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Abstract 
This work presents a new methodology based on Linear Programming (LP) to tune Proportional- 
Integral-Derivative (PID) control parameters. From a specification of a desired output time do-
main of the plant, a linear optimization system is proposed to adjust the PID controller leading the 
output signal to stable operation condition with minimum oscillations. The constraint set used in 
the optimization process is defined by using numerical integration approach. The generated opti-
mization problem is convex and easily solved using an interior point algorithm. Results obtained 
using familiar plants from literature have shown that the proposed linear programming problem 
is very effective for tuning PID controllers. 
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1. Introduction 
Since Dantzig invented the simplex method [1], the Linear Programming (PL) has been applied to solving prob- 
lems from many research areas. In 1984 Karmarkar presented interior point algorithm for solving linear pro- 
gramming [2] without the inconvenience of the exponential complexity of the Simplex algorithm. 

The article [3] presents an application of linear programming in power system engineering concerning system 
operation issues, like generation scheduling, loss minimization and also economics aspects such as planning of 
capital investments in generation equipments. It was presented a review of the linear programming utilization as 
well as some extensions to the techniques like the integer and quadratic programming and analyzed the incorpo- 
ration of financial aspects to the problem. In [4] it is possible to see an application of linear programming in the 
determination of coordinated relay settings through a two-phase simplex method. Another application of linear 
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programming is presented in [5] and reference [6] was pointed out the utilization of linear programming as one 
of the techniques to solve the unit commitment problem. 

Proportional-Integral-Derivative (PID) controllers are a very efficient solution to obtain the desired output 
from the plant in steady state as well for dynamic response. Due to this aspect, the utilization of PID controllers 
has become very popular. The references [7] [8] present the main tuning methods utilized in academic research 
as well in industry. Two classical methods that are still utilized are the Ziegler-Nichols and the Cohen-Coon 
which utilize analytical approaches for analysis and tuning.  

There are other analytical methods as described in [9]. Usually these methods employ heuristics [10] or intel- 
ligent methods like genetic algorithms [11], differential evolution [12] and particle swarm optimization [13]. 
These approaches demand the existence of a population according to an evolution criterion. Although these me- 
thods present good results, usually the computational time is high and requires several parameters tunings. One 
advantage of these methods is the fact that the objective function can be a heuristic rule that weights the output 
signal in various aspects at the same time. 

However, despite of the fact that this characteristic is an advantage, the complexity of the objective function 
and the number of restrictions of the system increase the nonlinearity and the probability of the system is no 
convex. This characteristic can lead the population based optimization methods to have convergence problems 
[14] [15].  

Seeking a faster and more efficient methodology for PID controller, this paper presents the development of a 
novel technique to tune the proportional-integral and derivative gains. As stated before, this device has been 
widely used as shown in many works encouraging the investigation of the possible improvements when it is 
tuned by using Linear Program (PL) based on interior point optimization, well known in several areas [16] [17] 
but still unexplored in the proposed area. 

The main advantage of the proposed method resides on the fact that the systems designer can define the de- 
sired output in order to avoid saturations or other features and the optimization algorithm will return the appro- 
priate PID parameters values that minimize the error between the actual and the desired output. Manipulating the 
system to isolate the PID terms results in a linear optimization problem, with convex space solution, restricted 
and rapidly solved with the interior point optimization method.  

This article is organized in the following manner: in Section 2 basic concepts of PID tuning are described; in 
Section 3 the methodologies employed are presented; in Section 4 the system model is shown and a detailed tu- 
torial example is presented to illustrate the methodology. At the end of Section 5 the results with an autonomous 
submarine are presented and in Section 6 some conclusions are presented. 

2. Basic Concepts 
The standard system model considers the Plant G(s) and PID Controller structure as showed in Figure 1. In this 
figure C(s) represents the output response of the plant assuming a generic input R(s). The PID controller is 
composed by three terms whose transfer function is given by: 

( ) ( )
1

i d
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Figure 1. Standard system model.                                       
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where PIDaction and PIDin represent respectively the output and input signals of the PID controller. The parame- 
ters Kp, Ki and Kd are, respectively the proportional, integral and derivative gains. The time constant Td repre-
sents the derivative filters parameter to reduce a high frequency noise. In practices Td  kd leading in this work 
to adopt Td equal to 0.001. 

Roughly speaking, the Kp term provides a proportional action to the input signal PIDin, the Ki term eliminate 
the steady state error and the Kd term reduce the transitory oscillations.  

Therefore when the controller gains are correctly tuned, the associated PID controller can provide good re- 
sults with linear and nonlinear systems considering small parameter variation. The dynamical and steady state 
performance requirements can be achieved through the specification of some criteria in time and frequency do- 
main, for example, the minimization of the quadratic error. 

3. Proposed Methodology 
For the application of the proposed methodology, the standard representation of Figure 1 should be redrawn as 
shown in Figure 2 where the proportional and integral controllers were combined in a single block. In this dia- 
gram the signal (PIaux) represents the output of the proportional-integral block, (Dv) and (Daux) the output of the 
derivative one. It is easy to verify that the output of the PID block (PIDout) is the sum of all control actions. 

Considering that the output of the plant CS(t) is pre-specified by the designer face to a disturbance R(t) and 
using numerical integration method as described in Appendix, it is possible to determine the PIDin(t) signal. It 
can be seen from Figure 2 that PIDout(t) is equal to CS(t). So the problem is to determine the parameters of the 
PID blocks to match the input PIDin(t) and output PIDout(t) signals. 

Equations (2)-(4) describe the PID formulation in terms of parameters Kp, Ki, Kd and input/output signals 
showed in Figure 2: 

i p
aux in

K sK
PI PID

s
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=  
 

                                (2) 

aux S v dPI C D K= − ⋅                                   (3) 

1v in
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                                (4) 

Comparing PI block with generic transfer function given in Appendix, it is possible to obtain: 
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Then the values of parameters gamma defined in Equations (A.8) are: 
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Figure 2. Modified system model.                                            
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Therefore Equation (A.7) can be rewritten as follows: 

( ) ( ) ( ) ( )1 2 1 1aux in in auxPI k PID k PID k PI kρ ρ= + − + −                      (7) 

where 2,3, ,k N=  . Considering Equations (3) into Equation (7) yields to: 

( ) ( ) ( ) ( ) ( ) ( )1 2 1 1 1S v d in in S v dC k D k K PID k PID k C k D k Kρ ρ− ⋅ = + − + − − − ⋅             (8) 

Rearranging (8), leading to Equation (9), as follows: 

( ) ( ) ( ) ( )1 21v d in in SD k K PID k PID k C kρ ρ∆ ⋅ + ⋅ + − ⋅ = ∆                     (9) 

where: 

( ) ( ) ( )1S S SC k C k C k∆ = − −                             (10) 

( ) ( ) ( )1v v vD k D k D k∆ = − −                             (11) 

After obtaining all vectors of Equation (9), it is possible to calculate the parameters Kd, 1ρ  and 2ρ  by us- 
ing the linear programming formulation to take adjustable input and output signals. In this way, the optimization 
problem can be formulated as shown in Equations (12): 
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where 
Te: Total error of the fitting from linear programming; 
N: Number of equality constraints that is equal to the C(k) length; 
R1: Vector of right positive residue in the RN subspace; 
R2: Vector of left positive residue in the RN subspace; 
ub: Upper bound of residue variables. The ub equal to 200 is adopted in this paper. The rangers adopted for 

other variables have been enough to find the desire fitting. 
Hence, considering an input and output signals with N values, it is possible to obtain a set of N-1 equations 

given by Equations (9) which is the set of constraints of the optimization problem (12). Nonetheless it is numer- 
ically unlikely that the equality constraints imposed by Equation (9) can be completely satisfied, thus the posi- 
tive residue variables R1(k) and R2(k) is added to provide enough slacks in the constraints. Then, the objective is 
to minimize the sum of these residues. 

The compact form of problem (12) is written according to a linear optimization problem: 
T

min max
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The proposed LP problem (12) has spent low computational time because it has been written as a linear pro- 
gram and solved by using the ToolBox called linprog of MATLAB© based on a linear interior point solver [18], 
which is a variant of the Mehrotra’s predictor-corrector algorithm [19]. The advantage of using linear program- 
ming is related to a convex region close to a viable operating point. So, even under about one thousand linear 
constraints, the problem (12) spends about 3 seconds to find the solution. 

Therefore, the solution of the LP problem (12) brings the values of the parameters Kd, ρ1 and ρ2 that better fit 
the input/output signals to minimize R1(k) and R2(k). By replacing Kd, ρ1 and ρ2 in the set of Equation (6), it is 
possible to calculate the values of Kp and Ki 

4. Results 
The results of the application of the proposed methodology will be presented in two parts, the first one dedicated 
to a tutorial case and the second one to tuning of an attitude control for vertical orientation of a vehicle in 
launching stage. 

The time to complete the whole optimization process was only 3 sec in a MacBook pro core i5 with 4 Gb of 
RAM and the algorithm implemented in MATLAB© script program. 

4.1. Tutorial Analysis 
For this tutorial analysis it was chosen the plant from Equation (14) represented by its transfer function G(s) as 
described in reference [20]. 

( ) ( )( )
50
1 5

G s
s s s

=
+ +

                                   (14) 

The specified output CS(t) in response to a unit step input R(t) can be seen in Figure 3. This curve was ob- 
tained by using a standard second order model given by: 

( )
2

2 22
n

s
n n

C s
s

ω
ζω ω

=
+ +

                                  (15) 

With ωn = 3, ζ = 1, Δt = 0.01 and time simulation equal to 7 seconds. It can be emphasize that the total ele- 
ments of vector CS(t) is equal to N = 7/0.01 = 700 points. 

Considering the model presented in Figure 2, it is necessary to obtain all points of the curves utilized as coef- 
ficients in the composition of the optimization problem (12). Therefore, with a unit step R(t) and the specified 
Cs(t), the input signal E(t) to the plant transfer function G(s) is given by E(t) = R(t) − CS(t) whose curve is 
shown in Figure 4. 
 

 
Figure 3. Specified output CS(t).                                 
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Figure 4. Input error signal to G(s).                             

 
Figure 5 shows the input signal of PID controller (PIDin) that is obtained from E(t) as input signal of G(s) and 

using trapezoidal integration showed in Appendix. 
The last set of points needed to complete the coefficients of the problem (12) is Dv(t) obtained from PIDin by 

using Equation (4) and trapezoidal integration. Figure 6 displays Dv(t) signal. 
After all coefficients were calculated, it is possible to build the optimization problem (12) for the optimal PID 

parameter calculation. Using the LP Toolbox of Matlab Kd, ρ1 and ρ2 are obtained to match the input and output 
signals with the total error of the fitting (Te) equal to 0.037. From Equations (6), it is possible to calculate the 
values of Kp and Ki. Table 1 shows the best values of PID parameters obtained by the optimization process. In 
addition, the second row of the table shows the PID proposed in reference [20]. 

To evaluate the performance of the proposed methodology a simulation using the system of Figure 1 were 
carried out for both adjustable PID calculated from LP and PID of the literature [20]. Figure 7 presents these 
output results including CS(t). It can be observed that the methodology based on LP resulted in a best behavior 
compared with literature. In addition, this figure shows that the C(t) followed the specified output being practi- 
cally identical to the desired one. 

Figure 8 presents the initial PIDaction related with the peak signal. This feature is important to avoid the action 
control reaches the saturation limit. As seen in Figure 8, the maximum peak signal in the proposed LP approach 
is much lower than the corresponding peak displayed in literature [20]. Although it is not in the scope of this 
work, it is possible to modify the CS(t) in order to find other initial PIDaction. 

4.2. Attitude Control 
A basic flight of vehicle is composed by guidance, navigation and an attitude control systems [21]. The last one 
control system is responsible for vehicle vertical orientation. Usually, the utilization of conventional controller 
tuning techniques presents unsatisfactory performance due to plant characteristics. The proposed methodology 
will be applied to the PID design for the attitude control, in particular to maintain the vertical angle in respect 
with the vertical in 0˚. Thus this problem is similar to the control angle problem of the Inverted Pendulum Mod- 
el (IPM). 

The linearized equation that represents the rotation movement of the shaft in respect with the center of gravity 
can be defined by: 

( )m l M m g uθ θ⋅ ⋅ = + ⋅ ⋅ −                             (16) 

where θ is the relative shaft angle in respect with the vertical axe; l is the length of the shaft; M is the mass of the 
mobile support and is equal to 2 kg; m is the shaft mass and is equal to 0.1 kg; g is the acceleration of gravity, 
considered 9.81 m/s2; u represents the force produced by the PID control effort. 

Applying the Laplace transform and replacing the numerical values it is possible to obtain the simplified  
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Table 1. The PID controller parameters.       

Parameters Kp Ki Kd 

Proposed 0.1618 0.0002 0.1668 

Ref [20] 0.3600 0.1170 0.2769 

 

 
Figure 5. PID input signal (PIDin).                             

 

 
Figure 6. Dv signal.                                          

 
model in frequency domain resulting in Equation (17). In a preliminary analysis it is possible to note that the re- 
sulting model is difficult to control due to the positive real part of one of the poles. 

( ) ( )
( ) ( )22

1
4.539

s
G s

U s s

Θ
= =

−
                             (17) 

In this case, since it is an inverted pendulum model (IPM), the system response must be fast and stable. Thus, 
the specified output signal CS(t) necessary to train the system is defined by the following parameter values ωn = 
50, ξ = 1 and 0.25 seconds of training time with an integration step of Δt = 0.001. Considering an impulse of 
0.01 rd (0.573˚) to stimulate the system and replacing these values in Equation (15), it can be obtained the curve  
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Figure 7. Simulations results for C(t).                           

 

 
Figure 8. Peak outputs of PIDaction.                            

 
showed in Figure 9. In this case, the total elements of vector CS(t) is equal to N = 0.25/0.001 = 250 points. This 
is the considerable amount of points in order to successfully complete the optimization process. 

As seen in Figure 9, it must have a reduced time simulation for training control action to avoid the pendulum 
falls. Although there are strategies to automatically deal with this problem, it is out of the scope of this work. 
Therefore, the time simulation for training output signals is considered provided heuristically by the designer 
experience.  

In Table 2 it is shown the both PID gain values by the proposed methodology and reference [20] for the in- 
verted pendulum model of the attitude control problem. 

The performance of the proposed PID tuning is evaluated by using the system of Figure 1 where the time si- 
mulation of 2 sec was adopted. Figure 10 shows the output simulations of C(t) for proposed, literature and spe- 
cified. It can be observed that the LP approach presented the best behavior because the initial angle varies less 
than the PID adjusted from literature. It is important to mention that this feature results in less chance of the 
pendulum falling to or the control strategy just fails. In addition, the figure shows that the proposed PID tuning 
is capable to follow the specified output. 

Figure 11 presents the initial PIDaction related with the peak signal. This feature is important to avoid the ac- 
tion control reaches the saturation limit. As it was expected the proposed PID tuning has resulted in a slower 
peak response with a smaller overshoot due to the derivative block. 



E. J. Oliveira et al. 
 

 
894 

Table 2. PID attitude control parameters.      

Parameters Kp Ki Kd 

Proposed 57.9693 0.3908 17.8546 

Ref [20] 170.0 70.0 37.2 

 

 
Figure 9. Specified CS(t) for IPM.                              

 

 
Figure 10. Simulations results for IPM.                          

 
Analyzing the obtained results it is possible to observe that the optimized performance of the proposed con- 

troller was able to maintain the desired angular position for the projectile. 

5. Conclusions 
This article presented a method based on linear programming for the tuning of PID controller parameters using a 
primal-dual interior point method. From the known system plant model and a specified desired output signal, it 
is possible to use generic transfer functions to isolate the PID parameters as the only unknown system variables. 
This transformation allows the formulation of a linear optimization problem that can be solved with small com- 
putational effort with satisfactory results.  
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Figure 11. Initial PIDaction for IPM.                             

 
The method was described with the aid of a detailed tutorial analysis and a specific case of the attitude control 

of a flight vehicle was also analyzed obtaining excellent results. From the results obtained applying the proposed 
methodology the following aspects can be stressed out: 
• The specified plant output can always be obtained close to the desired one with negligible error, if the system 

dynamics and saturation are considered. 
• The obtained optimization problem is linear presenting a convex feasible region resulting in numerical ro- 

bustness. 
• The computational time is small even with a large quantity of sample points for the training process. 
• The proposed method can be modified to use nonlinear plant models once the curve construction processes 

are made outside the optimization stage. 
• An extension of the methodology can be applied to adaptive control considering that the computational time 

is compatible with data acquisition time of the variables. 
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Appendix: Transfer Function Solution 
This appendix presents the steps for the numerical integration process based on trapezoidal method. Therefore, a 
solution to a generic transfer function is presented in Equation (A.1) which is possible to represent a wide range 
of linear models for real plants. In this equation, X(s) represents the input signal and Y(s) is the output. 

( ) ( )A A

B B

K sTY s X s
K sT

+
= ⋅

+
                                    (A.1) 

Manipulating (A.1) and rearrange one yield: 

( ) ( ) ( ) ( )B A A Bs T Y s T X s K X s K Y s⋅ − = −                            (A.2) 

In time domain Equation (A.2) becomes: 

( ) ( )( ) ( ) ( )d
d B A A BT y t T x t K x t K y t

t
− = −                           (A.3) 

or 

( ) ( )( ) ( ) ( )( )d dB A A BT y t T x t K x t K y t t− = −                         (A.4) 

Integrating both sides of (A.4) it is possible to obtain: 

( )
( )

( )

( )
( )

( )

( ) ( )( )d d d
y t t x t t t t

B A A B
y t x t t

T y t T x t K x t K y t t
+∆ +∆ +∆

− = −∫ ∫ ∫                     (A.5) 

Solving Equation (A.5) by using the trapezoidal integration method, leads to: 

( ) ( )

( ) ( )

2 2

2 2

B B
B B

A A
A A

K t K tT y t t T y t

K t KT x t t T x t

∆ ∆   + + ∆ = −   
   

∆   + + ∆ = −   
   

                        (A.6) 

Simplifying Equation (A.6), it results: 

( ) ( ) ( ) ( )1 2 3y t t x t t x t y tρ ρ ρ+ ∆ = + ∆ + +                          (A.7) 

where: 

1

2

3

2
2

2
2
2
2

A A

B B

A A

B B

B B

B B

K t T
T K t

K t T
T K t
T K t
T K t

ρ

ρ

ρ

∆ +
=

+ ∆
∆ −

=
+ ∆
− ∆

=
+ ∆

                                  (A.8) 

It can be observed that Δt represents the step of the numerical integration. In addition, it is important to em- 
phasized that the output signal y(t) can be obtained from input signal x(t) and parameters block ( 1 2,ρ ρ  and 

3ρ ). On the other hand, if both input x(t) and output y(t) are known it will be possible to obtain the parameters 
1ρ , 2ρ  and 3ρ . This issue will be solved in the proposed methodology by using Linear Programing (PL) ap-

proach. In all cases, both vectors x(t) and y(t) have the same number of elements (N). For example, for time 
simulation equal to T = 10 seconds and Δt = 0.01, the vectors x(t) and y(t) will have T/Δt points corresponding to 
one thou- sand elements. 
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