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We investigated whether individuals with training in the visual arts show superior performance on geometric 
reasoning tasks, given that both art and geometry entail visualization and mental manipulation of images. Two 
groups of undergraduates, one majoring in studio art, the other majoring in psychology, were given a set of 
geometric reasoning items designed to assess the ability to mentally manipulate geometric shapes in two- and 
three-dimensional space. Participants were also given a verbal intelligence test. Both training in the arts and 
verbal intelligence were strong predictors of geometric reasoning, but training in the arts was a significant pre-
dictor even when the effects of verbal intelligence were removed. These correlational findings lend support to 
the hypothesis that training in the visual arts may improve geometric reasoning via the learned cognitive skill of 
visualization. 
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Introduction 

The ability to visualize what cannot be seen directly is con-
sidered a critical skill in mathematics and science (Cunningham, 
2005). For example, when asked to reflect on his thinking, 
Einstein wrote that words “do not seem to play any role in my 
mechanism of thought.” Instead, he described the primary ele-
ments of his thinking as “certain signs and more or less clear 
images” (Hadamard, 1945). Kekulé reported that he discovered 
the circular structure of the benzene molecule after dreaming of 
a snake biting its own tail (Perkins, 1983). And Watson and 
Crick’s discovery of DNA’s double-helix structure involved 
model building and visualization (Watson, 1968). Edward 
Tufte’s work on visualizing statistical data states, “Graphics 
reveal data. Indeed graphics can be more precise and revealing 
than conventional statistical computations” (Tufte, 2001). Vir-
tually every STEM (Science, Technology, Engineering, and 
Mathematics) discipline calls upon visual or spatial thinking: 
chemists envision molecular structures and their interactions; 
geologists use field observations to envision structures that 
cannot be seen; engineers use visual feedback from computer 
models as they develop and test designs; topologists and geo-
meters investigate mathematical relationships under various 
transformations.  

Educational organizations in mathematics and science also 
emphasize the importance of visual representation and reason-
ing capacities (National Council of Teachers of Mathematics, 
2000). For example, the Principles and Standards for School 
Mathematics and the Common Core Standards explicitly de-

scribe visualization as a tool for problem-solving and also rec-
ognize the essential role of being able to represent and interpret 
mathematical ideas and problems in visual forms, including 
graphs, sketches, and diagrams. Despite the acknowledged 
importance of the role of visualization in mathematics, however, 
it is given relatively short shrift in many mathematics curricula 
(Hogan, 1993; Lappan, 1999; Goldenberg, 1996). Even geome-
try, a highly spatial area of mathematics, is generally taught 
with a strong symbolic, algebraic focus. Instead, one could 
argue that the dual perspectives of formal symbolism and visu-
alization constitute complementary approaches for conceptua-
lizing the same geometric task. Visualization may thus be ap-
plied as a tool for solving a mathematical problem in the same 
way that symbolic algebraic expressions can (Whiteley, 2004). 
It is therefore just as fundamental to educate students to engage 
in visual representation of geometric principles as it is to teach 
them to generate coherent symbolic arguments using formal 
algebraic notation. Support for this position comes from the 
work of mathematician William Thurston, famous for demon-
strating the power of visual representations to communicate 
abstract mathematical ideas and winner of the Fields Medal in 
1982. He argued that formal proofs are less appealing than the 
more intuitive tool of graphics to communicate abstract ma-
thematical ideas, and he tried to develop ways to teach basic 
geometry through visual arguments (Hogan, 1993).  

How can students develop the kinds of visualization abilities 
that will help them reason geometrically? We have begun to 
explore the possibility that the development (and exercise) of 
visualization skills in non-mathematical domains—for example, 
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the visual arts—may support students’ geometric thinking.  As 
Gardner (2007) has argued, the visual arts are a domain that 
relies heavily on visual-spatial thinking. It is possible, therefore, 
that students who acquire training in the visual arts may be able 
to apply their visualization skills to support their mathematical 
and scientific thinking as well. 

Visualization seems to be a fundamental habit of the artistic 
mind. Artists do not just magically “see” in their mind’s eye, 
but deliberately and systematically analyze shape and space 
into familiar simple forms, construction lines, angles, and size 
ratios (Kozbelt, 1991). This process is essential for depicting 
three-dimensional objects on a two-dimensional surface. Visua-
lization is also of value when creating three-dimensional ob-
jects, which often must be ‘pictured’ as a whole before they are 
built. An ethnographic study of intensive high school arts pro-
grams by Hetland, et al. (2007) found that 'envisioning' (visua-
lization) is one of eight habits of mind that are taught in visual 
arts studio classes. Visualization (envisioning) involves the 
formation of images (often mental) which can then guide ac-
tions and problem solving and can even lead to problem finding 
(Getzles & Csikszentmihalyi, 1975) The art teachers studied 
provided their students with continual practice in imagining 
space, line, color, and shape, regularly asking their students 
such questions as, “What would this look like if you extended 
this line?” “What is the underlying structure of this composi-
tion?” “Where would the shadow fall if the light were coming 
from that window?” Such questions prompt students to envi-
sion what is not there. Visual art students also study skeletal 
and muscular anatomy to help them envision the underlying 
structure of the human figure and the forces at work within 
various poses. 

Whether based on training, innate ability, or some combina-
tion of the two, visual artists have been shown to possess supe-
rior visual-spatial capacity when compared to non-artists.  
Visual artists excel in mental rotation and visual memory (Ca-
sey, et al., 1990; Hermelin & O’Connor, 1986; Rosenblatt & 
Winner, 1988), visual attention and visual analysis of objects 
(Kozbelt & Seeley, 2007), and form recognition (Kozbelt, 1991; 
Cohen & Bennett, 1997; Mitchell, et al., 2005). In a functional 
MRI study, Solso (2001) examined the neural activity of artists 
and non-artists while they drew faces inside the scanner. Artists 
showed more right prefrontal activation (an area associated 
with the manipulation of visual forms) and less activation in the 
fusiform face region (an area associated with duplicating visual 
forms). Solso interpreted this latter finding as showing that the 
artist was focused less on copying the face and more on an 
abstract analysis of its shapes, features, and organization.  

It has already been demonstrated that geometry learning fos-
ters improvements in visualization tasks (Ben-Chaim, Lappan, 
& Houang, 1988; Clements, 1997). In this study, we examined 
this relationship from the opposite direction, asking whether the 
development of visualization skills in a non-mathematical con-
text may confer an advantage for geometric reasoning. The 
study presented here represents a first step in a program of re-
search examining whether training in the visual arts transfers to 
geometric reasoning. The possibility of transfer is plausible 
because both domains rely on mental manipulation of forms in 
space, thereby allowing for the possibility of “near transfer” 
among domains that are related (Salomon & Perkins, 1989).  

Methods 
 

Participants 

A total of 36 (mostly female) college undergraduates partic-
pated. There were 18 studio art majors (mean age = 22;4, range 
= 19;5 – 27;7, 14 females) and 18 psychology majors (mean 
age = 22;10, range = 19;8 – 26;5, 17 females). Two additional 
non-artists were tested but excluded because they were over 
two standard deviations above the mean age range (these par-
ticipants were 34;4 and 41;1 years old). Both groups were se-
niors at the same small public university that attracts predomi-
nantly low- to mid-income students (average combined SAT 
score: 1045, average GPA: 3.62). There were 71% White 
(non-Hispanic) participants, 26% African American partici-
pants, and < 3% Hispanic, Asian, and Native-American partic-
ipants. Both groups of participants had completed an average of 
6.5 semesters of undergraduate work (first semester seniors). 

The art majors who participated in the study had a consider-
able amount of art training, having taken an average of 16 un-
dergraduate art courses. Psychology majors had taken no more 
than one undergraduate art course. All participants had com-
pleted approximately the same number of undergraduate math 
courses at the time of the study: psychology majors had com-
pleted an average of 1.7 undergraduate and 4 high school math 
courses, and art majors had completed an average of 1.4 under-
graduate and 3.8 high school math courses.  

Materials & Procedure 

With the help of a group of geometers and mathematics edu-
cators, we adapted a set of items originally developed by Calla-
han (1999) to create a 27-item geometric visualization/reasoning 
inventory. The geometric measure that we developed is not de-
pendent upon formal geometry knowledge such as equations or 
definitions, but instead focuses on geometric thinking. (See Ap-
pendix A for sample geometric reasoning items used for the test. 
The full version of the geometric reasoning items can be found at 
http://www2.bc.edu/~winner/current.html). These items requ- 
ired participants to rely upon visual working memory and the 
ability to engage in various spatial transformations. Participants 
were not allowed to make drawings to help them solve the 
problems, because we wanted to assess their capacity to solve 
the problems using mental visualization, rather than the mani-
pulation of external representations. 

Most of the items required the ability to visualize both two- 
and three-dimensional space. In some items participants were 
asked to imagine building a shape, step-by-step, then to mani-
pulate that shape mentally (e.g., to slice the shape into pieces; 
see sample item 4), and to describe the resultant shape. In other 
items participants were asked to mentally perform a three- 
dimensional transformation such as a rotation on a complex 
shape and describe the result (see sample item 3). Finally, in 
some items, participants were asked to imagine a known shape 
(e.g., a cube, a pyramid), to perform some additional mental 
manipulation on that shape (e.g., to combine the shape with 
other shapes), and then to describe the result (see sample item 
5). All items were piloted with undergraduate students and were 
found to be solvable, though difficult.  

Participants were tested in small groups by one researcher, 
and the testing session lasted approximately 1.5 hours. Partici-
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pants were first asked to complete the geometric reasoning task.  
The 27-item task was administered in written form, but each 
item was read aloud as students read along silently. After the 
researcher reviewed each of the items aloud to the group, clari-
fying any confusion about wording, all participants were in-
structed to complete the task at their own pace and to record 
their answers on their individual packets. Researchers were 
available throughout the testing session to answer any individ-
ual questions as they arose. 

To control for verbal intelligence, we administered the two 
verbal sections of the Kaufman Brief Intelligence Test (KBIT). 
The first section assesses vocabulary: participants are shown 15 
pictures and asked to name each one.  Items increase in diffi-
culty (e.g., item 1 is a cash register and item 15 is a thermostat).  
The second section consists of 32 words, each of which has 
several missing letters. Participants are given a verbal clue and 
asked to fill in the complete word. For example, participants see 
BR_W_ along with the clue “a dark color;” here the correct 
answer is BROWN. Items increase in difficulty (e.g., item 1 
was “Santa’s entrance” /_ _ IM_EY [answer: CHIMNEY] and 
item 32 was “Due to chance or fate” / _ _ RE_ _I_I_Y [answer: 
SERENDIPITY]).  Both sections began with the researcher 
modeling how to solve a sample problem. The KBIT items 
were presented on PowerPoint slides one item at a time, and 
participants filled in the words on their answer sheets. Follow-
ing the testing session, participants completed a brief demo-
graphic questionnaire that included questions about the num-
bers of art and mathematics courses taken. 

 
Results 

 
As shown in Figure 1, performance on the geometric reason-

ing skills task was higher for the art majors (M = 11.46, SD = 
4.12) than for the psychology majors (M = 8.12, SD = 2.89), 
Cohen’s d = .93. Inspection of the individual items revealed 
that the art majors performed better than the psychology majors 
on all but two of the items. To determine whether visual arts 
training significantly predicted geometry performance, a linear 
regression analysis was conducted, with the total score on the 
geometric reasoning task included as the dependent variable 
and group membership (art major vs. psychology major) and 
scores on the two sections of the KBIT included as independent 
variables.  

Table 1 shows the squared bivariate correlation coefficients 
 

 
Figure 1. 
Mean geometry scores for psychology majors and art majors (out 
of a possible score of 27). 

Table 1. 
Regression Analysis Showing Relationship of Arts Training and Verbal 
Intelligence Scores on the Geometric Reasoning Skills Task. 

Variable 
 

Regression Analysis Results 
r2 t B      SEB       Beta 

Art Training 
 

KBIT 1 
 

KBIT 2 

.402** 
 

.369* 
 

2.447** 

2.310 
 

.777 
 

2.205 

2.810    1.219     .340* 
 

.391     .504     .128 
 

.252     .114     .356* 
 
between each independent variable and geometry performance. 
Training in the arts and scores on the KBIT 2 (i.e., filling in 
missing letters to complete a word) both were strong predictors 
of geometry performance, by themselves and in the context of 
all three independent variables. Most importantly, training in 
the arts was a significant predictor of geometry performance (b 
= .340, t (34) = 2.31, p = .027), even when the effects of verbal 
intelligence (as measured by KBIT 1 and 2) were removed. 
Gender was not included as a variable due to the small number 
of male participants.  

 
Discussion 

 
This study provides initial evidence that individuals with 

college level training in visual art perform better in geometric 
reasoning than do individuals without such training. However, 
the quasi-experimental design of the research does not allow 
causal inferences about the direction of this relationship; we see 
three possible explanations for the findings. First, it is possible 
that training in the visual arts does have a causal effect on visu-
al-spatial skills (which could be detected with another experi-
mental design): visual arts training may strengthen such skills 
and thereby lead to improvements in geometry performance. A 
second possible explanation is that students self-select into the 
visual arts because of strong visual-spatial skills: these students 
may perform well in geometry as a function of their preexisting 
strong spatial skills, not as a function of arts training. The third 
explanation is that both of these possibilities are true: students 
with above average visual-spatial skills may opt into the visual 
arts and these skills may grow stronger with training. Thus, 
visual arts training would still lead to improved geometry per-
formance through the mechanism of stronger spatial visualiza-
tion skills. Two studies are currently underway using quasi- 
experimental pre-post test designs to examine these possibili-
ties.  

If transfer of visualization skill from visual arts to geometry 
can be demonstrated, then perhaps the visual arts will no longer 
be seen as a competitor for time spent in core subjects such as 
mathematics. In addition to their intrinsic importance, the visual 
arts might then be seen as an entry point for the learning of 
geometry or as a novel (and possibly “real world”) context to 
deepen geometric understanding. This could especially be the 
case where the focus of the geometry instruction is on dynamic 
reasoning (e.g., Seago, Driscoll, & Jacobs, in press) rather than 
the memorization and application of static rules and relation-
ships (as is required in the generation of symbolic proofs). Fur-
thermore, art teachers may come to see themselves as collabo-
rators with their fellows in academic areas, intentionally focus-
ing attention on skills like geometric reasoning, and also inten-
tionally teaching for transfer. This collaboration may provide a 
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more comprehensive education for students in both art and 
academics, preparing them for a future in which synthesizing 
knowledge from diverse domains will be essential skills 
(Gardner, 2007). 
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Appendix 
 
Appendix A. Sample Items from the Geometric Reasoning 

Task. 
Sample Item 1. Below are pictures of “nets.” You can fold 

them on the solid lines to make 3-dimensional forms. Circle the 
one(s) that can be folded into a closed form (that is, one that has 
no holes or openings). 

Sample Item 2. How many different colors do you need to 
paint the faces of a cube so that no two faces that touch have the 
same color? Figure out the answer in your head without draw-
ing. Describe your answer in words as best you can. 

Sample Item 3. Imagine holding a small square card by the 
diagonal corners and spinning it around the diagonal. What 
shape would be carved out in the air? Figure out the answer in 
your head without drawing. Describe your answer in words as 
best you can. 

Sample Item 4. Imagine a triangle that has 3 equal sides. In 
your mind, mark the sides of this triangle into thirds, and cut 
off each of the triangle’s corners at the marks. Describe the 
shape you get. Figure out the answer in your head without 
drawing. Describe your answer in words as best you can. 

 

 
 
 
Sample Item 5. Imagine five points equally spaced around a 

circle. You get a regular pentagon (a shape with five equal sides) 
when you connect each point with the one next to it. What 
shape do you get if you connect every other (alternating) point? 
Try to figure out the answer in your head without drawing. 
Describe your answer as best you can. 

Sample Item 6. Imagine two squares. Both have sides 1 inch 
long. Imagine pinning a corner of one square to the center of the 
other square. What is the area of the part that overlaps? Try to 
figure out the answer in your head, without drawing. Describe 
your answer in words as best you can. 

 
 

 


