Advances in Pure Mathematics, 2011, 1, 16-22

d0i:10.4236/apm.2011.12005 Published Online March 2011 (http://www.SciRP.org/journal/apm)

o5 Scientific
(> )
+* Research

The Pell Equation X2 — Dy2 = +k?

Amara Chandoul
Institut supérieur d’Informatique et de Multimedia de Sfax, Sfax, Tunisia
E-mail: amarachandoul@yahoo.fr
Received January 9, 2011; revised January 29, 2011; accepted February 5, 2011

Abstract

Let D=1 be a positive non-square integer and k >2 be any fixed integer. Extending the work of A. Tek-
can, here we obtain some formulas for the integer solutions of the Pell equation x* — Dy? = +k?.
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1. Introduction

The equation x* —Dy* = N, with given integers D and
N and unknowns x and Yy, is called Pell’s equation.
If D is negative, it can have only a finite number of
solutions. If D is a perfect square, say D =a?, the
equation reduces to (x—ay)(x+ay)=N and again
there is only a finite number of solutions. The most
interesting case of the equation arises when D=1 be a
positive non-square.

Although J. Pell contributed very little to the analysis
of the equation, it bears his name because of a mistake
by Euler.

Pell’s equation x? —Dy? =1 was solved by Lagrange
in terms of simple continued fractions. Lagrange was the
first to prove that x*—Dy? =1 has infinitly many solu-
tions in integers if D=1 is a fixed positive hon-square
integer. If the lenght of the periode of /D is 1, all po-
sitive solutions are given by x=PR,,, and y=Q,,
if k is odd, and by x=PR, , and y=Q,_, if k is

P
and — denotes the nth con-

n
vergent of the continued fraction expansion of /D Inci-
dentally, x=F,, 4 and y=Q(2H)gkfl), V=12,
are the positive solutions of x*-Dy’ =-1 provided
that 1 is odd.
There is no solution of x*—Dy?=+1 other than

X,,y, :V=1,2 given by (x1+\/5y1)v = x, +v/Dy,,

where x;,y, is the least positive solution called the
fundamental solution, which there are different method
for finding it. The reader can find many references in the
subject in the book [7].

even, where v=1,2,---
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For completeness we recall that there are many papers
in which are considered different types of Pell's equation.
Many authors such as Tekcan [1], Kaplan and Williams
[2], Matthews [3], Mollin, Poorten and Williams [4],
Stevenhagen [5] and the others consider eome specific
Pell equations and their integer solutions. A. Tekcan in
[1], considered the equation x> —Dy? =+4, and he ob-
tained some formulas for its integer solutions. He
mentioned two conjecture which was proved by A. S.
Shabani [6]. In this paper we extend the work of A. Tek-
can by considering the Pell equation x* - Dy’ = +k®
when D=1 be a positive non-square and k>2, we
obtain some formulas for its integer solutions.

2. The Pell Equation x? — Dy? = k?

In this section, we consider the solutions of Pell's
equation x*—Dy® =k?® when k>2.

Theorem 2.1 Let (x,y,) be the fundamental solu-
tion of the Pell equation x* —Dy® =k?, and let

u,) (% Dy Y (1
[Vn)_(yl X ] [Oj @

for n>1. Then the integer solutions of the Pell equation
x* —Dy? =k* are (x,,y,),where

(xn,yn){%, ) @

Proof. We prove the theorem using the method of
mathematical induction. For n=1, we have from (1),
(u;,v;)=(x,y;) which is the fundamental solution of
x* —Dy® =k*. Now, we assume that the Pell equation
x* —Dy? =k* is satisfied for (x,_;,y,,), i.e.
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2 2
U — Dvn—l
k2n—4

er-l - Dyr?—l = =k? (3)

and we show that it holds for (x,,y, ).
Indeed, by (1), it is easy to prove that
u, = XU, +Dyv,_
{ _ Xl 1 1 1 ) (4)
Vo = Yilp + XV
Hence,

u? — Dv?

2 2 _ Yn n
Xn_Dyn_sz

D ( ylunfl + len—l )2
an—Z

_ (Xlun—l + DY1Vn71)2 B

2,2 2,,2,,2
_ Xl un—l + 2x1un—1 Dylvn—l + D yl Vn—l
- Kk2n-2

D ( y12u§—1 + 2ylun—lxlvn—l + Xlzvrf—l)

k2n—2

X12 (us—l - DV§-1)_ Dylz (urf—l - va—l)

k2n72

u?, —Dv2.
:<X12—DY12)( 1k2n_2 1)

Applying (3), it is easily seen that

UZ Dvﬁfl = an—4k2 - k2n—2 .

n-1"

hence we conclude that
X = Dyi =(x ~Dyf ) = k*.

Therefore (x,,y,) isalso a solution of the Pell equa-
tion x*—Dy? =k”. Since n is arbitrary, we get all in-
teger solutions of the Pell equation x* — Dy® = k?.

Corollary 2.2 Let (x,X,) is the fundamental solu-
tion of the Pell equation x? — Dy’ = k?, then

Xn - Xlxn—l + Dylyn—l , ; - ylxn—l + len—l (5)
k k
and
Xn Xn—l
= —ky,. (6)
Xn—l yn—l

Proof. By (1), we have u, =xu,,+Dyyv, , and
v, = yu _ +%Vv,, by (2), we have u, =k"'x and
v, =k"y, . We get

un = Xiun—l + Dylvn—l’

then,
kn71Xn = Xlkkizxn—l + Dylkn72 yn—l
witch gives
X = X X1+ DY Yoy
n k *
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In the other hand, we have
Vo = YU XV,
S0
kn_lyn = ylkk_zxn—l + X:Lkn_2 Yoot
witch implies
y = YiXna + X1 Yo )
" k
and hence
X, X

n n-1

=X, Yo~ YaXos
yn yn—l ' '

- Xixn—l + Dylyn—l _ ylxn—l + len—l
k k
- XX 1Yot DY1y§71 B ylxs—l — X X1 Yo
k
_ 0BG —Dyi)
k

yn -1 Xn—l

= —ky,.
Theorem 2.3 Let (x,,y,) be the fundamental solu-
tion of the Pell equation x*—Dy? =k?, then (x,,y,)
satisfy the following recurrence relations

X, = [EXi _lj(xnl + X2 ) — X3
()

2
Yo = (;xl —1j(yn_1 +Yn2)=Yos

for n>4.
Proof. The proof will be by induction on n. Using (5),
we have

2:x12+kDyf :xf+xkf—k2 =Exf—k
8
2 ®)
YZ‘EXﬂ/l

Using (5) and (8), we get

=X —k |+ Dy, =
X—Xlxz DY1YZ Xl(kXI ylkX1
s = =

k k
2 202 2y 2K
B X1|:k<X12+Dy12)_k:| ) X1|:k<2xl -k )_kZ}
- k k
2y
_Xl K X 2 )| (4,
- K =X k_le -3
x|+ 2
VXX, _ yl(le j+kX1yl _v (4 2_4q
y3 k k yl kle
9)
APM
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Then by (5) and (9), we find x, and v,.
X = X X; + Dy1Ys

* k
xf(ljzxf—sj+Dyf(;;xf—l)
- K
(k-3 0d i A )
- k
8 , 8
:Fxf —Exf'i‘k
_ Xt XY,
4 k
4 4
ylxl(klez_3j+x1)'1(kzx1z_lj
B K

_xy B2
=43 %

So, we obtained

X, =ixl4 —§xf +k
'S k (10)
Yo =% Fxl _E

Now, replacing (8) and (9) in (7), one obtains

2
Xy :(E)ﬁ_lj(xfi'xz)_xi

N T
2 4 2
Z(Exrlj(k—gxf -3x +EX12 —kj—&

:f—sxf —%xf +k.

and

2
Y4 Z(Exl_lj(ya + YZ)_ Y1

2 4 2
=(;X1 —1j{y1 (k—ZXf —1J+Ex1yl}— A

_ 8 , 4
- Xiyl(kg Xl k j
which are the same formulas as in (10). Therefore (7)
holds for n=4.
Now, we assume that (7) holds for n>4 and we
show that it holds for n+1.
Indeed, by (5) and by hypothesis we have
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Xt Dy, Y,
n+1 k
2
X |:(k X _1] (Xn—l + anz) - Xn3:|
) K
2
Dy, |:(k X _1j (Yoa +Yo2) — yn—3:|
+
k
= (gxi _1) Xixnfl + Dylyn—l + Xan—Z + Dylyn—Z
k k k
_ Xixn—3 + Dylyn—3
k
= (%Xl _1j(xn + Xn—l)_ xn—2'
_ X, + XY,
yn+l k
2
yl |:(k X1 _1j (Xn—l + Xn—2) - Xn—3:|
- k
2
% |:(k X _lJ (yn—l + yn—Z) - yn3:|
+
k
= (g Xl _1) ylxn—l + len—l + ylxn—z + len—z
k k k
_YiXat XiYng
k
(2
- (E Xl _1j(yn + yn—l)_ yn—Z

completing the proof.

3. The Negative Pell Equation
N Dy2 - _K2

Theorem 3.1 Let (x,y,) be the fundamental solution
of the Pell equation x* —Dy? = —k?, then the other so-
lutions are (X1, Yon,1 ) » Where

u V.
(X2n+l’ y2n+1) = (%I%JI (11)

for n>0.

Proof. We prove the theorem using the method of
mathematical induction. For n =0, we have from (11),
(u,v;)=(x,y,) which is the fundamental solution of
x? —Dy? = —k?. Now, we assume that the Pell equation
x> —Dy? = —k* is satisfied for n>0. S0, (X1, Yons1)
i.e.
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Voni = 2% YyUy +(x12 + Dyf)vml. By (11), we have

2 2
_ Upn — DV2n+1

X22n+1 - Dy22n+1 - T = _kz (12) on on
u2n+1 = k X2n+l and V2n+1 = k y2n+1 - We QEt
and we show that it holds for n+1. U, ., =(x2+Dy?)u, ,+2DX VY,V
Indeed, by (1), it is easily to seen that ot <X1 ' ) ot N
2n+3 then,
u2n+3 Xl Dyl\J [1J 2n 2 2 2n-2 2n-2
= K" Xn = + Dy, |k X, +2DxX Y, KTy,
(VM] [yl . 0 e = (X +DYF ) KPP, +2DX YK Y,
n+ witch gives
_[*% Dy, ’ x Dy, e J , ,
Y, X Yy, X 0 . = (X1 +Dy; )XZn—l +2DX, Y, Yo
2 2 (13) ane k? '
_ xl + Dyl 2DX1y1 u2n+l 1
- 2xy, X2+ Dy? )\ V0,0 )10 In the other hand, we have
— 2 2
(Xlz + Dylz)uzml +2DX, Y, Vo1, Vonia = 2% Y1l +(X1 +Dy; )VZn—ll
- S0

2X1y1u2n+l +(X:I.2 + Dy].z)v2n+l
kzn y2n+l = 2lelkzn_ZXZn—l + (X:l2 + Dyl2 ) kZﬂ—Z y2n—1’
Hence, by (*), we have (X,,.,)* = D(Y,n,,)" =—k*

) witch implies
Therefore (xz(nﬂ)ﬂ, yz(n+1)+1) = (Xonyg0 Yanss) IS also @ 2%,Y.X +(xf N Dyz)y
solution of the Pell equation x*>—Dy® = —k?. Since n Yonu = v 2 b Ay
is arbitrary, we get all integer solutions of the Pell equa-
tion x*-Dy? = —k°. and hence
Corollary 3.2 Let (x,,x,) is the fundamental solu- Xors %4
tion of the Pell equation x* —Dy? = —k?, then y y = Xons1Yon-1 ™ YonaaXona
2n+l n-1
2 2
X, = (x +Dy; )X2n|;12+ 2DX,Y1 Y201 ' ~ (Xl2 +Dy? ) Xon 1 +2DX Y, Yon s
(14) - k? ant
2% X0 1 + (X + DYY )Yy
Yoy = o e 2%y + (X + DY) Yons
kz 2n-1
and
=2 DySn—l B XZZn—l
- Xiyl 2
X2n+1 X2n—1 - 2X1y (15) k
y2n+1 y2n—1 ' _(_kz)
i = 2le1—2
Proof. Using (1), we have k
= 2% Y

u2n+1 = (Xlz + Dyl2 )UZn—l + 2DX1ylV2n—l and

DVnis _ ((Xl2 +Dy; )U2n+1 +2DX Y1V )2 D(?'lelu?'”l +(X12 +Dy; )VZ””)Z

us . —
(*) X2 _ Dy2 _ Y2n+3 _
2n+3 2n+3 -
k4n+4 k4n+4 k4n+4

2
(Xlz + Dylz) u22n+1 + 4DX1 yl (X12 + Dyl2 )u2n+1v2n+l + 4D2X12 y12V22n+1

k4n+4

2
(3¢ + DY ) Vi +4DX Y, (X + DYF Uy iV, +4DXYPUS,

k4n+4

2 2 2
Dv 2 Uy — Dv2n+l

2 —_
= (0 + Dy2 ) —4Dty? et i = (x¢ —py? )t T2
(_kZ)Z l"122n+1 ;4E)V§n+1 kiz; =Kk* (_kz)k_]:1 = _k?
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Theorem 3.3 Let (x,y,) be the fundamental solu-

2 2 2 2 2
tion of the Pell equation x*—Dy? = —k?, then (x,,y,) X, = (5 +Dy; )% +2Dxy; _ % (% +3Dy;)
satisfy the following recurrence relations k? k? (17
4, _Xl(xf+3xf+3k2)_ 4,
Xons1 = in +1 (XZn—1+X2n—3)_X2n—5 - k2 =X ZX +3
4 (16)
Yanes = (k—ZXf +1)(y2n1 +Vans) = Yans 2y (DY )y, (26 4+ Dy;)
y3 - k2 - k2
(18)
for n>3 _ _ _ _ y1(4X1+k) 4
Proof. The proof will be by induction on n. Using == - /= (_ 2 +1j
2 yl 2 Xl
(14), we have k k

Using (14), (17) and (18), we get

4
(4 + Dy )%, + 2Dx,y,y, (xf+Dyf)xl( X +3)+2Dx1y1( X +1)

_ _ 4 4 , 2
X5 = % = % _Fxl % X, +5% +5— (19)
2 2 2x2y. ixf+3 (x1 + Dy? )y X2 +1
2y +(X+ DY)y, TN e e B I
y5 - k2 - kz _Fyl k_le +3Xl + (20)

Then by (19) and (20), we find x, and vy,.

(¢ +Dy?)| % A i asx 45
(xf+Dyf)x5+2Dxlyly5_ ke T K2 4

X = kZ - k2
4 (4 4 L, K
2DX, Y, | 5 Vol 5 X 3%+ —
ly1|:k2 yl(k2X1 Xl 4 _ 4 16 ] 28 . , kz
+ % _Fxl k4X1+FXl +14x; +7T

2%, Y. A | A xe sy +5k—2
2y + (DY )y, T e TR T

y7 - k2 k2

4 4 k?
2 DZ 4 32
(X1+ y1)|:k2 yl[kle+ X1+4J:| 4 (16 ZJ
= x1+5

+ % =— X!+ 6% +—

So, we obtained

2
:ki'le[lfsxf+2—x1 +14x; +7kTJ
4 4 k? =
Yi =70 4X1+5 X; +6% +—
k k 4

Now, replacing (17), (18), (19) and (20) in (16), one obtains

4 4 4 k? 4
x7=(Fxf+1j(x5+x3)—xl:(Fxfﬂj{k—le( X' +5x +5— j xl( 2xf+3ﬂ—

2
:%&[16@#2 %' +14%;7 +7k7j

Copyright © 2011 SciRes. APM
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and
4 4 4 4 k? 4
Y, = (inz +1\J(y5 + ys)_ Y1 = (Fxlz +1)|:FY1(FX14 +3X12 +TJ+ yl(Fxlz +1j:|_ Y1
4 16 4 k?
= Fyl(k_“xf +5FX14 +6x’ +Tj
which are the same formulas as in (21). Therefore (16) Now, we assume that (16) holds for n>3 and we
holds for n=3 show that it holds for n+1.

Indeed, by (14) and by hypothesis we have

(x12 + Dy12 ) X2n+1 + 2DX1y1y2n+1

X2n+3 = kz
2 2 4 2 4 2
(Xi + Dyl ) P Xl +1 (XZn—l + XZn—3 ) - XZn—S 2DX1 yl P Xl +1 (yZn—l + y2n—3 ) - yZn—S
= kZ + kZ
_ 4 2 (Xl2 + Dyl2 )(XZn—l + X2n—3)+ 2DX1 yl ( y2n—l + y2n—3) (X12 + Dyl2 ) XZn—5 + 2DX1 ylyZn—S
=lzxtl 2 - 2
k k k
4, DY )% +2D% Y Yo0s (4, Y+ DY )% s+ 2DX Vi Yo
= Fxl +1 % + W +1 %
(X +DYf )Xo s +2D%YiYon s (X +DYE ) X5 +2DX Y Yi0
- k2 - k2
_ 2X1ylx2n+l +(X12 + Dy12 ) y2n+1
y2n+3 - kz
4 , 2 214 ,
2%y, P X 1] (Xop g+ Xon ) = Xon_s (X1 + Dy)l P X 1 (Xons + Xon3) = Xonos
) K2 " K2
(4, 2%, Y1 %1 +(X12 +Dy; ) Yana 4 , 2XY1%on 3 +(X12 + Dylz) Yon-s
==X +1 5 =X +1 5
k k k
2% Y1%on s +(X12 + Dylz) Yon-s 4
- - k2 = = (Fxlz +lj(y2nl+y2n3)_ Yon_s-
completing the proof. x*—my®=-1,-4 and continued fractions,” Journal of
Number Theory, Vol. 23, 1986, pp. 169-182.
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