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Abstract 
 
In this paper, we propose a novel structure of quantum waveguide. In this structure we tailored the quantum 
wire by Gaussian Profile. Thus, the Dirac-Delta function potentials are weighted according to Gaussian dis-
tribution function. We studied the electronic transmission properties through this tailored quantum 
waveguide structure. We have assumed that single free-electron channel is incident on the structure and the 
scattering of electrons is solely from the geometric nature of the problem. We have used the transfer matrix 
method to study the electron transmission. Coherent Tunneling is achieved through this structure, which is 
well-defined allowed conduction bands. The electronic conductance spectrum depends on the number of the 
Dirac delta function potential in the quantum wire. When the number of Dirac delta function potentials in the 
structure and their strengths are increased, both well defined conductance bands and sharper and narrower 
forbidden bands are formed. This novel structure has a good defect tolerance. The structure tolerates strength 
defect and tolerates position defect for the central Dirac delta function in the Gaussian distribution. 
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1. Introduction 
 
In recent years, the electronic conductance through 
nano-structure grabs many researchers attention for their 
potential applications [1-9]. Moreover, there was an in-
terest in coherent electronic tunneling through one- 
dimensional scattering problems, especially in those cases 
where the potential is periodic structure with finite num-
ber of identical cells [10,11]. Because of the remarkable 
advances in nano-technology and micro fabrication, it is 
possible to confine electrons in a conductor with a lateral 
extent of  or less, resulting narrow quantum wire 
[12]. In these mesoscopic devices, the electron transport 
is best described by quantum mechanics. Miniature size 
of these devices eliminates the defect of scattering. At a 
low enough temperature, the motion of electrons through 
these devices is ballistic or quasiballistic and the elec-
tron-phonon interaction can be neglected. Therefore, the 
phase coherence length enlarges enough when compared 
with the device dimension. Mesoscopic devices can be 
considered as coherent elastic scatterer [12]. Therefore, 
the electron transport properties solely depend upon the 
geometrical structure of the quantum waveguide.  

100 nm

In recent years, many methods have been used to 
achieve coherent tunneling through their electronic de-
vices, i.e. tunneling magnetoresistance (TMR) device 
[13,14]. Recently, Ashour et al. [15] had achieved coher-
ent tunneling through their proposed a novel structure, 
which is the binomially tailored waveguide quantum wire 
in which each Dirac-Delta function potential-strength is 
weighted according to the binomial distribution law. In 
this paper, we are going to carry this reshaping of the 
quantum wire further, by introducing quantum wire tai-
lored by Gaussian profile.  

This paper is organized as follow: in Section 2, we 
outline the transfer matrix method which connects the 
solutions at the ends of the waveguide quantum wires. In 
Section 3, we introduce the novel structure of the QW 
tailored by Gaussian Profile. In Section 4, we explore the 
effect of the potential strength of the central Dirac Delta 
potential, and the number of Dirac Delta potentials in the 
quantum wire on the electrical conductance. In Section 5, 
we explore defect effects on the electronic conductance 
spectrum through the Gaussian profile tailored quantum 
wire; we are going to address two defects namely: dislo-
cation defect of the central Delta potential, and strength 

mailto:hashour@alazhar-gaza.edu


H. S. ASHOUR 125 
 



defect. Section 6 is solely devoted to the conclusions of 
this study.  
 
2. Transmission through Periodic Structure 
 
In this context, we consider a finite periodic structure of 
Dirac delta function potential, Dirac Comb. We assumed 
that the structure is narrow enough so that, only a single 
channel of electrons can be considered. Besides, we ne-
glected electron-electron interaction, and we assumed 
that the temperature is low enough so that, elec-
tron-phonon interaction can be neglected as well. We 
assumed that the scattering of electrons mainly from the 
geometrical structure of the potential. The potential can 
be written as follows: 
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Where, jU  and jx  represent the strength and the po-
sition of the delta function respectively, and  is the 
number of the Dirac delta functions in Dirac Comb. The 
distance between the adjacent barriers is given by 
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Where, is the periodic potential given by Equation 
(1), is the electron effective mass, which is consid-
ered approximately constant over the interaction range. 
The solution of Schrödinger wave equation for single 
Delta function potential can be found in the literature and 
also in the transfer matrix formulism [16-19]. The trans-
fer matrix for periodic structure has been used also to 
study the transmission of electron through Comb struc-

ture [16-22]. The transfer matrix, which is related to the 
input electron wave and the output, is given by [20-22] 
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Thus, j  is 2j k , where j  is 22 *
jm U  , and 

k  is the wave number given by 22 *m E  . So that the 

transfer matrix at a given single barrier can be written as, 

     1
j j j jM S ikx S ikx          (4) 

The total transfer matrix which represents the electron 
propagating through the entire device is just the repeti-
tive product of the transfer matrix of a single barrier. We 
find  
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      (5) 
Thus, jd is the periodic spacing between two adjacent 

Dirac Delta functions.  
Then the transmission amplitude is given by [23], 

 
1

2 2t

T
M ,

                (6) 

Thus,  2 2tM ,
2 2

is the second element in the second 
row in a   matrix. According to the Landauer- 
Buttiker formula, the electron conductance through this 
structure is [24,25]  

2
22e

G T
h

                (7) 

We assume a dimensionless strength for Delta func-
tion potential [26] by rescaling our parameters, 

2 2
j j jmd U    . In Figure 1, we show the con- 
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Figure 1. Conductance spectrum G in the units of 22e h as a function of kd   for a sequence of Dirac delta function poten-

tial with . The strength of the potential here is 10N  0 2.  . 
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ductance through  Dirac delta function potential 
with strength . A perfect transmission in this 
case is in general impossible as predicted by [22,27]. 
According to reference [26] we cannot have a resonant 
transmission, , even if  is very large. 

10N 
0 2. 

1T N
 
3. Tailored Quantum Wire by Gaussian  

Profile  
 
In this subsection, we introduce the new quantum wire 
structure which is shown in Figure 2. The Dirac delta 
function has been equally spaced but their strength, j , 
has been  weighted according to the binomial distribu-
tion law, which is 
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Where  and  are the probability of success and 
failure respectively, we have chosen . 

p q
0.5p q 

Thus,  jN  represents the strength of the Dirac-  

delta potential, 1N   represents the total number of 
Dirac delta function potentials in the quantum wire, and 

jN is the order of the Dirac delta potential. This novel 
structure of quantum wires can be released by putting 
metallic gates on top of a one dimensional electron gas 
and then by applying voltages, according to the Gaussian 
distribution law, to deplete the electron gas underneath. 
In this case, Equation (9) is no longer valid for our new 
structure. So that the total transmission matrix can be 
written as follows:  
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    (8)  
Notice that the potential strength is weighted accord-

ing to Equation (8). In Figure 3, we show the conduc-  

 
Figure 2. Shows Gaussian tailored Dirac comb potential. jN s’ values are weighted according to Equation (8). 

 

 
Figure 3. Conductance spectrum  in the units of G 22e h  as a function of kd   for a quantum wire tailored by Gaussian 
distribution function, with . 9N 

Copyright © 2011 SciRes.                                                                              JMP 



H. S. ASHOUR 127 
 
tance spectrum through a sequence of a binomially tai- 
lored Dirac delta function potentials. It is quite interest-
ing to notice that we have reached a transmission through 
this structure approaches to unity in the allowed band 
region without any ripples after some  value. Here, 
we have a resonant tunneling due to coherent interfer-
ence effects due to elastic scattering of electrons, which 
leads the transmission to reach unity and also to have 
constant value over the allowed band or conduction band. 
Also, we see that there is a forbidden band or conduction 
gap where the transmission is small. 

k

 
4. jN and  jN  Effect on Electronic  

Conductance  
 
4.1. Effect of the Number of Dirac Delta  

Function, jN , in the Distribution 
 
Here, we study the effect of the number of Dirac delta 
function potential in the Gaussian distribution profile on 
the electronic conductance through the quantum wire. In 
Figure 4, we plot the electronic conductance for differ-
ent number of the Number of Dirac delta function poten-
tials in the Gaussian distribution profile. The electronic 
conductance spectrum shows flat allowed bands, which 
were sometimes called, the conductance band, due to 
coherent tunneling or constructive interference of elec-
tronic plane waves and forbidden bands due to total de-
structive interference of the electronic plane waves. 
When the Number of Dirac delta function potential, in 
the Gaussian distribution profile quantum wire, is in-
creased the width of the conduction band increases. The 
increase in width of the conduction can be explained as 
follow: the number of electron waves that interfere con-
structively increases which leads to wider conduction 

band. This behavior is illustrated in Figure 4, when we 
compare the electronic conductance taken from the 
Gaussian profile tailored quantum wires (GTQW), with 

17jN   and 9 Dirac delta functions potentials. The 
quantum wire with 17jN   Dirac delta function poten-
tials has a wider conduction bands and narrower forbid-
den bands than the quantum wire with 9jN   Dirac 
delta function potentials. 

 
4.2. Effect of the Strength of Dirac Delta  

Function in the Distribution 
 
In this subsection, we study the effect of the strength of 
the Dirac delta function potentials on the electronic con-
ductance. In Figure 5, we plot the electronic conduc-
tance spectrum for 17jN   evaluated according to 
Equation (9), the curve with squares, and we plot the 
electronic conductance spectrum for the same number of  
Dirac delta function potentials but with scaling factor of 
three. That is, we multiply each Dirac delta function po-
tential by three. The conduction bands turn to be nar-
rower and the forbidden bands wider and well defined. 
So that, for a well defined electronic conductance, it is 
better to increase the number of the Dirac delta function 
potentials in the quantum wire and also to scale up their 
strength to reach the desired conductance. 

 
5. Defect Effect 
 
5.1. Strength Defect 
 
In this subsection, we study effect of strength defect of 
the central element of the GTQW, keeping the other 
elements and the spacing between the Dirac delta func-
tion potentials unaltered, on the electronic conductance 

 

 
Figure 4. The electronic conductance from two structures: 9jN   (dashed line) and . 17jN 
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Figure 5. The electronic conductance from a structure of 17jN   with different scaling factors, the continuous curve with 
scaling factor of one and the dashed cure with scaling factor of three. 
 

 
Figure 6. The electronic conductance, in the units of 22e h as a function of kd  . In this case, the defect is only 5% , in the 
strength of the central Dirac delta function. 
 
through the GTQW. We consider the strength defect 
does not exceed of the Dirac delta function poten-
tial strength. That is, when the central Dirac delta func-
tion potential strength is

 5%

  2 1 0 05 2 1j jN . N      . 
In Figure 6, we plot the electronic conductance spectrum 
for defected and defect free GTQW, both wires having 
the same strengths and the same number of Dirac delta 
function potentials,…, and scaling factor of three. As can 
noticed, there is a slight difference between the two 
conductance spectrum curves, which means we have a 
structure that can tolerate strength defect up to 5%. 

5.2. Dislocation Defect 

In this subsection, we study dislocation defect effect on  

the position of the central element in the GTQW, and 
keeping the other elements and the spacing between the 
Dirac delta function potentials constant. First, we con-
sider the position defect does not exceed of the 
Dirac delta function potential spacing constant. That is, 
the central Dirac delta function potentials spacing is 

5%

0 05d . d . In Figure 7, we plot the electronic conduc-
tance spectrum for both dislocations with and 
scaling factor of three. Compared to defect curves, as can 
noticed, there is a significant difference between the two 
curves. The conduction band starts lose its flatness and 
claims lower electric conductance values, but the forbid-
den band shape or width did not change appreciably for 
increased spacing between the central Dirac delta func- 

17jN is
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Figure 7. The electronic conductance, in the units of 22e h as a function of kd  . In this case, the defect is only 5% , in 

the position of the central Dirac delta function. 

 
tion and the adjacent one. 

 
6. Conclusions 
 
On the Gaussian profile tailored quantum wire (GTQW), 
we have demonstrated numerically that these structures 
give rise to well-defined conduction and forbidden bands. 
The appearance of allowed conduction and forbidden 
bands is strongly dependant on the number of Dirac delta 
function potential in the distribution, and on its scaling 
factor. We found out that when the number of Dirac delta 
function increased in the Gaussian distribution, the con-
duction band gets wider, and the forbidden band gets 
sharper and narrower. When the strength of the Dirac 
delta function increased by a scaling factor in electronic 
conductance spectrum, it exhibited a well defined con-
duction band and forbidden band. We found that this 
novel structure has a good tolerance for strength reaches 
up to  and without losing the fascinating elec-
tronic transmission characteristics, but the structure is so 
sensitive to dislocation defect and its tolerance may not 
reach . 

5 %

5 %
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