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Abstract 
In this paper, we address the problem of dynamic pricing to optimize the revenue coming from the 
sales of a limited inventory in a finite time-horizon. A priori, the demand is assumed to be un-
known. The seller must learn on the fly. We first deal with the simplest case, involving only one 
class of product for sale. Furthermore the general situation is considered with a finite number of 
product classes for sale. In particular, a case in point is the sale of tickets for events related to cul-
ture and leisure; in this case, typically the tickets are sold months before the event, thus, uncer-
tainty over actual demand levels is a very a common occurrence. We propose a heuristic strategy 
of adaptive dynamic pricing, based on experience gained from the past, taking into account, for 
each time period, the available inventory, the time remaining to reach the horizon, and the profit 
made in previous periods. In the computational simulations performed, the demand is updated 
dynamically based on the prices being offered, as well as on the remaining time and inventory. 
The simulations show a significant profit over the fixed-price strategy, confirming the practical 
usefulness of the proposed strategy. We develop a tool allowing us to test different dynamic pric-
ing strategies designed to fit market conditions and seller's objectives, which will facilitate data 
analysis and decision-making in the face of the problem of dynamic pricing. 
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1. Introduction 
The problem we want to solve consists in the following: for instance, suppose that someone is selling tickets for 
a concert to be held in a few months and trying to optimize as much as possible the benefits to be obtained. It is 
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unknown how potential buyers will behave, both as regards the number of tickets they will buy as well as the 
moment when they will make their purchase. It is a question of finding a strategy enabling sellers to fine-tune 
prices over time, according to the sales already made, so as to increase their profits with respect to the 
fixed-price strategy. How do we do that? 

This kind of problem is typically related to dynamic pricing, in the context of revenue management, which 
airlines started to apply around the 80’s of the 20th century. The challenge becomes how to offer the right prod-
uct, to the right customer, at the right time, and at the right price. Usually, this requires a thorough knowledge of 
the complex behavior of the relevant market as in Talluri & van Ryzin [1]. 

With regard to pricing, there are studies that establish reasonable assumptions about customer demand in or-
der to develop strategies designed to optimize the expected revenue, showing how price should be allocated 
based on a number of factors such as the rate at which buyers reach the seller’s firm, the price they would be 
willing to pay and the length of the sales period. In the now classic study by Gallego and van Ryzin [2] prospec-
tive buyers arrive, according to a Poisson process, with an exponentially distributed reservation price—the price 
at which they would be willing to buy. 

In these studies, a static model of demand is often used, requiring adequate characterization, a task which can 
be problematic in practice. The approach used implicitly assumes that the model is an accurate representation of 
the actual demand and that the model parameters can be calibrated properly using actual data, as in Bertsimas 
and Perakis [3], Cope [4], Lobo and Boyd [5]. But this does not often happen: in fact, the models are usually 
simplified to make them manageable, and rarely adequate actual data are available to calibrate them.  

At other times, one uses a nonparametric approach in which it is only assumed that the demand function be-
longs to a certain class of functions sufficiently regular, but this usually involves a rapid loss of the problem 
tractability, as in Gallego and van Ryzin [6], Besbes and Zeevi [7]. 

It is therefore appropriate to think about strategies capable of learning from the past, with the potential to im-
prove profits by adapting the model dynamically during the selling period, when one already has relevant infor-
mation about actual demand as in Aviv and Pazgal [8], Araman and Caldentey [9], Lin [10], Narahari et al. [11]. 

In this regard, the main contributions of this paper are as follows: 
• the development and implementation of an algorithm of dynamic pricing, without a priori information about 

demand, capable of learning from the past using a heuristic strategy, enabling benefits to go up from the sale 
of a limited inventory with different types of products in a finite-time horizon, as compared to what a 
fixed-price allocation would entail. 

• the development and implementation of an algorithm that can dynamically establish demand for each period, 
depending on the prices being offered, as well on the remaining time and inventory, in order to get more rea-
listic computational simulations. 

• the development of the move© tool which, combining both algorithms will allow us to test different pricing 
strategies to fit market conditions and seller’s objectives, facilitating data analysis and decision-making in 
the face of the problem of dynamic pricing. 

In what follows, Section 2 identifies the specific formulation of the problem. Section 3 describes the dynamic 
pricing strategies, drawing a clear distinction between the simple case, with only one product, and the multiple 
one, involving several products. Section 4 is devoted to the dynamic simulation of demand. Section 5 discusses 
in detail the computational simulations performed and the obtained results. Finally, in Section 6, some conclu-
sions and future work lines are presented. 

2. Problem formulation 
In this paper, we first consider the problem faced by a seller that has some units of a certain class of products 
and wants to adjust prices dynamically over a finite time, in order to improve his total profit in that period with 
respect to a fixed-price allocation, without accurate information over the demand for this class of products, but 
with the possibility of learning from what happened in the past.  

As a matter of fact, the actual demand can be observed over time, but the demand curve, i.e. the functional 
relationship between price and average demand rate that governs the observations, is unknown. 

The typical product consists of tickets for an event that are being offered for sale over a certain period of time. 
In the second place, we generalize the problem to the case of various classes of products. This would corres-

pond to considering the sale of tickets for different showings of the same event, for example a theater play, as 
well as selling different types of tickets for the same event or show. 
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In both cases, the sales time interval [ ]0,t  is divided into m  subintervals of equal length ( ]1,i i iI t t += , the 
sales periods, where 0,1, , 1i m= − ; 0 0t =  and mt t= . The problem translates into assigning a price ip  to  
each time interval iI  using available information about the sales process carried out up to that moment. 

The initial price 0p  and the minimum and maximum prices that the product can reach are assumed to be de-
termined a priori.  

In what follows, cost is assumed to be fixed and negligible with respect to revenue, a very common situation 
in electronic commerce and, therefore, profit and revenue are used as synonyms. 

The usual approach to this problem is to determine the optimal pricing strategy by solving equations of the 
Hamilton-Jacobi-Bellman type, provided that suitable hypotheses about demand are formulated, which in prac-
tice are not always satisfied; see Farias and van Roy [12]. 

In this paper, aiming to increase the applicability of results to actual cases, we propose a heuristic strategy of 
dynamic pricing entailing a clear advantage over the fixed pricing strategy, without assuming an a priori distri-
bution for demand. On the contrary, demand is also simulated dynamically, calculating it for each time period, 
based on prices being offered, along with the time and the inventory remaining. As for the initial demand, it is 
described in terms of a parameter, the initial interest, which allows to simulate the buyers thrust at the start of 
the sales period, a variable interest according to the quality of the product, the advertising campaign previous to 
the sales period, the media context surrounding it, and so on. 

3. Pricing Strategy 
We propose a heuristic strategy of dynamic pricing, whereby the price ip  assigned to certain class of products  
in each time interval ( ]1,i i iI t t += , is determined by applying a percentage increase or decrease to the price as- 
signed in the previous period, 1ip − . This percentage is calculated weighting a collection of factors showing the 
relevant information about the sale already made, allowing us to learn from past experience. Given an initial 
price 0p , we take 1 0p p= . The first update is applied to the price 1p  to calculate the new price 2p , when 
you have data on at least two time intervals, in this case 0I  and 1I . In general, the price 1ip − , corresponding 
to interval 1iI − , is amended in time ia  chosen randomly in this interval, giving rise to the next price ip , us-
ing information gained during the intervals 0 1 1, , , iI I I − .  

Thus, price 1ip −  remains constant in a time interval [ )1,i ia a−  and it changes at instant ia , a priori un- 
known to potential buyers, which makes it difficult, to some extent, using adaptation strategies to respond to 
price variations. 

The algorithm of dynamic pricing described above sets price ip  in terms of 1ip − , as: 

( )1 , 11
r

i i i j i j ijp p k f pα− −=
= + ∑                               (1) 

starting with 1 0p p=  and being 𝑟𝑟 the number of influencing factors over the price ,i jf  considered, jα  the 
weight assigned to factor ,i jf  and ik  a scale factor of price variation which takes into account the time re-
maining to complete the sales period, see Dimicco et al. [13], namely: 

( )
( )i

m i
k

m i
β
α
+ −

=
+

                                      (2) 

with α, the time dependence, y β the base level, parameters governing the size of the scale factor ik , according 
to the beliefs of the seller. The base level β ensures a minimum percentage change in price each time period. The 
value of α counter balances β to ensure that the changes in price are not too large at the beginning. It would be 
interesting to consider a scale factor of price variation taking into account not only the remaining time but also 
the remaining inventory, calibrating its size with actual data. 

The model implemented in this algorithm is similar to the Derivative-Following strategy by Dimicco et al. [13] 
but with the novelty of using factors ,i jf . There, the strategy adjusts its price just by looking at the amount of 
revenue earned on the previous day as a result of the previous day’s price change. Here the model is capable to 
adapt dynamically prices to increase average revenues, final revenues, recent revenues and comparative reve-
nues, through these factors ,i jf , as it is explained in next two subsections. In addition to this, weights assigned 
to factors allow to reflect expert’s criteria about prices. 
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In the simulations performed, one can try different sets of weights jα  for the factors ,i jf  and compare the 
results obtained (see Section 5). 

3.1. Simple Case 
In the case of a single class of products, the percentage of increase or decrease corresponding to the price update 
is determined by three factors with a certain weight assigned to them, according to the formula (1). 

The first factor, ,1if ,average revenues, reflects the relative change due to the revenue earned in the previous 
period with respect to the average revenue earned in the past. 

1 1 1
,1

1

i i i
i

i

n p mf
m

− − −

−

−
=  

with 1in −  the number of units sold in the previous period 1iI − , 1, ,i m=  , jp  the price corresponding to the 
j-th period, 0, , 1j m= −

 and 1im −  the average revenue earned up to the end of the period 1iI − . 
The second factor, ,2if , final revenues, reflects the relative variation of the trend followed by the revenue in 

the time since the start of the sale using dynamic pricing, with respect to the trend that would have been fol-
lowed using a fixed-price strategy. 

1 1
,2

1

i i
i

i

sd sff
sf
− −

−

−
=  

with 1isd −  the slope of the regression line corresponding to the revenues earned up to the period 1iI −  using 
dynamic pricing, 2, ,i m=  , and 1isf −  the slope of the regression slope corresponding to an estimate of the 
revenues that would have been earned up to the period 1iI −  using fixed pricing. 

The third factor, ,3if , recent revenues, reflects the relative variation due to the revenue earned in the last pe-
riod, 1iI − , with respect to the revenue earned in the previous period, 2iI − . 

1 1 2 2
,3

2 2

i i i i
i

i i

n p n pf
n p

− − − −

− −

−
=  

with 2, ,i m=  , kn  the number of units sold corresponding to the k-th period and jp  the price correspond-
ing to the j-th period, 0, , 1.j m= −

 
Remark: the factor ,3if  is considered to be void for revenue values appearing in the denominator close to 0. 

3.2. Multiple Case 
In the case of a single class of products, the percentage of increase or decrease corresponding to the price update 
is determined by three factors with a certain weight assigned to them, according to the formula(1). 

In the case of various classes of products, in order to update the corresponding prices a fourth factor is used 
which takes into account the differences between the revenues earned by the different classes of products, so 
that if some sort of product is earning a much higher revenue on average than the rest, its price should be risen to 
encourage the sale of the rest of the products and, in the opposite case, it should be lowered so as to favor its 
own sale. 

The fourth factor, ,4if , comparative revenues, reflects the relative variation due to the trend followed by the 
revenue of each class of products in the time since it started its sales with respect to the average trend of the 
revenue for all classes.  

1,
,4

i k
i

s l
f

l
− −

=  

where 1,i ks −  is the slope of the regression line corresponding to the k-th class, calculated using the revenues 
earned up to the period 1iI −  and l  is the average of the slopes of the regression lines of all classes of prod-
ucts on sale, each of them calculated using the revenues earned from the sale of the k-th up the period 1iI − . 

Remark: If the slope appearing in the denominator of the factor ,4if  is close to 0, the factor ,4if  is also 
considered null. Moreover, in each time period and for each class of products, if there is no competition with 
other types of products, the weight originally associated with this factor is redistributed proportionally between 
the weights of the remaining factors.  
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In computational simulations, different sets of weights for the four factors can be tested and comparisons can 
be made between the different results obtained (see Section 5). 

This multiple case applies to the sale of tickets for events, when there are, in addition to different events, sev-
eral sessions, and different types of tickets; namely, every type of product is determined by the set (event, ses-
sion, ticket). Thus, for instance, the tickets of a specific type for a given session of a particular event make up a 
different class of products than the class formed by the tickets of another type for the same session of the same 
event. 

4. Demand Simulation 
We simulate the demand, using an algorithm that dynamically establishes demand for each period in terms of 
the prices being offered, as well on the remaining time and inventory. 

The algorithm starts setting initial demand -understood as the number 0n  of units sold in the first period, for 
each class of products- in terms of a parameter, the initial interest, e , which varies in the range [ ]1,1−  allow-
ing us to simulate the thrust of the buyers at the start of the sales period, according to the formula: 

( )0 max 1 ,0.05 ,1 .x xn e
m m

ν = +  
                               (3) 

In this formula, 𝜈𝜈 represents the expected proportion of fixed-price sales, which is considered as a linear 
function of the initial interest: 

0.45 0.5eν = + , 
according to the opinion of experts in the field of selling tickets for events related to culture and leisure: the 
minimum expected sale of tickets is 5% and the maximum is 95%. The minimum (resp. maximum) sale corres-
ponds to a case of interest −1 (resp. 1), reflecting a buyer’s perception as negative (resp. positive) as possible 
about the event. 

As for the expression 
x
m

, where x  is the number of units in the initial inventory and m  the number of  

sale periods, it represents the linear demand, i.e., the case where the number of units sold in each period is pro-
portional to the elapsed time.  

Remark: For the most negative values of the initial interest, in which the expression ( )1 xe
m

ν+  would be  

null or close to zero, the maximum that appears in the formula for 0 ,n  ensures that the initial number of units 
sold exceeds a certain level, again in accordance with actual experience in the field of ticket sales for events re-
lated to culture and leisure.  

Subsequently, in each period iI , and for each class of product, the algorithm computes the demand, defined 
as the number of units sold in , applying a variation percentage over the demand in the previous period 1in − , 
according to the formula: 

( )1 , 11
r

i i j i j ijn n g nβ− −=
= + ∑  

starting with 1 0n n=  given by Equation (3) and being r  the number of influencing factors on the demand 
,i jg  considered, and jβ  the weight assigned to the factor ,i jg . 
This variation percentage in demand is calculated weighting three factors, described below. 
The first factor, ,1ig , remaining time, increases the variation percentage when time is running short (people 

who want to go to the event need to buy the tickets as soon as possible). 

( ),1
1

i
mg

m i c m
=

− +
 

In this expression, the scale factor 1c  takes the value 1 in the performed simulations, and it could be recali-
brated with actual data on demand. 

The second factor, ,2ig , remaining inventory, increases the variation percentage when there are few remain-
ing units of the product to sell (people who want to go to the event have to buy the tickets before they are sold 
out). 
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,2
1

20

i
i

kk

xg xx n c
m

−

=

=
− +∑

 

In this expression, 1
0

i
kk n−

=∑ , is the cumulative sale up to the previous period. Again, the scale factor 2c   
takes the value 7 in the simulations, and it could be recalibrated with actual data on demand. 

The third factor, ,3ig , price sensitivity, reflects the frequent occurrence in practice that sales tend to fall if the 
price offered at a certain time of the selling process is greater than the initial price, 0p , and otherwise sales will 
tend to rise. This is expressed in terms of a parameter, the buyer’s price sensitivity, s , which scales that effect, 
varying in the range [ ]0,1  and it has been calibrated using actual sales data. The expression of the factor ,3ig  
is: 

( )( )( ) 0
,3 0

0

1 0.2 1 i
i

p pg p s s
p
−

= + − +  

In the case of various classes of products, in future studies, a fourth factor, ,4ig ,called competition could be 
tested, thereby reducing the number of units sold of a class of products where other similar class is available at a 
lower price, otherwise increasing the number of units sold. 

In computational simulations, various sets of weights jβ  can be tested, for the ,i jg  factors and then the re-
sults obtained can be compared (see Section 5). 

5. Results 
As for the computational simulations, the cycle that follows each simulation at a given time interval consists on 
calculating: 
• the price that the seller will offer in that interval, adapted to what happened up to the previous time interval, 

as described in Section 3;  
• the demand for that interval depending on the price offered, the remaining time and the remaining inventory, 

as described in Section 4. 
• the increase in the quantities sold and the benefit earned in contrast to what would have happened with a 

fixed-price strategy corresponding to the expected rate of sale (with numerical and graphical information). 
The input parameters are: 
In the case of the seller: 
( )1 2 3 4, , , :α α α α  Sets of weights for the factors involved in price changes, which can be chosen according to  

the seller's objectives. 
( )1 2 3, ,β β β : Sets of weights for the factors involved in the simulation of demand, which can be chosen ac- 

cording to the beliefs of the seller. 
x : Number of units in the initial inventory. 
t : Length of the sales period (measured in days). 
m : Number of sales periods. 

0p : Initial price. 
In the case of the buyer: 
Product: event, session, type of ticket. 
Number of product units. 
In the case of the selling process (demand simulation): 
e : Initial interest (in the range [ ]1,1− ). 
s : Buyer’s price sensitivity (in the range [ ]0,1 ). 
The time intervals are of 24 hours. For instant of time at each interval it is meant 1 hour (thus, in the case of 

price updates made at instants randomly chosen in each time interval, it has to be noted that from each price up-
date to the next one, a minimum of one hour and a maximum of 47 hours would elapse). Prices are expressed in 
cents of the currency unit (in order to appreciate subtle variations). 

As for the different collections of weights considered to price updating, they are related to the factors in- 

volved in its calculation. In this way, the sets of weights ( )1 2 3 4, , ,α α α α  can be: balanced 1 1 1 1, , ,
4 4 4 4

 
 
 

, final  
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and recent 1 1 1 1, , ,
6 3 3 6

 
 
 

, recent and competitive 1 1 1 1, , ,
6 6 3 3

 
 
 

. Other sets of weights could be established to in- 

tensify or soften the impact of the various factors. 
As for the different collections of weights considered to the update of the demand, they correspond to the  

factors involved in its calculation. Thus, the sets of weights ( )1 2 3, ,β β β  can be: balanced 1 1 1, , ,
3 3 3

 
 
 

 price 

sensitive 1 1 1, ,
4 4 2

 
 
 

, temporal 1 1 1, ,
2 4 4

 
 
 

, and inventory related 1 1 1, ,
4 2 4

 
 
 

. As with the previous case, other  

sets of weighs could be established to intensify or soften the impact of the various factors. 
The computational simulations have been carried out through the move© tool, a Java application. 
The graphical interface of move allows you to perform a virtual sale based on parameters describing the ac-

tions of the seller, of the buyer and the selling process. An example of this interface is shown in Figure 1. 
The seller has a management window in which, in addition to editing installations and activities, he can act on 

some of the parameters of the model.  
Regarding the parameters related to the scale of price variation (see Section 3), the time dependence is related 

to the time remaining to complete the sales period and the base level guarantees a minimum size of price varia-
tions. Basically, the seller does not need to act on them. Concerning the weights of the four factors influencing 
the dynamic calculation of price (see Subsections 3.1 and 3.2), the tool allows you to choose different distribu-
tions in accordance with the seller's beliefs. In the equiweighted case all weights are equal, but it is also possible 
to give more weight to some than others. For example, if the seller's priority is achieving a balance between the 
sales of different classes of products, the factor of comparative revenues will increase its weight and the others 
will see it decrease. 

Similarly, one can choose several sets of weights for the three factors that influence on the dynamic simula-
tion of the demand, according to the importance attached by the seller to the remaining time, the remaining in-
ventory and the price sensitivity factors (see Section 4). 

Respect to the demand simulation and comparison of the dynamic pricing strategy used along with that of 
fixed-price, the expected percentage of fixed-price sale was taken as a specific linear function of the initial in-
terest, according to the view of experts on the field of minimum and maximum sales (see Section 4). There is no 
need to vary the coefficients of that linear function in the simulations. 

The tool also offers the possibility of rounding the sales to whole numbers, as well as introducing random 
noise in the simulation of demand, which adds to the number of tickets sold in each period. This reflects the 
random nature of the factors that may influence future demand for the products on sale. The amplitude regulates 
the size of the number being added.  

As regards the behavior of the parameters of the sales process, initial interest and price sensitivity, in relation 
to sales and revenue, the simulations confirm that: 
• for fixed price sensitivity and growing interest, going from -1 to 1, sales and revenues will gradually increase, 

except when no grading is possible because maximum possible sales have been reached, corresponding to 
very high sensitivities to price, close to 1. 

• for fixed interest and increasing sensitivity to price are equal, going from 0 to 1, increments in sales and rev-
enues begin when sensitivity reaches 0.5, the average value. Until then, changes in low sensitivities, smaller 
than 0.5, neither significantly affect sales nor revenues for a fixed interest. 

This behavior can be seen in Figure 2, which corresponds to simulation carried out for the simple case—a 
single class of products—with initial inventory (capacity) 500x = , number of sales periods 68m = , initial 
price 0 15€p =  and price range [ ]10,20 . The sets of weights used are equiweighted for factors that influence 
price and give priority to the time factor in relation to demand. 

As for the comparison between the proposed strategy of dynamic pricing and that of fixed-price, which would 
correspond to selling at the initial price the expected sales ratio of the initial inventory, simulations confirm that 
for most choices of parameter pairs, the amount sold and the revenue earned is improved. The graphs below 
correspond to the multiple case with two classes of products for sale and different selling periods, the initial in-
ventory (seats) is 100x = , in both cases, the number of sales periods is 10 in the first case, and 12 in the second. 
In both cases, the initial price is 0p  es 40€,  the price range is [ ]20,50  and the sets of weights used are 
equiweighted. 
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             Figure 1. Graphical interface of the move© tool, a Java application.                     
 

 
            Figure 2. Revenues vs sensitivities. simple clase equiweighted.                           
 

The graphs of revenues vs. time for interest 0 and sensitivity 0.5, show that even with no initial interest and an 
average sensitivity, the revenues earned, using the proposed dynamic pricing strategy (orange curves) improve 
with respect to the fixed-pricing strategy (blue curves) as it can be seen in Figure 3. 

For zero interest and maximum sensitivity, the proposed heuristic performs particularly well reflecting the 
ability of the model to adjust prices dynamically to buyer’s behavior. The gain of the dynamic pricing strategy 
vs. the fixed one is shown in Figure 4. 

For an intermediate case, with interest 0.5 and sensitivity 0.8, the gain is also clear. See Figure 5. 
Even in the case where the initial interest is negative −1, and the sensitivity to price is 1, the dynamic pricing 

strategy is clearly more advantageous. See Figure 6. 
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            Figure 3. Revenues vs time. Multiple case: two functions on sale. Interest 0. Sensitivity 0.5.   
 

 
            Figure 4. Revenues vs time. Multiple case: two functions on sale. Interest 0. Sensitivity 1.      
 

 
            Figure 5. Revenues vs time. Multiple case: two functions on sale. Interest 0.5. Sensitivity 0.8.   
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            Figure 6. Revenues vs time. Multiple case: two functions on sale. Interest −1. Sensitivity 1.    

6. Conclusions 
When there is complete information on demand, according to Gallego and van Ryzin [2], the fixed-pricing 
strategy leads to near optimal results. 

When there is uncertainty about demand, pricing policies obtained by the models that make assumptions 
about demand may fail in actual applications. 

In this paper, we study the dynamic problem of multi-product revenue management, without assuming apriori 
knowledge about demand. We develop and implement an algorithm of dynamic pricing allocation, capable of 
learning from the past using a heuristic strategy enabling benefits to grow from the sale of a limited inventory 
with different classes of products in a finite-time horizon. 

So as to make computational simulations more realistic, we have also developed an algorithm that can dy-
namically determine the demand for each time period, depending on the prices being offered as well as on the 
time and remaining inventory. 

Finally, we develop a tool based on a Java application allowing you to perform a virtual sale process, testing 
different pricing strategies and analyzing the results obtained. 

The results of the computational simulations carried out with the proposed strategy have shown a significant 
performance gain with respect to the fixed-price strategy. 

In the future, we intend to continue calibrating some of the parameters of the dynamic simulation model of the 
demand and pricing, using actual data on demand and on the sales process. Another line of future research is the 
use of agent based models allowing us to build a virtual sale considering different types of buyers and sellers in-
teracting according to their beliefs and who make decisions about buying and selling, respectively, based on a 
series of factors characterizing the process. 
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