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Abstract 
 
In this paper, the relative widths of some sets in m

pl  are studied. Relative widths is the further development 
of Kolmogorov widths and it is a new problem in approximation theory which aroused some mathematics 
workers great interest recently. We present some basic propositions of relative widths and investigate relative 
widths of some sets (ball or ellipsoid) of m

pl . 
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1. Introduction 
 
In 1984, V. N. Konovalov in [1] first proposed the 
definition of relative widths which is in the sense of 
Kolmogorov. Let W  and V  be centrally symmetric 
sets in a Banach space X . The Kolmogorov n -dimen- 
sional widths of W  relative to V  in X  (shortly, 
relative widths) is  

 , , := ,supinf infn Xn nf WL g V L

K W V X f g
  

  

where the infimum is taken over all n -dimensional 
subspaces nL  of X , n N . When =V X  the rela- 
tive widths coincides with the n -dimensional Kolmogo- 
rov widths (shortly,  n K widths ) of W  in X , which 
we denote by  ,nd W X . Of course,  

   , , ,n nK W V X d W X  

for any set V , and if 1 2V V , then  
   1 2, , , , .n nK W V X K W V X  

Y. N. Subbotin and S. A. Telyakovskii in [7-9], V. M. 
Tikhomirov in [11], V. F. Babenko in [2-4], V. N. Kono- 
valov in [1,5,6], V. T. Shevaldin in [10] etc. gained many 
results in this field. And some Chinese mathematics 
workers such as Yongping Liu, Lianhong Yang in [15-17] 
and Weiwei Xiao in [12-14] also did some work on rela- 
tive widths. 

Let m
pl , 1 p   , denote space of vectors  

 1= , , mx xx  with norm  

 11= ,  1 <
ppp

mp
x x p   x  

 1= max , , ,  = .mx x p


x  

Let  := : 1m
p p p

B l x x  be the unit ball in m
pl .  

Let  1= , , mdiag D DD  be an m m  real diagonal 
matrix. Without loss of generality we assume that 

1 2 > 0mD D D   . Let M  be a positive real num- 
ber, set  

 = : ,  ,m
p p

M R M  Dx x x  

obviously it is ellipsoid in m
pl . When = 1M , we denote 

it by p . 
Theorem A: [19] For 1 p   , 1 <m n ,  

  1, = ,m
n p p nd l D   

Similar to the proof in [18] we can get the following 
proposition. 

Proposition 1. 
1) If W  is a finite set of m  elements, then for the 

linear spanning subspace  lin W  one has  

       , , = , , = 0n nK W lin W X K lin W lin W X  

for n m . 
2) If 1W W , then  

   1, , , , .n nK W V X K W V X  

3) For any scalar  , and any W  and V , one has  

   , , = , , .n nK W V X K W V X    

4)      0 1 2, , , , , , .K W V X K W V X K W V X    

5) Let 0= mW K   , where 0K  is a bounded set and 
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m  is a subspace of dimension m . If <n m , then 
 , , =nK W V X  . 

6) For the convex hull  co W , if for each subspace 

nX  of dimension n ,   nco W X  is a locally sequen- 
tially compact and closed subset, then  

       , , = , , .n nK W co W X K co W co W X  

7) If Y  is a subspace of X  and W Y X  , 
V Y , then  

   , , , , .n nK W V X K W V Y  

Theorem 1 For >m n N , 1 p   , 1 1> nD D  , 
the smallest number M  which makes the equalities  

    1, , = , = ,m m
n p p p n p p nK M l d l D         (1) 

hold is 1
0

1

:= 1 nD
M

D
 , and  

    1 0

1 0

1 , 0 < < ,
, , =

, .
m

n p p p
n

M D M M
K M l

D M M

 



   

Theorem 2 For all m N  such that > 1m ,  

 1 1 1

1
, , = .

2
m

mK B B l   

 
2. Proof of Theorems 
 
Proof of Theorem 1: For  0 1= ,0, ,0D x , we have 

 

 

0

1

, , supinf inf

                          sup inf

                          inf

                          = 1 .

m
n p p p pn m nxL l y M Lpp p

p
y Mx pp

p
y M p

K M l

D M

  





 

 

 



 





  x y

x y

x y

 

That is  

   1, , 1 ,    0 < 1.m
n p p pK M l D M M       (2) 

In order to make the equalities (1) hold, we have that  

 1 1 1 ,nD D M                 

that is 1

1

1 nD
M

D
  .                          (3) 

For 1

1

0 < 1 nD
M

D
  , we will prove that  

    1, , 1 .m
n p p pK M l M D          (4) 

For each = px Dz , 1
p
z , set  

 1= , , ,0, ,0 .n
n py Mx Mx L M     When =p  ,  

the inequality (4) is trivial, so we only need to prove the 
case of 1 <p  . 

   
   
   
     

   

1 1

1 1 1 1

1 1

1 1 1 1

1 1

1

            = 1

           1

               1 1

           1 1 .

p p pp pp

n n mp

p p ppp

n n n n m m

ppp p
n

p pp pp p p
n n m

pp pp p

p

M x x x x

M D z D z D z D z

M D z z

M D M D D z z

M D z M D



 

 
 

       

     

   

    

   

 

 





x y

 

 

In fact, when 1

1

0 < 1 nD
M

D
  , we have  

  1 1
1 11 1nM D D

 
  . So we get that inequality (4). 

By inequalities (2) and (4), we have that  

   1
1

1

 0 < 1 ,   , , = 1 .mn
n p p p

D
M K M l M D

D
     (5) 

From (3) and (5) we get that the smallest number M   

which makes the equalities (1) hold is 1
0

1

= 1 nD
M

D
 .  

For 0M M ,  

   0 1, , , , = .m m
n p p p n p p p nK M l K M l D       (6) 

By Theorem A, for all > 0M ,  

    1, , , = .m m
n p p p n p p nK M l d l D       (7) 

From (6) and (7) we get  

  1 0, , = ,   .m
n p p p nK M l D M M     

The proof of Theorem 1 is complete. 
Proof of Theorem 2: From [6] we know that  

 1 1 1

1
, , .

2
m

mK B B l                (8) 

We want to prove that  

 1 1 1

1
, , .

2
m

mK B B l                (9) 
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By proposition (6) we know that  

   1 1 1 1 1, , = , , ,m m
m mK B B l K W B l                                         (10) 

where  

   = 0, ,0, 1 ,0, ,0 : = 1, , ,   represent the th coordinate
i

W i m i i   . 

 
Set  

 1
1 2:= : = 0 .m m

mL R x x x
    x  

For   = 0, ,0, 1 ,0, ,0
i

a W   , set  

     1
11

= 0, ,0, 1 2 , 1 2 ,0, ,0 ,m

i i
b L B


      

= 1, ,i d , when =i d , 1i   represent the 1st coor- 
dinate, we get = 1 2a b


 . So we proved  

 1 1, , 1 2,m
mK W B l    

which means that inequality (9) is valid. The proof of 
Theorem 2 is complete. 
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