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Abstract 
In this paper, a powerful analytical method, called He’s homotopy perturbation method is applied 
to obtaining the approximate periodic solutions for some nonlinear differential equations in 
mathematical physics via Van der Pol damped non-linear oscillators and heat transfer. Illustrative 
examples reveal that this method is very effective and convenient for solving nonlinear differen-
tial equations. Comparison of the obtained results with those of the exact solution, reveals that 
homotopy perturbation method leads to accurate solutions. 
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1. Introduction 
In recent years, the application of the homotopy perturbation method in non-linear problems has been developed 
by scientists and engineers, because this method continuously deforms the difficult problem under study into a 
simple problem which is easier to solve. The homotopy perturbation method was proposed first by He in 1998 [1] 
and was developed and improved by He [2]-[5]. Homotopy, is an important part of differential topology. Actu- 
ally the homotopy perturbation method is a coupling of the traditional perturbation method and the homotopy 
method in topology [6]. The study of nonlinear problems is of crucial importance not only in all areas of physics 
but also in engineering and other disciplines, since most phenomena in our world are essentially nonlinear and 
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are described by nonlinear equations. It is very difficult to solve nonlinear problems and, in general, it is often 
more difficult to get an analytic approximation than a numerical one for a given nonlinear problem. 

Recently, several methods have been used to find approximate solutions to nonlinear problems, such as, the 
homotopy perturbation method [2]-[7], the variational iteration method [8]-[10], and the energy balance method 
[11]-[14]. 

In this paper, we present a new application of He’s homotopy perturbation method. The paper is organized as 
follows: In Section 2, we present a brief summary about the homotopy perturbation method. Some applications 
are then discussed in Section 3. A comparison between the analytical solution obtained and numerical solution 
by Runge-Kutta method has been discussed and displayed graphically in Section 4. Finally, conclusions are 
drawn in Section 5. 

Variation, which 0nuδ = ; is called a correct function. The solution of the linear problems can be solved in a 
single iteration step due to the exact identification of the Lagrange multiplier. The principles of the variational 
iteration method and its applicability for various kinds of differential equations are given in [8] [15]-[19]. In this 
method, it is required first to determine the Lagrange multiplier λ  optimally. The successive approximation 

1,nu +  0n ≥  of the solution u will be readily obtained upon using the determined Lagrange multiplier and any 
selective function 0u = , consequently, the solution is given by 1lim p nu→ . 

2. Basic Idea of He’s Homotopy Perturbation Method 
The homotopy pertirabation method is one of the important methods to find the approximate solutions for non- 
linear partial differential equations in mathematical physics. The homotopy perturbation method, which was 
originally proposed by J. H. He [2]-[5] in 1999, has been proved by many authors to be a powerful mathematical 
tool for solving various kinds of problems [2]-[5]. This method introduces an efficient approach for a wide va- 
riety of scientific and enginering applications. We should point out that this method can give the approximte or 
exact solutions without the computation of the Adomian polynomial, discretization, linearization, transformation 
or perturbation. To illustrate, consider the following nonlinear differential equation [2]-[5]: 

( ) ( ) 0, ,A u f r r− = ∈Ω                                 (1) 

with the boundary conditions of the following form: 

, 0, ,uB u r
n
∂  = ∈Γ ∂ 

                                 (2) 

where A  is a general differential operator, B  a boundary operator, ( )f r  a known analytical function and 
Γ  the boundary of the domain Ω . Generally speaking, the operator A  can be divided into two parts which 
are L  and N , where L  is linear, but N  is nonlinear . Equation (1) can therefore be rewritten as follows : 

( ) ( ) ( ) 0.L u N u f r+ − =                                (3) 

By the homotopy technique, we construct a homotopy ( ) [ ], : 0,1v r p RΩ× →  which satisfies 

( ) ( ) ( ) ( ) ( ) ( )0, 1 0,H v p p L v L u p A r f r = − − + − =                           (4) 

( ) ( ) ( ) ( ) ( ) ( )( )0 0, 0,H v p L v L u pL u p N r f r= − + + − =                       (5) 

where [ ]0,1p∈  is an embedding parameter, 0u  is an initial approximation of Equation (1), which satisfies 
the boundary conditions (2). Obviously, from Equations (4) and (5) we have 

( ) ( ) ( )0,0 0,H v L v L u= − =                                  (6) 

( ) ( ) ( ),1 0.H v A v f r= − =                                  (7) 

The changing process of p  from zero to unity is just that of ( ),V r p  from ( )0u r  to ( ).u r  In Topology, 
this is called deformation, and ( ) ( )0L v L u−  and ( ) ( )A v f r−  are called homotopy. According to the 
homotopy perturbation method, we can first use the embedding parameter “p” as a small parameter, and assume 
that the solution of Equations (4) and (5) can be written as a power series in “p” as follows: 

2
0 1 2 .v v pv p v= + + +                                        (8) 
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On setting 1p =  results in the approximate solution of Equation (3), we have: 

0 1 21
lim .
p

u v v v v
→

= = + + +                                      (9) 

The combination of the perturbation method and the homotopy method is called the homotopy perturbation 
method. This method has eliminated the limitations of the traditional perturbation methods, while keeping their 
advantages. The series (9) is convergent in most cases. However, the convergence rate depends on the nonlinear 
operator ( )A v  (the following opinions are suggested by He [2]-[5]): 

1) The second derivative of ( )N v  with respect to V  must be small because the parameter may be 
relatively large, i.e., 1.p →  

2) The norm of 1 NL
V

− ∂
∂

 must be smaller than 1 so that the series converges. 

Consequently, the construction of the homotopy plays an important role in solving a nonlinear problem with 
He’s homotopy perturbation method, and therefore is problem dependent. 

3. Applications 
In order to assess the accuracy of the homotopy perturbation method (HPM) for solving nonlinear equations and 
to compare the solution it gives with the exact solution, we will consider the following examples. 

3.1. Example 1: Classical Fractional Van der Pol Oscillator 
The classical fractional Van der Pol damped nonlinear oscillator can be represented by the following nonlinear 
equation [14] [15] 

( ) ( ) ( )1 3 21 0, 0 , 0 0.x x x x x a x+ + − = = =                           (10) 

Rewrite Equation (10) in the following form 

( ) ( ) ( )1 3 2 2 21 0, 0 , 0 0x x x x x x x a xω ω+ + − + − = = =                      (11) 

From Equation (11), one can establish the following homotopy 

( ) [ ]2 1 3 2 21 0, 0,1x x p x x x x pω ω + + − + − = ∈                        (12) 

where [ ]0,1p∈  is an imbedding parameter. As in He’s homotopy perturbation method [2]-[4], it is obvious 
that when 0p = , Equation (12) becomes a linear differential equation for which an exact solution can be 
calculated; for 1p = , Equation (12) then becomes the original problem. Now the homotopy parameter p  is 
used to expand the solution ( )x t  as follows: 

2 3
0 1 2 3 ,x x px p x p x= + + + +                               (13) 

Setting 1,p =  leads to the approximate solution of the problem: 

0 1 2 31
lim .
p

x x x x x x
→

= = + + + +                              (14) 

Substituting Equation (13) into Equation (12) and equating the terms with the identical powers of ,p  

( ) ( )0 2
0 0: 0, 0 , 0 0,p x x x a xω+ = = =                            (15) 

( ) ( ) ( )1 2 1 3 2 2
1 1 0 0 0 0 1 1: 1 0, 0 0, 0 0.p x x x x x x x xω ω+ + − + − = = =                (16) 

Solving Equation (15), we have [16] 

0 cos .x a tω=                                       (17) 

The Fourier series for ( )1 3cos tω  has been calculated and is given by [17]. 

( )1 3
1 2cos cos cos3 ,t b t b tω ω ω= + +                           (18) 

where 1 1.15960b = , 2 0.231919.b = −  
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Substituiting from Equations (17) and (18) into Equation (16), we get 

2 1 3 2 1 3 3 3
1 1 1 2

1 1 14 4 cos cos3 4 sin sin 3 0.
4 4 4

x x b a a t b a t a a t a tω ω ω ω ω ω ω ω ω   + + − + + − + =           (19) 

Eliminating the secular term, we get 
1 3 2 2

14 4 0, 4 0.b a a aω− = − =                              (20) 

From the above equation, we can easily find that 

1 3
1.159602, 0.8547,

2
a ω= = =                               (21) 

which is the same with that obtained by the iteration procedure (see Equation (40) in [14] and Equation (23) in 
[15]). Hence, the approximate periodic solution takes the form: 

( ) ( )2cos 0.8547 .appx t t=                                  (22) 

To illustrate and verify the accuracy of this method, we may compare the approximate periodic solution 
( )( )appx t  and the exact periodic solution. The exact solution exx  for the classical fractional Van der Pol 

damped nonlinear oscillator is as follows [18]: 

( )
( )

2 2

2 cos ,
4 e

ex ext

ax t
a a ε

ω
−

=
+ −

                             (23) 

where 
( )

( ) ( )1 3

π 5 4
.

8 3 7 4
ex

a
ω

Γ
=

Γ
                                  (24) 

We make a comparasion between the exact solution (23) and the approximate solution (22) when 2a = , 
1ε =  as shown in Table 1. 

In Figure 1 we present a variety of comparisons between the approximate and exact solution for Equation 
(10). For 2a = , 1ε = . It can be observed that Equation (22) provides an excellent approximation to the exact 
periodic solution in Equation (23). 

From Figure 1 and Table 1, the approximate solutions have the same behavior as the exact solution so that 
the approximate solutions is rapidly convergent to the exact solution. 

3.2. Example 2: Rayleigh Equation 
The special case of the fractional Van der Pol damped nonlinear oscillator [19] or the Rayleigh equation [20] 
can be represented by 
 

Table 1. Comparison between the approximate solution (22) 
and the exact solution (23) for Equation (17).               

t  exu  appu  ex appu u−  

0.1 1.992785848 1.992699325 58.652 10−×  

0.2 1.971195438 1.970850600 43.44 10−×  

0.3 1.885611453 1.884252088 31.35 10−×  

1.1 1.188314461 1.179301463 39.01 10−×  

1.2 1.047514770 1.037103527 21.04 10−×  

1.3 0.8991581506 0.8873340350 21.18 10−×  

2.1 0.4235673232−  0.4444065772−  22.08 10−×  

2.2 0.5879087412−  0.6092480588−  22.13 10−×  
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Figure 1. Comparison of the approximate periodic solution with the exact 
solution for an initial condition of 2a =  and 1ε =  in Example 1.         

 

( ) ( )3 31 , 0 , 0 0.
3

x x x x x a xε  + = − = = 
 

                             (25) 

Equation (25) can be written in the form 

( ) ( )3 2 2 31 0, 0 , 0 0.
3

x x x x x x x a xω ω  + + − − − = = = 
 

                      (26) 

Therefore, we can establish the following homotopy 

[ ]2 3 2 31 0, 0,1 .
3

x x p x x x x pω ω  + + − − − = ∈    
                       (27) 

Proceeding in the same way as example 1, substituting from Equation (13) into Equation (27) and equating 
the terms with the identical powers of ,p  

( ) ( )0 2
0 0: 0, 0 , 0 0,p x x x a xω+ = = =                                 (28) 

( ) ( )1 2 3 2 3
1 1 0 0 0 0 1 1

1: 0, 0 0, 0 0.
3

p x x x x x x x xω ω  + + − − − = = = 
 

                      (29) 

The solution for 0x  is given by 

0 cos .x a tω=                                            (30) 

Substituting from Equation (30) into Equation (29) we have 

2 2 3 3 3 3 3 3 3
1 1

3 1 1 1cos cos3 sin sin 3 .
4 4 4 12

x x a a t a t a a t a tω ω ω ω ω ω ω ω ε ω ω   + = − − + − −   
   

        (31) 

Eliminating the secular terms, we obtain 

2 2 2 23 10, 1 0.
4 4

a aω ω   − = − =   
   

                                (32) 

From the above equation, we can easily find that 
1.51967, 1.31607.a ω= =                                   (33) 

Hence, the approximate periodic solution can be readily obtained: 

( ) ( )1.51967cos 1.31607 .appx t t=                                (34) 
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To write the exact periodic solution ( ) ,exx t  we used its values from [17], and for approximate values we 
used Equation (34). In fact the exact periodic solution can be obtained from the following complicated relation, 
as given in [18] 

( )
( )

2 2 2 2

2 cos ,
4 e

ex ext
ex ex

ax t
a a ε

ω
ω ω −

=
− −

                         (35) 

where 

( )
( )

π 3 4
.

8 5 4ex aω
Γ

=
Γ

                                  (36) 

We now draw a comparasion between the exact and approximate solutions when 1.51967a = , 1ε =  as 
shown in Table 2. 

Figure 2 shows the comparison between the approximate periodic solution ( )appx t  obtained from formula 
(34) and the exact periodic solution ( )exx t  obtained from formula (35) see [18]. It is shown that the 
approximate periodic solution is nearly identical with that given by the exact periodic solution.  

From Figure 2 and Table 2, the approximate solution has the same behavior as the exact solution so that the 
approximate solution is rapidly convergent to the exact solution. 
 

Table 2. Comparison between the approximate and exact 
solutions for Equation (25). For 1.51967a = , 1ε = .         

t  exu  appu  ex appu u−  

0.1 1.510183567 1.506528337 33.56 10−×  

0.2 1.475325074 1.467330637 37.99 10−×  

0.3 1.415622204 1.402754842 21.28 10−×  

1.1 0.2373792348 0.1866284151 25.07 10−×  

1.2 0.03982879886 0.01289830747−  25.027 10−×  

1.3 0.1586482278−  0.2122019484−  25.35 10−×  

2.1 1.403006704−  1.412474866−  39.4 10−×  

2.2 1.476116325−  1.473830883−  32.28 10−×  

 

 
Figure 2. Comparison of the approximate periodic solution with the exact 
solution for an initial condition of 1.51967a =  and 1=  in Example 2.        
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3.3. Example 3: Cooling of a Lumped System by Combined Convection and Radiation 
Most scientific problems such as heat transfer are inherently nonlinear. We know that except for a limited 
number of problems, most of the problems do not have an analytical solution. Therefore, these nonlinear 
equations should be solved using other methods. Some of them are solved using numerical techniques and some 
are solved using the analytical method of perturbation. In this example we will consider the problem of 
combined convective-radiative cooling of a lumped system [21]. Let the system have volume V , surface area 
A , density ρ , specific heat c , emissivity E  and the initial temperature iT . At 0t = , the system is exposed 

to an environment with convective heat transfer with the coefficient of h  and the temperature aT . The system 
also loses heat through radiation and the effective sink temperature is sT . The cooling equation and the initial 
conditions are as follows: 

( ) ( )4 4d 0,
dc a s
TV hA T T E A T T
t

ρ σ+ − + − =                          (37) 

0, .it T T= =                                      (38) 

To solve Equation (37), we introduce the following changes of parameters: 
3

, , , , .a s i
a s

i i i a

T T E TT t
T T T Vc hA h

σ
θ θ θ τ ε

ρ
= = = = =                      (39) 

After parameter change, the heat transfer equation will result in the following: 

( ) ( )4 4d 0,
d a s
θ θ θ ε θ θ
τ
+ − + − =                                  (40) 

0, 1.τ θ= =                                        (41) 

For simplicity, we assume the case 0a sθ θ= = . So we have 

4d 0,
d
θ θ εθ
τ
+ + =                                     (42) 

0, 1.τ θ= =                                       (43) 

For Equation (42) we can establish the following homotopy 

4d 0,
d

pθ θ εθ
τ

 + + =                                     (44) 

0, 1.τ θ= =                                       (45) 

Proceeding as before. The homotopy parameter p  is used to expand the solution ( )tθ  as follow 
2 3

0 1 2 3 ,p p pθ θ θ θ θ= + + + +                              (46) 

Setting 1,p =  leads to the approximate solution of the problem: 

0 1 2 31
lim .
p

θ θ θ θ θ θ
→

= = + + + +                             (47) 

By the homotopy perturbation method, we can obtain a series of linear equations, and we write only the first 
three linear equations by substituting Equation (46) into Equation (40) and equating the terms with the identical 
powers of ,p  

0
0 0 0: 0, 0, 1,p θ θ τ θ+ = = =                               (48) 

1 4
1 1 0 1: 0, 0, 0,p θ θ εθ τ θ+ + = = =                             (49) 

2 3
2 2 0 1 2: 4 0, 0, 0.p θ θ εθ θ τ θ+ + = = =                           (50) 

Consequently, solving the above equations, the first few components of the homotopy perturbation solution 
for (48)-(50) are derived as follows: 
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0 e ,τθ −=                                         (51) 

( )4
1

1 e e ,
3

τ τθ ε − −= −                                   (52) 

( )2 7 4
2

2 e 2e e .
9

τ τ τθ ε − − −= − − + −                             (53) 

So θ  will generally equal when 1p →  the following expression: 

( ) ( )4 2 7 41 2e e e e 2e e .
3 9

τ τ τ τ τ τθ ε ε− − − − − −= + − − − + −                      (54) 

The exact solution of Equation (42)  is obtained by Aziz [21] in the following form: 

( )
3

3
1 1ln .
3 1

εθ τ
ε θ

+
=

+
                                   (55) 

We make a comparison between the exact and approximate solutions when 1 8ε =  as shown in Table 3. 
Applying the Runge-Kutta technique, the numerical solution of Equation (42) is calculated and plotted in 

Figure 3. The difference between the analytical and numerical results is negligible. 
 

Table 3. Comparison between the approximate and exact solutions for 
Equation (16) when 1 8ε = .                                  

τ  exu  appu  ex appu u−  

0.1 0.8952717331 0.9056224388 21.03 10−×  

0.2 0.8038934784 0.8090551632 35.161 10−×  

0.3 0.6518669930 0.6532058624 32.60 10−×  

1.1 0.3204938595 0.3205945603 41.007 10−×  

1.2 0.2898918134 0.2899814869 58.96 10−×  

1.4 0.2372347417 0.2373080757 57.33 10−×  

2.1 0.1177498295 0.1177870910 53.72 10−×  

2.5 0.078926 0.07895138470 52.506 10−×  

 

 
Figure 3. Comparison of the approximate periodic solution with the exact 
solution for 1=  in Example 3.                                     
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From Figure 3 and Table 3 the approximate solution has the same behavior as the exact solution so that the 
approximate solution is rapidly convergent to the exact solution. 

4. Conclusion 
In this paper, the homotopy perturbation method has been successfully used to study nonlinear oscillator prob- 
lems. He’s homotopy perturbation method which is proved to be a powerful mathematical tool for the study of 
nonlinear oscillators, can be easily extended to any nonlinear oscillator problem. The solutions obtained are in 
good agreement with exact values. Finally, we have found out that the homotopy perturbation method leads to 
more acceptable results even for large ε . 
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