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Abstract 
The real time monitoring and control have become very important in electric power system in or-
der to achieve a high reliability in the system. So, improvement in Energy Management System 
(EMS) leads to improvement in the monitoring and control functions in the control center. In this 
paper, DSE is proposed based on Weighted Least Squares (WLS) estimator and Holt’s exponential 
smoothing to state predicting and Extended Kalman Filter to state filtering. The results viewing 
the dynamic state the estimator performance under normal and abnormal operating conditions. 
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1. Introduction 
Recently, the power system has begun to grow very largely and more complex, so real time monitoring and con-
trol become very important in order to fulfill a reliable operation. Energy Management System (EMS) is respon-
sible for this mission, and it forms the basis for efficient operating and control. State Estimation (SE) forms the 
spine of the EMS by providing the information of the real time state of the system which can be used in other 
EMS functions. Hence, an accurate and efficient state estimation is necessary for a reliable and efficient opera-
tion of the power system [1] [2]. 

The state estimator computes the voltage magnitudes and voltage angles at the buses of the power system. We 
know that, power system is not a static system, but it changes very slowly with time and continuously. That 
means, when the load on the buses changes, the generations also have to change to overcome these changes in 
load. This in turn causes the change in power flows and injections at the buses, also leads to change in voltage 
angular at the buses and perhaps change in voltage magnitude at some buses depending on the size of this 
change; therefore, change the nature of the power system from static state to dynamic state nature. These dy-
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namic behaviors of the power system are difficult to overcome by the conventional Static State Estimation 
(SSE). This led to the development of a new algorithm called Dynamic State Estimation (DSE) [1]-[5]. The DSE 
technique possesses a mathematical model for the time variation of the power system. The DSE uses this ma-
thematical model depending on the previous state of the system at time (t), to predict the state vectors at the next 
state of the system (one step ahead) at time (t + 1). This capability of predicting the state one step ahead is a very 
important advantage in the control center, because the state forecasting gives a longer decision time to the sys-
tem operator, and because the security assessment, economic dispatching and the other functions can be per-
formed in advance. So, Dynamic State Estimation has the ability to represent an important role in the mod-
ern-day control center [1].  

In this paper, we will not only describe the dynamic model for the time behavior of the system state, but will 
show more details about the DSE, mainly the state predicting and state filtering. When the state variables are es-
timated at time k by state estimation technique, we will use these state variables to forecast the state vectors at 
time k + 1 using linear exponential smoothing. The state vectors are filtered based on Extended Kalman Filter 
and weighted least squares method. The proposal is tested using IEEE 14 bus test system. The test includes 
normal and abnormal operations. 

2. Mathematical Models 
The measurement vector consists of active power and reactive power flows and injection’s power as well as 
some voltage magnitudes, is denoted by an m-dimensional vector z. The power equation s is expressed by [6] [7].  

( )1 cos sinn
i i j ij ij ij ijjP V V G Bθ θ

=
= +∑                            (1) 

 
( )1 sin cosn

i i j ij ij ij ijjQ V V G Bθ θ
=

= −∑                           (2) 

( ) ( )2 cos sinij i si ij i j ij i ij ijP V g g VV g bθ θ= + − +                         (3) 

( ) ( )2 sin cosij i si ij i j ij i ij ijQ V b b VV g bθ θ= + − −                        (4) 

The measurement and state variable kz  and kx  at time instant k are given by equation 

( )k k kZ h x ν= +                                       (5) 

where kz  is measurement vector m-dimensional ( )1m× , kx  is state variables dimensioned ( )1n× , ( )kh x  
is nonlinear function relating measurement to the state vector .dimensioned ( )1m×  and kν  is the measure-
ments error with zero mean and standard deviation of R. 

where 2 2 2
2diag , , ,i nR σ σ σ =   , σ is the standard deviation of error. 

k k kZ Hx ν= +                                          (6) 

where 
0x x

hH
x =

∂
=
∂

 is Jacobian matrix dimensional (m×n), m is number of measurements and  n is number of 

state vectors. 
The general model for DSE is given by.  

1k k k k kx F x G w+ = + +                                       (7) 

where xk and xk+1 are the state vector at instants k and k+1 respectively, Fk is nonzero diagonal matrix dimen-
sioned (n × n), a function represent the state transition between two instant of time, Gk is nonzero vector asso-
ciated with trend behavior of the state trajectory dimensional (n × 1) and wk is white Gaussian noise with zero 
mean and covariance matrix Q [1]-[4]. 

2.1. Parameters Identification 
The parameters Fk and Gk are identified using Holt’s two-parameter linear exponential smoothing method [1], 
[8]-[10]. This method is very simple, used when the data shows a trend. In this method, two components must be 
updated each period of time, level and trend. 
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• The level is a smoothed estimate of the value of the data at the end of each period represented by ak. as 
shown in Equation (8). 
• The trend is a smoothed estimate of average growth at the end of each period. represented by kb .as shown 
in Equation (8). 

The specific model for simple exponential smoothing is written as: 

1k k kx a b+ = +                                        (8) 

where ( )ˆ 1k ka x xα α= + −   & ( ) ( )1 11k k k kb a a bβ β− −= − + −  0 < β < 1, 0 < α < 1 

( )1kF α β= +                                        (9) 

( )( ) ( )1 11 1 1k k k kG x a bβ α β β− −= + − − + −                           (10) 

α and β represent the smoothing parameters [2], [8]-[10]. 

2.2. State Predicting or State Forecasting 
Let kx  and kΣ  be the estimated state and estimated state covariance respectively at time k the forecasted state 
vector and its covariance matrix is obtained by 

1 ˆk k k kx F x G+ = +                                     (11) 
T

1k k k k kM F F Q+ = ∑ +                                  (12) 

where 1kM +  is covariance matrix of the forecasted state. 

2.3. State Filtering 
The forecasted state would use to forecast new measurements Zk+1 at the time k + 1 based on the data at instant k; 
the predicted state vector at k + 1 will be filtered to obtain new estimates (filtered states) 1kx +  with its error’s 
covariance matrix 1k+∑ . Then, the objective function for the filtering process at the instant of time (k + 1) is 

( ) ( ) ( ) [ ] [ ]T T1 1J x Z h x R Z h x x x M x x− −= − − + − −                             (13) 

Note that, the time index (k + 1) has been omitted. 
Extended Kalman Filter (EKF) used for minimizing the objective function and getting the final filtering state. 

( )1 1 1 1 1ˆk k k k kx x K Z h x+ + + + + = + −                                 (14) 

T 1
1 1 1 1k k k kK H R−
+ + + += ∑                                     (15) 

1T 1 1
1 1 1 1 1k k k k kH R H M

−− −
+ = = = + ∑ = +                                   (16) 

where K is called the gain matrix ( )n m×  dimensioned. Perform only one iteration in Equation (15). 

3. The Implementation 
The steps of the dynamic state estimation algorithm are described above. The covariance matrix R of the mea-
surement error is assumed to be calculated online.  

where ( ) 3i mi ti mi fia s b sσ = +   

where am & bm are the manufacture factors. st represents the real value of the measurement. sf is the maximum 
value of the measurement. As mentioned before, for predicting state we used Holt’s 2-exponential smoothing, 
the values of the smoothing parameters α and β, are fixed at 0.7 and 0.45, and for the filtering state we used Ex-
tended Kalman Filter. The elements of the covariance matrix Q of the system, is set at 10‒6. The load curve at 
each bus was composed of a linear trend and random fluctuation (jitter).  

In this paper, the Dynamic State simulation is studied over a period of 20 time sample intervals. with increas-
ing of constant value 5% of the load at all the buses at each period. Once the load is changed the load flow is 
ready to update all the real and reactive power and injection power on the lines, voltage magnitudes and angles 
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on the system. In this paper, the actual values of the state vectors are obtained from the 14-bus IEEE standard 
data for the base case and load flow for rest of the time samples [11]. The test cases and their results are shown 
in tables and figures in the next sections. 

3.1. Case Study 
In this paper, we used standard IEEE 14-bus test system [11]. The measurement vector consists of 34 observa-
tions distributed as in Table 1. 

The measurement value was simulated by adding random errors to the true values represented by normally 
distribution with zero mean and standard deviation. 

3.2. Performance Indices 
The performance of the algorithm in the simulation studies was obtained by comparing the forecasted and esti-
mated values at time k + 1 with the actual values. The average performance indices for voltage magnitude and 
voltage angular forecasted and estimated are given as. 
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                                     (19) 

truev′  and trueθ ′  are the true value of voltage magnitude and angle, forecasedv′  and filteredv′  are the forecasted and 
filtered voltage magnitude, forecasedθ ′  and filteredθ ′  are the forecasted and filtered voltage angle, Jk is the perfor-
mance index of the overall achievement, the ratio of estimated at time k and actual error of the measurement. 

3.3. Results Discussion 
In this paper, three test cases are performed, the normal operation, bad data and sudden load change. 

Test 1: Normal operation case: 
The normal operation case was illustrated by Table 2, Table 3, Figures 1 and 2. Table 2 shows the perfor- 

 
Table 1. The Measurements prepared by the load flow. 

Type Measurement vector 

Active power flow p(1-5), p(4-5), p(4-9), p(6-11), p(6-12), p(7-8), p(7-9), p(9-10) , p(13-14) 

Reactive power flow q(1-5), q(4-5), q(4-9), q(6-11), q(6-12), q(7-8), q(7-9), q(9-10),  q(13-14) 

Active and Reactive power injection P1, P3, P6, P10, P12. Q1, Q3 , Q6, Q10, Q12 

Voltages magnitude V1, V3, V8, V11, V12, V14. 

 
Table 2. Performance indices under normal operation. 

cases 
Predicted Filtered 

J_k 
voltage angle voltage angle 

Normal operation 
Max 0.510 1.7546 0.499 1.0455 0.970 

Ave 0.1845 1.3450 0.178 0.6385 0.957 
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Table 3. The errors per bus under normal operation. 

Bus number 
predicted Filtered 

voltage Angle voltage angle 

1 0.2286 0.2198 0.000 0.0000 

2 0.1977 0.1986 1.440 0.6792 

3 0.2969 0.2954 1.666 0.9037 

4 0.2480 0.2389 1.530 0.7662 

5 0.2257 0.2168 1.458 0.6974 

6 0.1560 0.1530 1.409 0.6483 

7 0.2090 0.2080 1.457 0.6967 

8 0.1621 0.1568 1.436 0.6754 

9 0.2036 0.1995 1.444 0.6838 

10 0.1953 0.1907 1.438 0.6780 

11 0.1228 0.1207 1.395 0.6350 

12 0.1420 0.1426 1.398 0.6375 

13 0.0901 0.0870 1.389 0.6294 

14 0.1055 0.0650 1.369 0.6093 

 

 
Figure 1. Performance index under normal operation. 

 

 
Figure 2. V9 under normal operation.      
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mance indices of the case. The maximum and average percentage error of voltage magnitudes and angles are 
made over 20 time sample. From this table, the algorithm has achieved very high performance. 

Figure 1 describes the Performance index of the system dynamic nature under normal operation case corres-
ponding to filtered indices calculated at each time sample. 

Table 3 shows the percentage for estimated errors per bus for predicted and filtered state with regard to the 
voltage magnitudes and voltage angles. 

In both states, the maximum error occurred in busbar 3 for voltage magnitudes and voltage angles. Further-
more the average errors are equal to the average error in Table 2. Bus 1 is the reference bus, so it is angle is out-
side of state variables. Figure 3 represents the time behavior for true, forecasted and filtered values of voltage 
magnitude at bus 9. Figures 3 and 4 show the graphs of the Table 3.  

Test 2: Bad data case: 
In this test, the simulation was carried out under bad data conditions with three different cases. 

• Single bad data was considered. Active power flow pf(4 - 9) was suspected in error of 10% at the 6th time 
sample. 
• Two measurements were suspected in error pf(9 - 10) of 20% at the 11th time sample. And also pf(13 - 14) 
of 50% decrement at the 11th time sample.  
• Single bad data was considered. Reactive power flow qf(4 - 5) was suspected in error of 20% at the 18th time 
sample. 

Suppose that no work is taken to eliminate these errors. 
The result of these tests is shown in Tables 4 and 5, Figures 5-7. 

 

 
Figure 3. Average voltage error per bus *100%      

 

 
Figure 4. Average voltage angle error per bur*100%  
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Table 5. The percentage error per bus under bad data conditions.            

Bus number 
Predicted Filtered 

Voltage angle voltage angle 

1 0.2264 0.0000 0.2283 0.0000 

2 0.2172 1.5183 0.2179 0.7570 

3 0.3045 1.6960 0.3039 0.9337 

4 0.2500 1.5674 0.2563 0.8061 

5 0.2730 1.4960 0.2578 0.7351 

6 0.1571 3.1423 0.1533 2.3690 

7 0.2581 3.1045 0.2637 2.3318 

8 0.2271 3.0803 0.2144 2.3103 

9 0.2418 2.8826 0.2536 2.1113 

10 0.2171 2.9726 0.2266 2.2005 

11 0.1176 3.1732 0.1227 2.3997 

12 0.1352 3.3294 0.1352 2.5548 

13 0.1606 3.6942 0.1470 2.9168 

14 0.1462 3.5880 0.1025 2.5840 

 

 
Figure 5. Performance index under bad data condition 

 

 
Figure 6. Average voltage error per bus *100%       
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Figures 6 and 7 show the percentage error per bus of the voltage magnitudes and voltage angle’s respectively 
based on Table 5. 

Test 3: Sudden load change: 
In the case, the injected load at busbar 3, busbar 9 and busbar 13 are assumed to be sudden changed.  
Busbar 3 and busbar 13, 50% of their values are cut at the 6th time sample and 15th time sample respectively. 

For busbar 9, we assumed that the load is increased to 40% at the 10th time sample. 
The result of this case is shown in Tables 6-8, and also shown in Figures 8-10. Table 6 shows the perfor-

mance indices of the case of sudden load change. From this results the average and maximum error has become 
difference of normal operation and bad data test due to these changes in load.  
 

 
Figure 7. Average voltage angle error per bus *100% 

 
Table 6. Performance indices under sudden load change. 
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Load change 
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6 0.1710 1.4125 0.1683 0.6522 

7 0.2270 1.4660 0.2310 0.7057 

8 0.1733 1.4453 0.1680 0.6847 

9 0.2155 1.4520 0.2180 0.6912 

10 0.2058 1.4460 0.2072 0.6852 

11 0.1300 1.4002 0.1306 0.6400 

12 0.1546 1.4025 0.1563 0.6422 
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Table 8. V13 under sudden load change. 

Time sample True predicted filtered 

1 1.0501 1.0482 1.0478 

2 1.0489 1.0485 1.0481 

3 1.0474 1.0482 1.0479 

4 1.0459 1.0467 1.0464 

5 1.0246 1.0237 1.0235 

6 1.0336 1.034 1.0338 

7 1.0173 1.0165 1.0164 

8 1.0056 1.0058 1.0058 

9 0.9937 0.991 0.991 

10 0.9827 0.9823 0.9824 

11 0.9800 0.9791 0.9793 

12 0.9769 0.9769 0.977 

13 0.9738 0.9737 0.9739 

14 0.9706 0.9723 0.9725 

15 0.9798 0.9804 0.9805 

16 0.9771 0.9745 0.9747 

17 0.9744 0.9728 0.973 

18 0.971 0.9708 0.971 

19 0.9675 0.9681 0.9683 

20 0.9641 0.9649 0.9652 

 

 
Figure 8. Average voltage error per bus *100%. 

 

 
Figure 9. Average voltage angle error per bus *100%  
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Figure 10. V13 under sudden load change condition. 

 
Figure 10 represents the time behavior for true, forecasted and filtered values of voltage magnitude at busbar 

13 based on Table 8. As they are shown in Figure 10, at time sample 6, 10 and 15 when sudden load change, 
the oscillation in the voltage is appeared very clear. 

4. Conclusion 
The dynamic state estimator technique has been made based on Holt’s exponential smoothing and Extended 
Kalman Filter for forecasting and filtering state respectively. The system dynamic was simulated over 20 time 
samples, with increasing the load at all busbars 5% during any time sample. The algorithm of DSE has been si-
mulated through these 20 time intervals used standard IEEE 14_bus test system under normal and abnormal op-
eration. In this paper, the algorithm gave very good performance results through the normal operation and ab-
normal operation (bad data and sudden load change) conditions. The error per bus for voltage magnitude and 
voltage angle has been calculated over these 20 time intervals in both predicted and filtered states. 
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