some of its elements are removed. The motivation for studying vulnerability measures is derived from 
design and analysis of networks under hostile environment. Graph tenacity has been an active area of research 
since the concept was introduced in 1992. Cozzens et al. in [1], introduced two measures of network 
vulnerability termed the tenacity, ( )T G , and the Mix-tenacity, ( )mT G , of a graph. 

The tenacity ( )T G  of a graph G  is defined as 
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( )
( )

( )
( )

min
A V G

A m G A
T G

G Aω⊆

 + − =  
−  

 

where ( )m G A−  denotes the order (the number of vertices) of a largest component of G A−  and ( )G Aω −  
is the number of components of ( )G A− . A set ( )A V G⊆  is said to be a T -set of G  if  

( ) ( )
( )

A m G A
T G

G Aω
+ −

=
−

. 

The Mix-tenacity, ( )mT G  of a graph G  is defined as 

( )
( )

( )
( )

min .m A E G

A m G A
T G

G Aω⊆

 + − =  
−  

 

where ( )m G A−  denotes the order (the number of vertices ) of a largest components of ( )G A− . ( )T G  and ( )mT G  turn out to have interesting properties. Following the pioneering work of Cozzens, 
Moazzami, and Stueckle, [1] [2], several groups of researchers have investigated tenacity, and its related 
problems. 

In [3] and [4] Piazza et al. used the Mix-tenacity parameter as Edge-tenacity. This parameter is a combination 
of cutset ( )A E G⊆  and the number of vertices of the largest component, ( )m G A− . Also this Parameter 
didn't seem very satisfactory for Edge-tenacity, Thus Moazzami and Salehian introduced a new measure of 
vulnerability, the Edge-tenacity, ( )eT G , in [5]. 

The Edge-tenacity ( )eT G  of a graph G  is defined as 

( )
( )

( )
( )

min e
e A E G

A m G A
T G

G Aω⊆

 + − =  
−  

 

where ( )em G A−  denotes the order (the number of edges) of a largest component of G A− .  
The concept of tenacity of a graph G  was introduced in [1] [2], as a useful measure of the “vulnerability” of 

G . In [6], we compared integrity, connectivity, binding number, toughness, and tenacity for several classes of 
graphs. The results suggest that tenacity is a most suitable measure of stability or vulnerability in that for many 
graphs it is best able to distinguish between graphs that intuitively should have different levels of vulnerability. 
In [1]-[22] they studied more about this new invariant. 

All graphs considered are finite, undirected, loopless and without multiple edges. Throughout the paper G  
will denote a graph with vertex set ( )V G . Further the minimum degree will be denoted ( )Gδ , the maximum 
degree ( )G∆ , connectivity ( )Gκ , the shortest cycle or girth ( )g G  and we use ( )Gα  to denote the 
independence number of G  . 

The genus of a graph is the minimal integer γ  such that the graph can be drawn without crossing itself on a 
sphere with γ  handles. Thus, a planar graph has genus 0, because it can be drawn on a sphere without 
self-crossing. In topological graph theory there are several definitions of the genus of a group. Arthur T. White 
introduced the following concept. The genus of a group G  is the minimum genus of a (connected, undirected) 
Cayley graph for G . The graph genus problem is NP-complete. 

A graph G  is toroidal if it can be embedded on the torus. In other words, the graph’s vertices can be placed 
on a torus such that no edges cross. Usually, it is assumed that G  is also non-planar. 

Proposition 1 (a) If H  is a spanning subgraph of G , then ( ) ( )T H T G≤ . 

b) ( ) ( )
( )

1n G
T G

G
α
α

− +
≤ , where ( )n V G= .  

Proposition 2 If G  is any noncomplete graph, ( ) ( ) 1
2

T G v T G− ≥ − .  

Proposition 3 If G  is a nonempty graph and m  is the largest integer such that 1,mK  is an induced 

subgraph of G , then ( ) ( )G
T G

m
κ

≥ .  
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Corollary 1 a) If G  is noncomplete and claw-free then ( ) ( )
2
G

T G
κ

≥ . 

b) If G  is a nontrivial tree then ( ) ( )
1T G
G

≥
∆

. 

c) If G  is r-regular and r-connected then ( ) 1T G ≥ .  
The following well-known results on genus will be used.  
Proposition 4 If G  is a connected graph of genus γ , connectivity κ , girth g , having p  vertices, q  

edges and r  regions, then 

a) ( )
2 22 1

2 2
,

2 2

g
g p p p

q
g g

γ
γ

κ

 
+ + − + −  ≤ ≤

− −
  

b) ( ) ( )( )
,

2 2
4m n

m n
Kγ

− − 
=  
 

 [23] 

c) ( ) ( )( )3 4
, 3

12p

p p
K pγ

− − 
= ≥ 
 

 [24] 

2. Lower Bound 
In this section we establish lower bounds on the tenacity of a graph in terms of its connectivity and genus. 

We begin by presenting a theorem due to Schmeichel and Bloom.  
Theorem 2.1 (Schmeichel and Bloom [25]) Let G be a graph with genus γ . If G  has connectivity κ , with 

3κ ≥ , then 

( ) ( )2 2 2
2

G X Xω γ
κ

− ≤ − +
−

 

for all ( )X V G⊂  with X κ≥ . 
It is now to drive the bounds on the tenacity that we seek.  
Theorem 2.2 If G  is a connected graph of genus γ  and connectivity κ , then 
a) ( ) > 2 1T G κ − , if 0γ =  or 1 , and 

b) ( ) ( )( )
( )

1 2
2 2 2

T G
κ κ
κ γ
+ −

≥
− +

, if 2γ ≥ .  

Proof. First, note that the inequalities hold trivially if 1κ =  or 2 . So suppose 3κ ≥ . 
First, suppose that 0γ = . Let S  be a T -set. Then since S κ≥ , by Theorem 2.1 we have 

( ) ( )2 2 2
2

G S Sω ω γ
κ

− = ≤ − +
−

 

So ( )2
2

2
S

ω κ −
≥ + . Since S κ≥ , 

( )
( )

1S m G S
T

G S
κ

ω ω
+ − +

= ≥
−

 and hence 1
T

κω +
≥ . Therefore, 

2 3 > 1,
2 2

T κ κ
ω

− ≥ + − 
 

 

if 1γ = , we have ( )2
2

S
ω κ −

≥  then 

2 1 > 1,
2 2

T κ κ
ω

− ≥ + − 
 

 

and part (a) is proved. 
So suppose 2γ ≥ . Again, let S  be a T -set in G . Then 

( ) ( )2 2 2 ,
2

G S Sω ω γ
κ

− = ≤ − +
−
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and thus 

( ) ( )
2

2 2 ,
2

S
ω κ

γ
−

≥ − −  

and 1
T

κω +
≥  , so 

( )( )
( )

1 22 2 3 2 2 3 ,
12 2 2 2 2

T

T

κ κκ γ κ γ
κω κ γ

+ −− − − −
≥ − ≥ − ≥

+ − +
 

the result follows.  
The above bounds is illustrated by a subset of the complete bipartite graph. Let 3κ =  and γ  be integer 

such that 4γ  is a multiple of 2κ −  and ( )24 2γ κ≥ − . Then ( ),2 4 2Kκ γ κ+ −  has connectivity κ , genus γ   

and tenacity 
( )( )
( )

1 2
2 2 2
κ κ
κ γ
+ −
− +

. 

2.1. Planar Graphs and the Lower Bound of Tenacity 
We next investigate the bounds provided above if G  is a planar or toroidal graph. To this end we require the 
definition of a Kleetope, ( )Gτ , of an embedding G  of a graph. If G  is a graph embedded with regions 

1 2, , , rR R R , then ( )Gτ  is the graph obtained from G  by, for 1 i r≤ ≤ , inserting a vertex iv  into the 
interior of iR  and joining iv  to each vertex on the boundary of iR . Note that the embedding of G  extends 
naturally to an embedding of ( )Gτ . In particular, if G  is a plane graph then so is ( )Gτ . Kleetopes are 
sometimes used as examples of graphs with maximum independence number for given genus and connectivity 
(see [26]). 

The bound in Theorem 2.2a is not sharp for 1κ =  and 0γ = . But the following examples show that the 
bound is suitable for 0γ =  and all possible values of 2 5κ≤ ≤ . Furthermore, such examples can be obtained 
with the maximum girth allowed for such connectivity. Note that by proposition 4a, if g  is the girth, 

2    for  0,
2

2    for  1.
2

g
g

g
g

κ γ

κ γ

 < = −

 ≤ =
 −

 

Indeed we can always obtain any girth from 3 up to the maximum allowed. This is often done by taking the 
example with maximum girth and adding an edge incident with a vertex in the T-set to create the desired short 
cycle. 

Example 1  
a) For 2κ =  the girth can be arbitrarily large. For 3n ≥  consider the graph nG  obtained by taking n  

disjoint copies of the path nP  on n  vertices and identifying the corresponding ends into two vertices. This is  

a planar graph with tenacity ( ) 2 1n
nT G

n
+

≤ →  as n → +∞  and girth g → +∞ . 

b) For 3κ =  the girth is at most 5 . A generalized Herschel graph ( )1nH n ≥  is defined as follows. Form a 
cyclic chain of 4-cycles by taking n  disjoint 4-cycles i i i i ia b c d a , 1 i n≤ ≤ , and identifying ic  and 1ia +  
(including nc  and 1a ). Then introduce vertices b  and d  and make b  adjacent to each ib  and make d  
adjacent to each id . The result is a 3-connected planar graph of girth 4, (see Figure 1). Now, let nG  be 
obtained by replacing each of the ib  and id  by dodecahedron as follows. To make notation simpler we 
explain how to replace a generic node x  of degree 3 with a dodecahedron D . Suppose the outer cycle of D  
is 1 2 3 4 5 1v v v v v v  in clockwise order and the neighbors of x  are 1 2,y y  and 3y  in clockwise order. Then 
replace x  and its incident edges by D  and the edges 1 1 2 2,v y v y  and 4 3v y . The resulting graph nG  is  
3-connected (recall that the dodecahedron is 3-connected), planar, and has girth 5. 

Furthermore, for { }1 2 1 1, , , , ,n n nS b d a c a c a c −= = = = , 
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Figure 1. Part of the 3- 
connected planar graph 
with 4g = .             

 

( ) ( )
( )

( )2 5 1 ,
2 2

n n
n

n

S m G S n
T G

G S nω

+

+∞

+ − + +
≤ = →

−
 

while 
( ) 11
2 2

nGκ
− =  . 

c) If 4κ =  then 3g = . Let nL  be a ladder graph with two rails and n  rungs between them. Rails be 1nP  
with vertices 1 2, , , na a a  and 2nP  with vertices 1 2, , , nb b b . Now make nG , introduce vertices a  and b  
and make a adjacent to each ia  and b adjacent to each ib . nG  is a planar graph with 4κ =  and 3g = , 
(see Figure 2). For { }1 2 3 4, , , , , ,S a b a b a b=  , 

( ) ( )
( )

3 1 ,n n
n

n

S m G S nT G
G S nω

+

+∞

+ − +
≤ = →

−
 

whereas 
( )

1 1
2

nGκ
− = . 

d) if 5κ =  then 3g = . For positive integer n  the graph nR  is defined inductively as follows: 2nC  is a 
2n  vertices cycle with 1 2 2na a a  in clockwise order and nC  is a n  vertices cycle with 1 2 nb b b  in 
clockwise order. 

Make two edges between ib  and vertices 2 1ia −  and 2ia , then introduce 1

n
ii

C c
=

=


 and 1

n
ii

D d
=

=


, make 
edges 2 1 2 2 1, , , , ,i i i i i i i i i i i ic b c a c a d b d a d b− +  and 2 1i id a +  (note that 1 i n≤ ≤ ), in Figure 3 you can see a 4R  graph 
with empty cycle vertices as set of C  and empty rectangle vertices as set of D . Suppose that S  is cut set 
and ( )nS R C D= −  , then 

( ) ( )
( )

3 1 3 ,
2 2

n n
n

n

S m R S nT R
R S nω

+

+∞

+ − +
≤ = →

−
 

whereas 
( )

1 3 2
2

nRκ
− =  . 

2.2. Toroidal Graphs 

We next consider toroidal graphs in more depth. For 3 6κ≤ ≤  we provide graphs with 1
2

T κ
≥ −  and 

maximum girth. 
Example 2 (a) For 1γ =  and 2κ = , the family graphs described in Example 1(a) for planar graphs shows 

that 2-connected graphs can have tenacity arbitrarily close to 1. (Examples specifically with genus 1 can be 
obtained by adding two edges to nG , for 4n ≥ ). 

b) For 4κ =  then 4g ≤ . The graph 4n nH C C= × , for n  an even integer has genus 1, connectivity 4, 
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1T ≥  (since, for example, its bipartite and hamiltonian) and girth 4. 
c) If 5κ =  then 3g = . Consider the following graph nW  where every region is a pentagon: Let 

( ) { }0,1, , 1, , , , , ,n i i i i i ii n V W a b c d e f= − =
 and  

( ) { }1 1 1 1, , , , , , , , ,n i i i i i i i i i i i i i i i i i i i iE W a a a b a c b d d b c e e c d f e f f f+ + + +=  where addition is taken modulo n . The graph 
6W  is shown in Figure 4. 
We note that nW  is toroidal with a pentagonal embedding. Let ( )n nH Wτ= . Then ( ) 1nHγ = , ( ) 5nHκ = , 

( ) ( )
( )

3 1
2 2

n
n

n

p W
T H

r W
κ

≥ = = −  . 

d) If 6κ =  then 3g = . Consider the cubic bipartite “honeycomb” graph nW  on 12n  vertices where 
every region is a hexagon. Then ( )n nH Wτ= , satisfies ( ) ( )1, 6n nH Hγ κ= =  and  

( ) ( )
( )

2 1
2

n
n

n

p W
T H

r W
κ

≥ = = −  . 

e) If 3κ =  then 6g ≤ . Consider any (3-connected) bipartite graph H  which has partite sets A  and B  
where every vertex in A  has degree 3 and every vertex in B  has degree 6 and is embedded in the torus with 
every region a quadrilateral. For example, 3,6K . Such an nH  can also be obtained by modifying the 
honeycomb graph nW , depicted in Figure 5 as follows: If the bipartite sets for nW , are A  and B , then add 
in each region a new vertex and join it to the three vertices of A  on the boundary of the region; the new 
vertices are added to B . Now form nG  by taking nH , and replacing every vertex of degree 3 by a  
 

 
Figure 2. Part of planar graph with 

3g =  and 4κ = .                 
 

 
Figure 3. A graph 4R  with 5κ =  
and 3g = .                         
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Figure 4. Pentagonal embedding graph.                     

 

 
Figure 5. A honeycomp graph.                              

 
dodecahedron as described in Example 1(b). The resulting graph nH  satisfies ( ) 1nHγ = , ( ) 3nHκ =  and  

( ) 1 1
2 2nT H κ

≤ = − .  

The graph nG  constructed in Example 2(e) has girth 5g = . The lower bound given in Theorem 2.2(b) 
cannot be obtained if 1, 3γ κ= =  and 6g =  as is shown next. 

Lemma 2.3 If G  is a graph with ( ) ( )1, 3G Gγ κ= =  and ( ) 6g G = , then ( ) 1T G ≥ .  
Proof. Let G  be a toroidal graph satisfying the hypothesis of the lemma. Then Euler’s formula (or 

Proposition 4(a)) shows that the graph is 3-regular. So by Corollary 1(c) the tenacity is at least 1. 

3. Conclusions 

The sharpness of the bound ( ) ( )( )
( )

1 2
2 2 2

T G
κ κ
κ γ
+ −

≥
− +

, if 2γ ≥  is illustrated by a subset of the complete bipartite  

graph. Let 3κ ≥  and γ  be integer such that 4γ  is a multiple of 2κ −  and ( )24 2γ κ≥ − . Then  

( ),2 4 2Kκ γ κ+ −  has connectivity κ , genus γ  and tenacity 
( )( )
( )

1 2
2 2 2
κ κ
κ γ
+ −
− +

. So the bound in Theorem 2.2(b) is 

attained by an infinite class of graphs, all of girth 4. 
The bound in Theorem 2.2a is not sharp for 1κ =  and 0γ = . But the example 1 showed that the bound is 

sharp for 0γ =  and all possible values of 2 5κ≤ ≤ . 

For Toroidal graphs when 3 6κ≤ ≤  we introduced graphs with 1
2

T κ
≥ −  and maximum girth. 
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