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Abstract

In this paper, a powerful analytical method, called He’s homotopy perturbation method is applied
to obtaining the approximate periodic solutions for some nonlinear differential equations in
mathematical physics via Van der Pol damped non-linear oscillators and heat transfer. Illustrative
examples reveal that this method is very effective and convenient for solving nonlinear differen-
tial equations. Comparison of the obtained results with those of the exact solution, reveals that
homotopy perturbation method leads to accurate solutions.
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1. Introduction

In recent years, the application of the homotopy perturbation method in non-linear problems has been developed
by scientists and engineers, because this method continuously deforms the difficult problem under study into a
simple problem which is easier to solve. The homotopy perturbation method was proposed first by He in 1998 [1]
and was developed and improved by He [2]-[5]. Homotopy, is an important part of differential topology. Actu-
ally the homotopy perturbation method is a coupling of the traditional perturbation method and the homotopy
method in topology [6]. The study of nonlinear problems is of crucial importance not only in all areas of physics
but also in engineering and other disciplines, since most phenomena in our world are essentially nonlinear and
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are described by nonlinear equations. It is very difficult to solve nonlinear problems and, in general, it is often
more difficult to get an analytic approximation than a numerical one for a given nonlinear problem.

Recently, several methods have been used to find approximate solutions to nonlinear problems, such as, the
homotopy perturbation method [2]-[7], the variational iteration method [8]-[10], and the energy balance method
[11]-[14].

In this paper, we present a new application of He’s homotopy perturbation method. The paper is organized as
follows: In Section 2, we present a brief summary about the homotopy perturbation method. Some applications
are then discussed in Section 3. A comparison between the analytical solution obtained and numerical solution
by Runge-Kutta method has been discussed and displayed graphically in Section 4. Finally, conclusions are
drawn in Section 5.

Variation, which 80, =0 is called a correct function. The solution of the linear problems can be solved in a
single iteration step due to the exact identification of the Lagrange multiplier. The principles of the variational
iteration method and its applicability for various kinds of differential equations are given in [8] [15]-[19]. In this
method, it is required first to determine the Lagrange multiplier A optimally. The successive approximation
Uy, h=>0 of the solution u will be readily obtained upon using the determined Lagrange multiplier and any
selective function u =0, consequently, the solution is given by lim,_u, .

2. Basic Idea of He’s Homotopy Perturbation Method

The homotopy pertirabation method is one of the important methods to find the approximate solutions for non-
linear partial differential equations in mathematical physics. The homotopy perturbation method, which was
originally proposed by J. H. He [2]-[5] in 1999, has been proved by many authors to be a powerful mathematical
tool for solving various kinds of problems [2]-[5]. This method introduces an efficient approach for a wide va-
riety of scientific and enginering applications. We should point out that this method can give the approximte or
exact solutions without the computation of the Adomian polynomial, discretization, linearization, transformation
or perturbation. To illustrate, consider the following nonlinear differential equation [2]-[5]:

A(u)-f(r)=0, reqQ, (1)
with the boundary conditions of the following form:
B(u,a—ujzo, refl, 2
on

where A is a general differential operator, B a boundary operator, f(r) a known analytical function and
I' the boundary of the domain Q. Generally speaking, the operator A can be divided into two parts which
are L and N, where L islinear, but N isnonlinear. Equation (1) can therefore be rewritten as follows :

L(u)+N(u)-f(r)=0. ©)

By the homotopy technique, we construct a homotopy v(r, p) 1Qx [0,1] — R which satisfies
H (v p) = (L= P)[L(v) = L(u)]+ PLA(r) - f (r)]=0, 0
H (v, p)=L(v)—L(ug)+ pL(up)+ p(N(r)-f(r))=0, (5)

where p e[O,l] is an embedding parameter, u, is an initial approximation of Equation (1), which satisfies
the boundary conditions (2). Obviously, from Equations (4) and (5) we have

H(v,0)=L(v)-L(uy)=0, (6)
H(v.1)=A(v)- f(r)=0. @)

The changing process of p from zero to unity is just that of V (r,p) from u,(r) to u(r). In Topology,
this is called deformation, and L(v)-L(u,) and A(v)—f(r) are called homotopy. According to the

[TPS1]

homotopy perturbation method, we can first use the embedding parameter “p” as a small parameter, and assume

that the solution of Equations (4) and (5) can be written as a power series in “p” as follows:

V=V, + Py, + PV, +-oe (8)
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Onsetting p=1 results in the approximate solution of Equation (3), we have:
u=limv=vy+v, +V, +---. 9)
p-1

The combination of the perturbation method and the homotopy method is called the homotopy perturbation
method. This method has eliminated the limitations of the traditional perturbation methods, while keeping their
advantages. The series (9) is convergent in most cases. However, the convergence rate depends on the nonlinear
operator A(v) (the following opinions are suggested by He [2]-[5]):

1) The second derivative of N(v) with respect to V must be small because the parameter may be
relatively large, i.e., p—1.

2) The norm of L’1% must be smaller than 1 so that the series converges.

Consequently, the construction of the homotopy plays an important role in solving a nonlinear problem with
He’s homotopy perturbation method, and therefore is problem dependent.
3. Applications
In order to assess the accuracy of the homotopy perturbation method (HPM) for solving nonlinear equations and
to compare the solution it gives with the exact solution, we will consider the following examples.
3.1. Example 1: Classical Fractional Van der Pol Oscillator

The classical fractional Van der Pol damped nonlinear oscillator can be represented by the following nonlinear
equation [14] [15]

X+ X +¢e(1-x*)x=0, x(0)=a, x(0)=0. (10)
Rewrite Equation (10) in the following form
X'+x’/3+a)2x—a)2x+e(1—x2)>'<=0, x(0)=a, x(0)=0 (11)
From Equation (11), one can establish the following homotopy
X+ 0’ X + p[x“—a)zx+e(1—x2)x}:0, pe[01] (12)
where p e[O,l] is an imbedding parameter. As in He’s homotopy perturbation method [2]-[4], it is obvious
that when p=0, Equation (12) becomes a linear differential equation for which an exact solution can be

calculated; for p=1, Equation (12) then becomes the original problem. Now the homotopy parameter p is
used to expand the solution x(t) as follows:

X=X, + PX + P2X, + PPXg +-ov, (13)
Setting p=1, leads to the approximate solution of the problem:

X=lMX =X, +X + X, + X +---. (14)
p-1

Substituting Equation (13) into Equation (12) and equating the terms with the identical powers of p,
p®: % +@’% =0, x(0)=a, X(0)=0, (15)
phi% + "X + X - "% +e(1-X5 )% =0, %,(0)=0, % (0)=0. (16)
Solving Equation (15), we have [16]
X, =acoswt. (17)
The Fourier series for (cos a)t)l/s has been calculated and is given by [17].
(cosa)t)]/3 =D, coswt +b, cos3wt + -, (18)
where b, =1.15960, b, =-0.231919.
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Substituiting from Equations (17) and (18) into Equation (16), we get

1 1 . 1 .
%, + o’ + Z[4b1a’/3 —4an’ ] cos wt + b,a"” cos 3wt + Z[ea%o - 4eaw]sm ot + Zea%sm 30t=0.  (19)
Eliminating the secular term, we get
4ba"® - 4aw® =0, a’-4=0. (20)
From the above equation, we can easily find that
a-2 0=3200 08547, 21)

which is the same with that obtained by the iteration procedure (see Equation (40) in [14] and Equation (23) in
[15]). Hence, the approximate periodic solution takes the form:

Xapp (1) = 200 (0.8547t). (22)
To illustrate and verify the accuracy of this method, we may compare the approximate periodic solution

(xapp (t)) and the exact periodic solution. The exact solution x, for the classical fractional Van der Pol
damped nonlinear oscillator is as follows [18]:

Xex = 2a cos(a,t), (23)
\/az +(4—a2)e“"t
where
_ ar(s/4) o

RNCEIRUD)

We make a comparasion between the exact solution (23) and the approximate solution (22) when a=2,
g£=1 asshown in Table 1.

In Figure 1 we present a variety of comparisons between the approximate and exact solution for Equation
(10). For a=2, &=1. It can be observed that Equation (22) provides an excellent approximation to the exact

periodic solution in Equation (23).
From Figure 1 and Table 1, the approximate solutions have the same behavior as the exact solution so that
the approximate solutions is rapidly convergent to the exact solution.

3.2. Example 2: Rayleigh Equation
The special case of the fractional Van der Pol damped nonlinear oscillator [19] or the Rayleigh equation [20]
can be represented by

Table 1. Comparison between the approximate solution (22)
and the exact solution (23) for Equation (17).

t u, U, U, —U,,
0.1 1.992785848 1.992699325 8.652x10°°
0.2 1.971195438 1.970850600 3.44x10™"
0.3 1.885611453 1.884252088 1.35x10°°
11 1.188314461 1.179301463 9.01x10°
1.2 1.047514770 1.037103527 1.04x107
13 0.8991581506 0.8873340350 1.18x107*
2.1 —0.4235673232 —0.4444065772 2.08x10°
2.2 —0.5879087412 —0.6092480588 2.13x107
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Figure 1. Comparison of the approximate periodic solution with the exact
solution for an initial condition of a=2 and &=1 in Example 1.

x'+x3=g(>'<—%x3j, x(0)=a, x(0)=0. (25)
Equation (25) can be written in the form
5('+X3+a)2X—a)2X—e()'(—%)'(3]:O, x(0)=a, x(0)=0. (26)
Therefore, we can establish the following homotopy
X+ 0°X + p{xe'—wzx—e()'(—%)'@ﬂzo, pe[0,1]. 27)

Proceeding in the same way as example 1, substituting from Equation (13) into Equation (27) and equating
the terms with the identical powers of p,

p° % +o’%, =0, x(0)=a, x(0)=0, (28)
p1:5<'1+a)2xl+x§—a)2xo—e(>'(o—%XSJ:O, ¥ (0)=0, % (0)=0. (29)

The solution for x, is given by
X, =acosat. (30)

Substituting from Equation (30) into Equation (29) we have
% +o’x = (aa)2 —%aﬂcos wt —%a3a)3 cos 3ot + Ga%ﬁ - aszin ot _ég;faﬁ sin 3ot. (31)

Eliminating the secular terms, we obtain

(Eaz —a)zj:O, (laza)2 —lij. (32)
4 4
From the above equation, we can easily find that

a=1.51967, »=1.31607. (33)

Hence, the approximate periodic solution can be readily obtained:
X.pp (1) =1.51967 cos(1.31607t). (34)
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To write the exact periodic solution x,, (t) we used its values from [17], and for approximate values we
used Equation (34). In fact the exact periodic solution can be obtained from the following complicated relation,
as given in [18]

2a
Xex = cos(@,t), (35)
2 2 2 2 —et
\/a W5, —(a oM —4)e

where

ﬁr(s/4)a )
W, =—F————-a.
" JBr(s/4)

We now draw a comparasion between the exact and approximate solutions when a=1.51967, £=1 as
shown in Table 2.

Figure 2 shows the comparison between the approximate periodic solution X, (t) obtained from formula
(34) and the exact periodic solution X, (t) obtained from formula (35) see [18]. It is shown that the
approximate periodic solution is nearly identical with that given by the exact periodic solution.

From Figure 2 and Table 2, the approximate solution has the same behavior as the exact solution so that the
approximate solution is rapidly convergent to the exact solution.

Table 2. Comparison between the approximate and exact
solutions for Equation (25). For a=1.51967, ¢£=1.

t u, U, U, —U,,
0.1 1.510183567 1.506528337 3.56x10°°
0.2 1.475325074 1.467330637 7.99x10°°
0.3 1.415622204 1.402754842 1.28x107
11 0.2373792348 0.1866284151 5.07x10°

1.2 0.03982879886 -0.01289830747 5.027x107*

1.3 -0.1586482278 -0.2122019484 5.35x107

2.1 -1.403006704 —1.412474866 9.4x10°

2.2 -1.476116325 -1.473830883 2.28x10°°
1.5 F ]
1 - -
0.5 ]
M 0or 1
-0.5 ]
1r 1
-15 L ]

0 1 2 3 4

Figure 2. Comparison of the approximate periodic solution with the exact
solution for an initial condition of a=1.51967 and e=1 in Example 2.
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3.3. Example 3: Cooling of a Lumped System by Combined Convection and Radiation

Most scientific problems such as heat transfer are inherently nonlinear. We know that except for a limited
number of problems, most of the problems do not have an analytical solution. Therefore, these nonlinear
equations should be solved using other methods. Some of them are solved using numerical techniques and some
are solved using the analytical method of perturbation. In this example we will consider the problem of
combined convective-radiative cooling of a lumped system [21]. Let the system have volume V , surface area
A, density p, specific heat c, emissivity E and the initial temperature T,. At t=0, the system is exposed
to an environment with convective heat transfer with the coefficient of h and the temperature T,. The system
also loses heat through radiation and the effective sink temperature is T, . The cooling equation and the initial
conditions are as follows:
dT
(

pVCE—i-hA(T ~T,)+EcA(T*-T!)=0, (37)

S

t=0, T=T,. (38)
To solve Equation (37), we introduce the following changes of parameters:
T T T t _EoT?

0=—, 0,==2,0, ===, r= , £= (39)
TOUT T pve, /hA h
After parameter change, the heat transfer equation will result in the following:
dé 4 4
—+(0-6,)+¢|0" -6, )=0, 40
G H(0-0.)+2(0"-0) (40)
=0, 6=1 (41)
For simplicity, we assume the case 6, =6, =0. So we have
d—9+9+g¢94 =0, (42)
dr
=0, 6=1 (43)
For Equation (42) we can establish the following homotopy
de
—+p|O+e6"|=0, 44
| ] (44)
=0, 6=1 (45)
Proceeding as before. The homotopy parameter p is used to expand the solution 6)(t) as follow
0=0,+ po, + p°0, + p°0y +--, (46)
Setting p=1, leads to the approximate solution of the problem:
6’=Iin}6’=6'0+6’1+02+¢93+~--. (47)
p—>

By the homotopy perturbation method, we can obtain a series of linear equations, and we write only the first
three linear equations by substituting Equation (46) into Equation (40) and equating the terms with the identical

powers of p,
p°:6,+6,=0, r=0, 6,=1, (48)
p:6,+6,+¢0) =0, =0, 6,=0, (49)
p?:6,+6,+450;6,=0, =0, 6,=0. (50)

Consequently, solving the above equations, the first few components of the homotopy perturbation solution
for (48)-(50) are derived as follows:

858
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0,=¢e",
6, =%g(e“" e),
0, = —%gz (—e‘” +2e7" —e‘f).

So & will generally equal when p —1 the following expression:

f=¢" +%g(e’4’ ~ e’f)—ggz (-7 +2e —e).

The exact solution of Equation (42) is obtained by Aziz [21] in the following form:

1 L+et0®
3 (1+¢)8°

(51)

(52)

(83)

(54)

(55)

We make a comparison between the exact and approximate solutions when &=1/8 as shown in Table 3.
Applying the Runge-Kutta technique, the numerical solution of Equation (42) is calculated and plotted in

Figure 3. The difference between the analytical and numerical results is negligible.

Table 3. Comparison between the approximate and exact solutions for
Equation (16) when &=1/8.

T u, U,y U, —U,,
0.1 0.8952717331 0.9056224388 1.03x10°?
0.2 0.8038934784 0.8090551632 5.161x10°°
0.3 0.6518669930 0.6532058624 2.60x10°
11 0.3204938595 0.3205945603 1.007x10™
1.2 0.2898918134 0.2899814869 8.96x10°
14 0.2372347417 0.2373080757 7.33x107°
2.1 0.1177498295 0.1177870910 3.72x10°
2.5 0.078926 0.07895138470 2.506x10°°
1F
09 f
08 f
0.7
ES
0.6
05 f
04t
03 [

0 0.2 04 0.6 0.8
t

Figure 3. Comparison of the approximate periodic solution with the exact

solution for ¢=1 in Example 3.



T. A. Nofel

From Figure 3 and Table 3 the approximate solution has the same behavior as the exact solution so that the
approximate solution is rapidly convergent to the exact solution.

4. Conclusion

In this paper, the homotopy perturbation method has been successfully used to study nonlinear oscillator prob-
lems. He’s homotopy perturbation method which is proved to be a powerful mathematical tool for the study of
nonlinear oscillators, can be easily extended to any nonlinear oscillator problem. The solutions obtained are in
good agreement with exact values. Finally, we have found out that the homotopy perturbation method leads to
more acceptable results even for large ¢ .

References

(1]
(2]
(3]
(4]
(5]
(6]
(7]
(8]
(9]

[10]

[11]

[12]

[13]

[14]
[15]
[16]
[17]

[18]

[19]
[20]

He, J.H. (1999) Homotopy Perturbation Technique. Computer Methods in Applied Mechanics and Engineering, 178,
257-262. http://dx.doi.org/10.1016/S0045-7825(99)00018-3

He, J.H. (2006) New Interpretation of Homotopy Perturbation Method. International Journal of Modern Physics B, 20,
2561-2568. http://dx.doi.org/10.1142/S0217979206034819

He, J.H. (1999) Homotopy Perturbation Technique. Computer Methods in Applied Mechanics and Engineering, 178,
257-262. http://dx.doi.org/10.1016/S0045-7825(99)00018-3

He, J.H. (2000) A Coupling Method of Homotopy Technique and Perturbation Technique for Nonlinear Problems. In-
ternational Journal of Non-Linear Mechanics, 35, 37-43. http://dx.doi.org/10.1016/S0020-7462(98)00085-7

He, J.H. (2006) Some Asymptotic Methods for Strongly Nonlinear Equations. International Journal of Modern Physics
B, 20, 1141-1199. http://dx.doi.org/10.1142/S0217979206033796

He, J.H. (2000) New Perturbation Technique Which Is Also Valid for Large Parameters. Journal of Sound and Vibra-
tion, 229, 1257-1263. http://dx.doi.org/10.1006/jsvi.1999.2509

Shou, D.H. (2009) THE Homotopy Perturbation Method for Nonlinear Oscillators. Computers & Mathematics with
Applications, 58, 2456-2459. http://dx.doi.org/10.1016/j.camwa.2009.03.034

He, J.H. (2007) Variational Iteration Method—Some Recent Results and New Interpretations. Journal of Computa-
tional and Applied Mathematics, 207, 3-17. http://dx.doi.org/10.1016/j.cam.2006.07.009

He, J.H. and Wu, X.H. (2006) Construction of Solitary Solution and Compacton-Like Solution by Variational Iteration
Method. Chaos Solitons & Fractals, 29, 108-113. http://dx.doi.org/10.1016/j.chaos.2005.10.100

Ganji, D.D., Tari, H. and Jooybari, M.B. (2007) Variational Iteration Method and Homotopy Perturbation Method for
Nonlinear Evolution Equations. Computers & Mathematics with Applications, 54, 1018-1027.
http://dx.doi.org/10.1016/j.camwa.2006.12.070

D’Acunto, M. (2006) Determination of Limit Cycles for a Modified van der Pol Oscillator. Mechanics Research
Communications, 33, 93-98. http://dx.doi.org/10.1016/j.mechrescom.2005.06.012

Ganji, D.D., Sahouli, A.R. and Famouri, M. (2009) Periodic Solutions for Some Strongly Nonlinear Oscillations by
He’s Energy Balance Method. Computers & Mathematics with Applications, 58, 2480-2485.
http://dx.doi.org/10.1016/j.camwa.2009.03.068

Jamshidi, N. and Ganji, D.D. (2010) Application of Energy Balance Method and Variational Iteration Method to an
Oscillation of a Mass Attached to a Stretched Elastic Wire. Current Applied Physics, 10, 484-486.
http://dx.doi.org/10.1016/j.cap.2009.07.004

Li Zhang, H. (2009) Periodic Solutions for Some Strongly Nonlinear Oscillations by He’s Energy Balance Method.
Computers & Mathematics with Applications, 58, 2480 2485. http://dx.doi.org/10.1016/j.camwa.2009.03.068
1/3

Mickens, R.E. (2006) Iteration Method Solutions for Conservative and Limit-Cycle x™® Force Oscillators. Journal of

Sound and Vibration, 292, 964-968. http://dx.doi.org/10.1016/j.jsv.2005.08.020

Ozis, T. and Yildirm, A. (2007) A Study of Nonlinear Oscillators with z** Force by He’s Variational Method. Journal
of Sound and Vibration, 306, 372-376. http://dx.doi.org/10.1016/j.jsv.2007.05.021

Gradshteyn, 1.S. and Ryzhik, 1.S. (1980) Table of Integrals, Series and Products. Academic Press, New York.

Lim, C.W. and Lai, S.K. (2006) Accurate Higher-Order Analytical Approximate Solutions to Nonconservative
Nonlinear Oscillators And application to Van der Pol Damped Oscillators. International Journal of Mechanical Sci-
ences, 48, 483-892. http://dx.doi.org/10.1016/j.ijmecsci.2005.12.009

Stoker, J.J. (1992) Nonlinear Vibrations in Mechanical and Electrical Systems. Wiley, New York.

Jardan, D.W. and Smith, P. (1999) Nonlinear Ordinary Differential Equations: An Introduction to Dynamical Systems.

860


http://dx.doi.org/10.1016/S0045-7825(99)00018-3
http://dx.doi.org/10.1142/S0217979206034819
http://dx.doi.org/10.1016/S0045-7825(99)00018-3
http://dx.doi.org/10.1016/S0020-7462(98)00085-7
http://dx.doi.org/10.1142/S0217979206033796
http://dx.doi.org/10.1006/jsvi.1999.2509
http://dx.doi.org/10.1016/j.camwa.2009.03.034
http://dx.doi.org/10.1016/j.cam.2006.07.009
http://dx.doi.org/10.1016/j.chaos.2005.10.100
http://dx.doi.org/10.1016/j.camwa.2006.12.070
http://dx.doi.org/10.1016/j.mechrescom.2005.06.012
http://dx.doi.org/10.1016/j.camwa.2009.03.068
http://dx.doi.org/10.1016/j.cap.2009.07.004
http://dx.doi.org/10.1016/j.camwa.2009.03.068
http://dx.doi.org/10.1016/j.jsv.2005.08.020
http://dx.doi.org/10.1016/j.jsv.2007.05.021
http://dx.doi.org/10.1016/j.ijmecsci.2005.12.009

T. A. Nofel

Oxford, New York.

[21] Aziz, A. and Na, T.Y. (1984) Perturbation Method in Heat Transfer. Hemisphere Publishing Corporation, Washington,
DC.



	Application of the Homotopy Perturbation Method to Nonlinear Heat Conduction and Fractional Van der Pol Damped Nonlinear Oscillator
	Abstract
	Keywords
	1. Introduction
	2. Basic Idea of He’s Homotopy Perturbation Method
	3. Applications
	3.1. Example 1: Classical Fractional Van der Pol Oscillator
	3.2. Example 2: Rayleigh Equation
	3.3. Example 3: Cooling of a Lumped System by Combined Convection and Radiation

	4. Conclusion
	References

