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Abstract 
Evaluation of agronomic traits in Prunus breeding programs is a tedious process because of the 
long juvenile period of trees, the influence of juvenility and the existence of climatic factors af-
fecting the expression of the trait. For these reasons, marker-assisted selection (MAS) strategies 
are particularly useful in these cases. The objective of this work is the analysis of alternative low- 
cost strategies for development of molecular markers linked to agronomic traits in Prunus in-
cluding the application of modified Bulked segregant analysis (BSA) using Simple sequence repeat 
(SSRs) markers and the application of Random amplified polymorphism microsatellite (RAMP) 
markers. First BSA results showed that two SSR loci were found to be tightly linked to flowering 
time in almond. On the other hand, RAMP analysis has been demonstrated to be a potentially val-
uable molecular marker for the study of genetic relationships in Prunus. Results showed the do-
minant nature of these markers with a great abundance and transferability although with a re-
duced polymorphism. In addition, RAMP application in F1 progenies showed its suitability for 
molecular characterization and mapping, and later Quantitative trait loci (QTL) or BSA analysis. 

 
Keywords 
Prunus, Breeding, Flowering, Molecular Markers, SSR, RAMP, BSA, Marker-Assisted Selection 

 

 

 

*Equal contribution. 
#Corresponding author. 

http://www.scirp.org/journal/as
http://dx.doi.org/10.4236/as.2014.55044
http://dx.doi.org/10.4236/as.2014.55044
http://www.scirp.org/
mailto:pmartinez@cebas.csic.es
http://creativecommons.org/licenses/by/4.0/


J. A. Salazar et al. 
 

 
431 

1. Introduction 
The genus Prunus (Rosaceae family) include more than 200 species widely grown around the world [1] [2]. The 
annual worldwide production of the most important Prunus species cultivated were around 41 million metric 
tons in 2011, including 21.52 million tons of peach and nectarine fruits [P. persica (L.) Batsch]; 11.35 million 
tons of prune (P. domestica L.), plum (P. salicina Lindl), sloe (P. spinosa L.), and cherry plum fruits (P. cerasi-
fera Ehrh.); 3.84 million tons of apricot fruits (P. armeniaca L.); 2.24 million tons of sweet (P. avium L.), sour 
(P. cerasus L.) and ground (P. fruticosa Pall.) cherry fruits; and 2.01 million tons of almond kernels [P. amyg-
dalus (Batsch) syn. P. dulcis (Miller) Webb] (http://faostat.fao.org). In Prunus breeding programs, evaluation of 
agronomic traits in Prunus species is a tedious process because of the long juvenile period of trees, the influence 
of the juvenility on the expression of the trait, and the existence of climatic factors affecting this evaluation. For 
these reasons, marker-assisted selection (MAS) is particularly useful in these cases [3] [4]. 

Studies of development of molecular markers linked to agronomic traits in Prunus were initially performed in 
almond using isoenzyme analysis. Nevertheless, this first approach was very limited because of the reduced po-
lymorphism and the low variation [3]. Restriction Fragment Length Polymorphisms (RFLPs) provided a more 
efficient method because of its codominant nature and unlimited number of markers. However, the application 
of these markers has been limited due to their complexity and time-consuming. More recently, the utilization of 
PCR-based markers less laborious and time consuming has increased the possibilities of mapping. Random Am-
plified Polymorphic DNAs (RAPDs) were the first PCR marker assayed although its dominant nature and low 
repeatability limited drastically its utilization [3]. For these reasons, simple sequence repeat sequences (SSRs) 
are being become the markers of choice for molecular characterization and mapping in Prunus because of their 
high polymorphism, abundance, codominant inheritance and transportability across Prunus species [5] [6]. 

To compensate for the weakness of these two approaches (SSR and RAPD); limited repeatability of RAPDs 
and cost of SSRs, a new low-cost marker called Random amplified polymorphism microsatellite (RAMP) was 
developed [7]. RAMP markers involved a SSR primer which is used to amplify genomic DNA in the presence 
or absence of RAPD primers (Figure 1). The resulting products can be resolved using submarine agarose elec-
trophoresis. The amplification products derived from the anchored primer are only detected. Advantages of 
RAMP include high polymorphism, widely distributed throughout the genome, with an easily and low cost ap-
plication. However, mixture interpretation is more difficult and repeatability could be reduced [7] [8]. RAMP 
has been successfully employed in diversity studies in different fruit species including peach [9] and pomegra-
nate (Punica granatum L.) [10]. This new low-cost marker has been adopted in recent research for evaluation of 
DNA polymorphisms at different levels [11]. 
 

 
Figure 1. Schematic representation of Simple sequence 
repeat (SSR), Random amplified polymorphic DNA 
(RAPD) and Random amplified polymorphism micro-
satellite (RAMP) markers and application of UDP98409 
SSR, OPR-16 RAPD and UDP98409/ OPR-16 RAMP 
application in the F1 apricot progeny “Goldrich” (G) × 
“Currot”. 

SSRs RAPDs RAMPs

1  2  3  4  5  G  C 1  2  3  4  5  G  C 1  2  3   4   5  G  C

OPR-16UDP98409 UDP98409/OPR-16
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The main approach for the development of molecular markers for MAS strategies in Prunus continue being 
the use of segregating progenies and the identification of quantitative trait loci (QTLs) linked to these traits [3] 
[4] [12]. However, bulk segregant analysis (BSA), where two pooled DNA samples are formed from plant 
sources that have similar genetic backgrounds but differ in one particular trait, is another powerful approach for 
the analysis of molecular marker-horticultural trait association [13] with lower costs in comparison with QTL 
analysis [12]. A strategy combining different markers with bulk segregant analysis was used to identify markers 
linked to loci of specific fruit characters in peach × almond crosses [14]. In addition, Ballester et al. [15] using 
this methodology identified RAPD markers associated with self-incompatibility and flowering time in almond. 

The objective of this work was the development of alternative low-cost strategies for molecular markers de-
velopment in Prunus by the application of modified bulked segregant analysis using SSR markers and the ap-
plication of RAMP markers for the molecular characterization of several almond and apricot F1 progenies to 
evaluate their use for molecular characterization and mapping. 

2. Material and Methods 
2.1. Plant Material 
The plant material assayed included a F1 almond progeny of seventy eight seedlings from the cross between the 
intermediate flowering Italian cultivar “Tuono” and the extra-late flowering Iranian cultivar “Shahrood-12” (T × 
S). In addition, to check the transferability of the molecular markers assayed across Prunus genus, a F1 apricot 
progeny of one hundred seedlings from the cross between the North American cultivar “Goldrich” and the 
Spanish “Currot” (G × C) was assayed. 

2.2. Flowering Time Evaluation and Bulk Segregant Analysis in Almond 
During two consecutive years (2008 and 2009) flowering time was evaluated in the progenitors and the F1 al-
mond population T × S every 2 days and expressed in as extra-early, early, late, and extralate. In this population, 
four bulks (extra-early, early, late and extra-late) consisting in a DNA pool from several descendants selected 
from the almond progeny were selected for the future study using SSR markers (Figure 2). 

2.3. Molecular Characterization of the Almond Progeny Using SSRs 
Total genomic DNA was isolated using the procedure described by Doyle and Doyle [16]. Extracted almond 
genomic DNA was PCR-amplified using 71 pairs of primers flanking microsatellite sequences previously cloned 
and sequenced in different Prunus species including almond, peach, cherry and apricot (Table 1). Microsatellite 
amplifications and evaluation were performed as described in Sánchez-Pérez et al. [17]. Amplified PCR prod-
ucts were separated using Metaphor® agarose (Cambrex, East Rutherford, NJ, USA) and stained with Ge-
lRedTM (Biotium, Hatwad, CA, USA). These SSR markers were well distributed across the Prunus genome. 
Fifty six of this SSR makers were previously used in the first linked map of the population “R1000” × “Des-
mayo Largueta” [18] completing this map with the assay of 15 new SSRs according to previous information of 
Dondini et al. [19] and Sánchez-Pérez et al. [20] (Figure 3). 

2.4. Molecular Characterization of Almond and Apricot Progenies Using RAMPs 
Extracted DNA was PCR-amplified using a combination of two pair of primers (forward and reverse) flanking 
nuclear SSR sequences cloned in peach (UDP96003) and apricot (UDAp473) and 2 selected RAPD primers 
(OPA8, OPB11 and OPR-16) purchased from Operon Technologies (Huntsville, USA). PCR reactions were 
performed according to the protocol optimized by Sánchez-Pérez et al. [16] to SSR markers assaying different 
annealing temperatures (from 35˚C to 52˚C). Amplified PCR products were separated using regular LD-2® aga-
rose (Conda, Madrid, Spain) and stained with GelRedTM (Biotium, Hatwad, CA, USA). 

3. Results and Discussion 
3.1. Flowering Time Evaluation in Almond 
Figure 2 showed the distribution of the seventy almond seedlings of the F1 progeny “Tuono” × “Shahrood” for  
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Figure 2. Flowering date evaluation in the almond F1 progeny of 78 
seedlings from the cross between the “Tuono” and “Shahrood-12” 
during the years 2008 and 2009 and selection of DNA pools (extra- 
early, early, late and extra-late) from different seedlings. 

 
Table 1. Origin of simple microsatellite (SSR) markers asayed. 

SSR marker group Reference Species Origin Number of SSRs tested 

BPPCT Dirlewanger et al. [21] Peach Genomic 22 

CPDCT Mnejja et al. [22] Almond Genomic 4 

CPPCT Aranzana et al. [23] Peach Genomic 11 

EPDCU Howad et al. [24] Almond EST 2 

EPPCU Howad et al. [24] Almond EST 2 

MA Yamamoto et al. [25] Peach Genomic 1 

PceGA Downey and Iezzoni [26] Cherry Genomic 1 

pchgms Sosinski et al. [27] Peach cDNA 1 

PMS Cantini et al. [28] Cherry Genomic 1 

PS Sosinski et al. [27] Cherry Genomic 1 

UDA Testolin et al. [29] Almond Genomic 3 

UDAp Messina et al. [30] Apricot Genomic 1 

UDP Cipriani et al. [31] Peach Genomic 21 

Total    71 

Blooming Date

Nu
m

be
ro

fs
ee

dl
in

gs

Ex
tre

m
el

y

Ex
tre

m
el

y Ea
rly

Ea
rly

Ve
ry

Ve
ry

Ea
rly

Ea
rly

Ea
rly

Ea
rly

In
te

rm
ed

ia
te

In
te

rm
ed

ia
te

Ea
rly

Ea
rly

La
te

La
te

In
te

rm
ed

ia
te

In
te

rm
ed

ia
te

La
te

La
te

In
te

rm
ed

ia
te

In
te

rm
ed

ia
te

Ex
tre

m
el

y

Ex
tre

m
el

y La
te

La
te

Ve
ry

Ve
ry

La
te

La
te

10

0

20

30

40

50

Tu
on

o
Tu

on
o

Sh
ah

ro
od

Sh
ah

ro
od

-- 1
212

La
te

La
te

Extr
a

Extr
a--L

ateLa
te

Extr
a

Extr
a--E

ar
ly

Ear
ly

Ear
ly

Ear
ly

Blooming Date

Nu
m

be
ro

fs
ee

dl
in

gs

Ex
tre

m
el

y

Ex
tre

m
el

y Ea
rly

Ea
rly

Ve
ry

Ve
ry

Ea
rly

Ea
rly

Ea
rly

Ea
rly

In
te

rm
ed

ia
te

In
te

rm
ed

ia
te

Ea
rly

Ea
rly

La
te

La
te

In
te

rm
ed

ia
te

In
te

rm
ed

ia
te

La
te

La
te

In
te

rm
ed

ia
te

In
te

rm
ed

ia
te

Ex
tre

m
el

y

Ex
tre

m
el

y La
te

La
te

Ve
ry

Ve
ry

La
te

La
te

10

0

20

30

40

50

Tu
on

o
Tu

on
o

Sh
ah

ro
od

Sh
ah

ro
od

-- 1
212

La
te

La
te

Extr
a

Extr
a--L

ateLa
te

Extr
a

Extr
a--E

ar
ly

Ear
ly

Ear
ly

Ear
ly



J. A. Salazar et al. 
 

 
434 

 
Figure 3. Location in the almond linkage map of the seventy one SSR markers assayed in the molecular characterization of 
the almond and apricot plant material assayed. 
 
flowering time according to the mean values of the two years. 

Results showed a quantitative inheritance of flowering date in the almond progeny studied. The seedlings 
evaluated showed a wide range of flowering dates and in mots of cases a range between both progenitors. How-
ever, some of these descendants were earlier than the early progenitor “Tuono”. This can show the effect of ge-
netic background on the expression of this trait. 

Flowering time showed a quantitative inheritance in the family assayed with a clear modal distribution in 
agreement with previous results in other almond progenies [32]-[36]. However, our results are not in accordance 
with previous results studying some descendants of “Tardy Nonpareil” which a bimodal distribution was ob-
served for this trait. This bimodal distribution was explained by the presence of a late flowering major gene (Lb), 
quantitatively modified by other minor genes [32] [33]. In our progeny where the late flowering donor is a Ira-
nian almond cultivars it is not present this Lb gene. 

Flowering date was considered an agronomical trait with a high heritability [36] [37]. In this sense, Dicenta et 
al. [38] established that the best strategy to obtain late-flowering descendants is to cross progenitors as late- 
flowering as possible. When the offspring showed a bimodal distribution, we must select the latest-flowering, 
probably carrying the late-flowering allele (in the case of descendants from “Tardy Nonpareil”) which could be 
transmitted to its descendants. 

3.2. Bulked Segregant Analysis for Flowering Time in Almond Using SSR Markers 
In the analysis of co-segregation of SSR markers and the T × S almond population, two microsatellite loci 
(CPPCT008 and EPDCU2584) were found to be tightly linked to this important agronomic trait (Figure 4). 

Results corroborated the suitability of the use of SSR markers for the assessment of molecular genetic varia-
bility in almond and the high degree of transportability between peach SSR in almond previously reported by 
Martínez-Gómez et al. [5]. SSR detection using Metaphor® agarose gel electrophoresis was an efficient and 
would be able to resolve most of allelic variation. In this sense, we can indicate that the use of MetaPhor® aga-
rose and Gel Red Nucleic Acid Gel Sating® appears good indicated for molecular characterization of mapping of 
population, due to its good resolution in comparison with the rest of agaroses, less toxicity in comparison with 
the use of ethidium bromide, and lower cost and easier routine application in comparison with the automatic ca-
pillary sequencing. 
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Modified Bulk Segregant Analysis 

 
F1 almond (‘Tuono’ x ‘Shahrood-12’) population 

 
Figure 4. Metaphor® agarose gels showing de polymorphism observed in the 
application of SSR markers UDP96003, EPPCU2584, BPPCT035 and 
CPPCT008 to the modified bulk segregant analayis of the F1 almond popula-
tion “Tuono” × “Shahrood-12”. 

 
Results also indicated the suitability of SSR markers for the analysis of QTL linked to flowering time and 

chill and heat requirements as has been described before in almond [18] [39] and other related species such as 
apricot [40] [41], rose [42] and peach [43] and the future application in marker assisted selection as has been 
described in the case of bitterness in almond [20]. 

Other opportunities of this study derive from the recent sequencing of the complete genome of the peach. The 
International Peach Genome Initiative (IPGA) has recently released the complete peach genome sequence which 
is available on http://www.rosaceae.org/peach/genome [44]. This complete peach genome sequence will be of 
great interest in the future molecular studies in Prunus species such as apricot. In this sense, due to the easy lo-
cation of SSR markers in this genome sequence we can found the position of our SSR locus linked to flowering 
time focusing our future studies in the nearest DNA regions in linkage groups 5 and 6. 

The construction of linkage maps and QTL analysis takes a considerable amount of time and effort and may 
be very expensive. Therefore, alternative methods that can save time and money would be very useful, especial-
ly if resources are limited. One of these methods is the BSA where only bulks of selected genotypes are ana-
lyzed [13]. The disadvantages of this method is that they are not efficient in determining the effects of QTL and 
that only one trait can be tested at a time since the individuals selected for extreme phenotypic values will 
usually nor represent extreme phenotypic values for other traits. 

These results can be considered as an initial point to search inside the genome for the flowering time expres-
sion and hold promise for speeding up the fine mapping and identification of region responsible for the variation 
of the trait. Fine mapping consists of saturating the identified genome region near the SSR identified as linked to 
the tait assayed. SNP markers could be the most suitable markers for increasing the resolution of the initial maps 
developed with SSRs or for increasing the resolution of determined regions of the map [11] using the same pop-
ulations. SNPs are the most abundant molecular markers (estimated at more than 1 per 1000 bp) and are widely 
distributed throughout the genome (although their occurrence and distribution varies among species). In addition, 
extremely degraded DNA samples can be used, and multiplexing hundreds of markers in a chip is possible in 
several Prunus species, including peach [45] and cherry [46]. In addition, the markers identified in are seldom 
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suitable for marker assisted selection without further testing, validation and additional development. Generally, 
the steps required for validation include testing the markers in correctly phenotyped germplasm. 

3.3. RAMP Application in Almond and Apricot 
Regarding the optimization of the application of RAMP markers for the molecular characterization of almond 
and apricot (Figure 5) genotypes, annealing temperature is the critical step as has been previously described in 
peach [9] and pomegranate [10]. Annealing temperature of the anchored primers were usually 10˚C - 15˚C 
higher than those of the RAPD primers; thus, at higher annealing temperature, only the anchored primers would 
anneal efficiently, whereas in PCR cycles at low annealing temperatures, both anchored SSR and RAPD primers 
would anneal. The optimization of the annealing conditions represents the main limitation in the application of 
this type of DN markers [11]. 

The PCR program could be modified such that there is switching between high and low annealing tempera-
tures during reaction. Most fragments obtained with RAMP primers alone disappear when RAPD primer are in-
cluded, and different patterns are obtained with the same RAMP primer and different RAPDs, indicating that 
RAPD primer compete with RAMP primer during the low annealing temperature cycle. 

Regarding the application of RAMP markers in almond and apricot (Figure 5) progenies, results showed the 
dominant nature of these markers although with a reduced polymorphism. In addition, the great number of com-
binations of markers makes these markers very abundant. 

The easy application and cheap analysis in regular agarose represent the most prominent advantage when 
compared with others DNA markers as RFLPs or SSRs. 

Finally, these results also confirm the transferability of these RAMP markers across the genus Prunus and 
 

 
Figure 5. RAMP optimization and application: A) in the F1 almond progeny “Tuono” (T) × “Shahrood-12” (S) using SSR 
primers [forward (F) and reverse (R)] from UDP96003 marker and RAPD primer OPA8, and assaying different annealing 
temperatures (from 35˚C to 45˚C), and B) in the F1 apricot progeny “Goldrich” (G) × “Currot” (C) using SSR primers [for-
ward (F) and reverse (R)] from UDAp473 marker and RAPD primer OPB11, and assaying different annealing temperatures 
(from 35˚C to 51.6˚C). 
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their suitability for molecular characterization of mapping of population later QTL or BSA analysis. 
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