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Abstract 
In this article, the solitary wave and shock wave solitons for nonlinear Ostrovsky equation and 
Potential Kadomstev-Petviashvili equations have been obtained. The solitary wave ansatz is used 
to carry out the solutions. 
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1. Introduction 
Nonlinear wave phenomena appear in various scientific and engineering fields such as electrochemistry, elec- 
tromagnetics, fluid dynamics, acoustics, cosmology, astrophysics and plasma physics. See references [1]-[4]. 

In recent time, the numerous approaches have been developed to obtain the solutions of nonlinear equations. 
For example the ( )G G′ -expansion method [5] [6], the first integral method [7], the adomian decomposition 
method [8], the generalized differential transform method [9], Jacobi elliptic method [10], the automated tanh- 
function method [11] and the modified simple equation method [12] etc. 

Nonlinear wave is one of the fundamental objects of nature and a growing interest has been given to the prop- 
agation of nonlinear waves in the dynamical system. The solitary wave ansatz method [13] [14] is rather heuris- 
tic and processes significant features that make it practical for the determination of single soliton solutions for a 
wide class of nonlinear evolution equations. The solitary wave and shock wave solitons have been obtained, us- 
ing solitary wave ansatz method, for nonlinear Ostrovsky equation and Potential Kadomstev-Petviashvili (PKP) 
equation, and we clearly see the consistency, which has recently been applied successfully. 

The Ostrovsky equation is, a model of ocean currents motion, read as 

( )( )2 0,t xxxx x
u u u uβ γ+ − − =                              (1.1) 
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where β  and γ  are constants. Parameter β  determines the type of dispersion, namely, 1β = −  (negative- 
dispersion) for surface and internal waves in the ocean and surface waves in a shallow channel with an uneven 
bottom; 1β =  (positive dispersion) for capillary waves on the surface of liquid or for oblique magneto-acous- 
tic waves. Parameter > 0γ  measures the effect of rotation. 

The Potential Kadomstev-Petviashvili (PKP) equation has been considered in the following manner 

( ) ( )3 2 0.t x xxx
u u u+ + =                                   (1.2) 

2. Solitary Waves Solitons 
In this section, the solitary wave solution or non-topological solution to the Ostrovsky Equation (1.1) and Poten- 
tial Kadomstev-Petviashvili Equation (1.2) have been found using the following solitary wave ansatz. For this, 
we have 

( ) ( ), , where  
cosh p

Au x t B x tξ ν
ξ

= = −                           (2.3) 

where A  is the amplitude of the solitons, B  is the inverse width of the solitons and ν  is the velocity of the 
solitary wave. 

2.1. OS-BBM Equation 
From the Equation (2.3), it can be followed 

tanh
cosht p

AB pu ν ξ
ξ

=                                     (2.4) 

( )
2

2
2

2 tanh
cosh px

A Bpu ξ
ξ

−
=                                  (2.5) 

( )( )33 3

2

1 2 tanhtanh
cosh coshxxx p p

AB p p pAB pu
ξξ

ξ ξ+

+ +−
= +                       (2.6) 

cosh p

Au
ξ

=                                      (2.7) 

( )( ) ( )( )32 3 3
2

2 2

1 2 tanhtanh 2 tanh tanh
cosh cosh cosh cosht xxx p p p px

AB p p pAB p A Bp AB pu u u
ξν ξ ξ ξβ

ξ ξ ξ ξ+

 + +− − + − = + − + 
  

 

( )( ) ( ) ( )

( ) ( ){ } ( )( )( )

2 2 22 2 2 2 2 4 4
2

2 2 2 2

24 2 4

2 4

1 2 2 14
cosh cosh cosh cosh cosh

1 2 1 2 3
.

cosh cosh

t xxx p p p p px x

p p

AB p p A B p pAB p A B p AB pu u u

AB p p p p AB p p p p

νν ββ
ξ ξ ξ ξ ξ

β β
ξ ξ

+ +

+ +

+ +−
+ − = + + − −

+ + + + + +
+ −

     (2.8) 

After substituting Equations (2.4)-(2.8) into (1.1), the following equation is obtained 

( ) ( ) ( ) ( ){ }

( )( )( )

24 22 2 22 2 2 2 2 4 4

2 2 2 2 2

4

4

1 21 2 2 14
cosh cosh cosh cosh cosh cosh

1 2 3
0.

cosh cosh

p p p p p p

p p

AB p p p pAB p p A B p pAB p A B p AB p

AB p p p p A

βνν β
ξ ξ ξ ξ ξ ξ

β γ
ξ ξ

+ + +

+

+ + ++ +−
+ + − − +

+ + +
− − =

  (2.9) 

It may be noted that 2p =  is being calculated when exponents 2 2p +  and 4p +  are equated equal to 
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each other. Furthermore, set the coefficients of the linearly independent terms to zero. Thus, we can write 

( ) ( )( )( )2 2 4

2 2 4 4

2 1 1 2 3 0,  

0.

A B p p AB p p p p

AB p AB p A

β

ν β γ

− + − + + + =

− − − =
 

Solving the above system of equations and also set 1p = , then it can be written 

( ) 4

2

1 1610 , , .
4

BA B B B
B

β γβ ν
− +

= − = =  

Hence, the solitary wave solution of the OS-BBM equation is given by 

( )
( ){ }

, .
cosh

Au x t
B x tν

=
−

                            (2.10) 

2.2. Potential Kadomstev-Petviashvili (PKP) Equation 
It can, thus, be written from Equation (2.3) as follows 

tanh
cosht p

AB pu ν ξ
ξ

=                                    (2.11) 

( )
3

3
3

3 tanh
cosh px

A Bpu ξ
ξ

−
=                                  (2.12) 

( ) ( )( )2 32 3 3
2

2 2 2

2 2 1 2 2 tanh8 tanh .
cosh coshp pxxx

A B p p pA B pu
ξξ

ξ ξ+

+ +−
= +                   (2.13) 

After substituting Equations (2.11)-(2.13) into Equation (1.2), the following equation is obtained 

( )( )2 33 2 3 3

3 2 2 2

2 2 1 2 2 tanhtanh 3 tanh 8 tanh 0.
cosh cosh coshcosh p p pp

A B p p pAB p A Bp A B p ξν ξ ξ ξ
ξ ξ ξ ξ+

+ +− −
+ + + =         (2.14) 

It may be noted that 2p =  is being calculated when exponents 3p  and 2 2p +  are equated equal to each 
other. Furthermore, set the coefficients of the linearly independent terms to zero. Thus, we can write 

( ) ( )3 2 33 2 2 1 2 2 0.A Bp A B p p p− + + + =  

Solving the above system of equations and also set 2p = , then it can be written 
220 , , .A B B B ν ν= = =  

Hence, the solitary wave solution of the Potential Kadomstev-Petviashvili (PKP) equation is given by 

( )
( ){ }

, .
cosh

Au x t
B x tν

=
−

                               (2.15) 

3. Shock Waves Solitons 
In this section, the shock wave solution or topological solution to the Ostrovsky Equation (1.1) and Potential 
Kadomstev-Petviashvili Equation (1.2) have been found using the following solitary wave ansatz. For this, we 
can write 

( ) ( ), tanh , where    and  0pu x t A B x t pξ ξ ν= = − >                      (3.16) 

where A  and B  are free parameters and are the amplitude and inverse width of the soliton, while ν  is the 
velocity of the soliton. The value of the exponent p  is determined later. 

3.1. OS-BBM Equation 
Following Equation (3.16), it can be written 
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{ }1 1tanh tanhp p
tu AB pν ξ ξ− += − −                           (3.17) 

( ) { }2 2 2 1 2 12 tanh tanhp p

x
u A Bp ξ ξ− −= −                         (3.18) 

( )( ) ( )
( ) ( )( )

3 3 3 2 1

3 2 1 3 3

1 2 tanh 3 3 2 tanh

3 3 2 tanh 1 2 tanh

p p
xxx

p p

u AB p p p AB p p p

AB p p p AB p p p

ξ ξ

ξ ξ

− −

+ +

= − − − − +

+ + + − + +
               (3.19) 

( )( )
{ } { } ( )( )

( ) ( ) ( )( )

2

1 1 2 2 1 2 1 3 3

3 2 1 3 2 1 3 3

tanh tanh 2 tanh tanh 1 2 tanh

3 3 2 tanh 3 3 2 tanh 1 2 tanh

t xxxx

p p p p p

p p p

u u u

AB p A Bp AB p p p

AB p p p AB p p p AB p p p

β

ν ξ ξ ξ ξ β ξ

β ξ β ξ β ξ

− + − + −

− + +

+ −

= − − + − − − −

+ − + − + + + + +

 

( )( )
( ) ( ) ( )

( ) ( )( )( )
( )( ) ( )
( )

2

2 2 2 2 2 2 2 2 22

2 2 2 2 2 2 2 2 4 4

4 2 2 4 2 2

4 2

1 tanh 2 tanh 1 tanh 2 2 1 tanhtanh
8 tanh 2 2 1 tanh 1 2 3 tanh

4 1 2 2 tanh 2 3 5 tanh

4 1

t xxxx x
p p pp

p p p

p p

u u u

AB p p AB p AB p p A B p p

A B p A B p p AB p p p p

AB p p p p AB p p

AB p p p

β

ν ξ ν ξ ν ξ ξ

ξ ξ β ξ

β ξ β ξ

β

− −+

+ −

−

+ −

= − − + − + + −

− + + − − − −

+ − − + − +

+ + ( ) ( )( )( )2 4 42 2 tanh 1 2 3 tanh .p pp AB p p p pξ β ξ+ ++ + − + + +

   

(3.20) 
After substituting Equations (3.17)-(3.20) into (1.1), the following equation is obtained 

( ) ( )

( ) ( )

( )( )( ) ( )( )
( ) ( )( )

2 2 2 2 2 2

2 2 2 2 2 2 2 2 2 2 2 2

4 4 4 2 2

4 2 2 4 2 2

4

1 tanh 2 tanh 1 tanh

2 2 1 tanh 8 tanh 2 2 1 tanh

1 2 3 tanh 4 1 2 2 tanh

2 3 5 tanh 4 1 2 2 tanh

p p p

p p p

p p

p p

AB p p AB p AB p p

A B p p A B p A B p p

AB p p p p AB p p p p

AB p p AB p p p p

AB

ν ξ ν ξ ν ξ

ξ ξ ξ

β ξ β ξ

β ξ β ξ

β

− +

− +

− −

+

− − + − +

+ − − + +

− − − − + − − +

− + + + + +

− ( )( )( ) 41 2 3 tanh tanh 0.p pp p p p Aξ γ ξ++ + + − =

 

It may be noted that 2=p  is being calculated when exponents 2 2p +  and 4p +  are to be set equal to 
each other. Furthermore, set the coefficients of the linearly independent terms to zero. It can, thus, be written as 

( ) ( )( )( )
( ) ( )

2 2 4

2 2 2 2 4 2 2

2 2 1 1 2 3 0,

2 2 2 1 2 3 5 0.

A B p p AB p p p p

AB p A B p p AB p p A

β

ν β γ

+ − + + + =

+ − − + − =
 

Solving the above system of equations and also set 2p = , then it can be written 
4

2
2

1 646 , , .
8

BA B B B
b

β γβ ν
 +

= = =  
 

 

Hence, the solitary wave solution of the OS-BBM equation is given by 

( ) ( )2, tanh , 0.u x t A B x t pν= − >                             (3.21) 

3.2. Potential Kadomstev-Petviashvili (PKP) Equation 
From Equation (3.16), it can be followed 

{ }1 1tanh tanhp p
tu AB pν ξ ξ− += − −                             (3.22) 

( ) { }3 3 3 1 3 13 tanh tanhp p

x
u A Bp ξ ξ− += −                           (3.23) 
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( ) ( )( ) ( )
( ) ( )( )

2 2 3 2 3 2 3 2 2 1

2 3 2 2 1 2 3 2 3

2 2 1 2 2 tanh 2 12 6 2 tanh

2 12 6 2 tanh 2 2 1 2 2 tanh .

p p

xxx

p p

u A B p p p A B p p p

A B p p p A B p p p

ξ ξ

ξ ξ

− −

+ +

= − − − − +

+ + + − + +
            (3.24) 

After substituting Equations (3.22)-(3.24) into (1.2), the following equation is obtained 

{ } { }
( )( ) ( )
( ) ( )( )

1 1 3 3 1 3 1

2 3 2 3 2 3 2 2 1

2 3 2 2 1 2 3 2 3

tanh tanh 3 tanh tanh

2 2 1 2 2 tanh 2 12 6 2 tanh

2 12 6 2 tanh 2 2 1 2 2 tanh 0.

p p p p

p p

p p

AB p A Bp

A B p p p A B p p p

A B p p p A B p p p

ν ξ ξ ξ ξ

ξ ξ

ξ ξ

− + − +

− −

+ +

− − + −

+ − − − − +

+ + + − + + =

 

It may be noted that 2p =  is being calculated when exponents 3 1p +  and 2 3p +  are to be set equal to 
each other. Furthermore, set the coefficients of the linearly independent terms to zero. It can, thus, be written as 

( )( )
( )( )

3 2 3

2 3

3 2 2 1 2 2 0,

2 2 1 2 2 0.

A Bp A B p p p

AB p A B p p pν

− − + + =

− + − − =
 

Solving the above system of equations and also set 2p = , then it can be written 
2 420 , , 240 .A B B B Bν= − = = −  

Hence, the solitary wave solution of the Potential Kadomstev-Petviashvili (PKP) equation is given by 

( ) ( ), tanh , 0.pu x t A B x t pν= − >                             (3.25) 

4. Conclusion 
The growing interest of nonlinear waves has been given to the propagation in the dynamical system. The solitary 
wave ansatz method is rather heuristic and processes significant features that make it practical for the determina- 
tion of single soliton solutions for a wide class of nonlinear evolution equations. The solitary wave and shock 
wave solitons have been constructed, using the solitary wave ansatz method, for Ostrovsky equation and Poten- 
tial Kadomstev-Petviashvili equation and we clearly see the consistency, which has recently been applied suc-
cessfully. 
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