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Abstract 
 
This paper presents a new three-dimensional continuous autonomous chaotic system with ten terms and three 
quadratic nonlinearities. The new system contains five variational parameters and exhibits Lorenz and Ross-
ler like attractors in numerical simulations. The basic dynamical properties of the new system are analyzed 
by means of equilibrium points, eigenvalue structures. Some of the basic dynamic behavior of the system is 
explored further investigation in the Lyapunov Exponent. The new system examined in Matlab-Simulink and 
Orcad-PSpice. An electronic circuit realization of the proposed system is presented using analog electronic 
elements such as capacitors, resistors, operational amplifiers and multipliers. 
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1. Introduction 
 
The science of nonlinear dynamics and chaos theory has 
sparked many researchers to develop mathematical models 
that simulate vector fields of nonlinear chaotic physical 
systems. Nonlinear phenomena arise in all fields of engi-
neering, physics, chemistry, biology, economics, and soci-
ology. Examples of nonlinear chaotic systems include pla-
netary climate prediction models, neural network models, 
data compression, turbulence, nonlinear dynamical eco-
nomics, information processing, preventing the collapse of 
power systems, high-performance circuits and devices, and 
liquid mixing with low power consumption [1-3]. 

The Lorenz system of differential equations arose from 
the work of meteorologist/mathematician Edward N. Lo-
renz, who was studying thermal variations in an air cell 
underneath a thunderhead. 

The Lorenz equations are a fairly simple model in which 
to study chaos [3]. 
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The arbitrary parameters  , r and β > 0 and for this 
example are   = 10, r = 28 and β = 8/3. The Rossler 
system has only one quadratic nonlinearity xz numerical 

integration shows that this system has a strange attractor 
for a = b= 0.2, c = 5.7 [2]. 
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This paper propose a new chaotic system based on add-
ing two chaotic system (Lorenz and Rosslere) and it com-
pares the results with the chaotic system and an electronic 
circuit realization of the proposed system is presented using 
analog electronic elements, The remainder of the paper is 
organized as follows: Section 2 discusses the proposal of a 
new chaotic system and its analysis, section 3 present deal 
with circuit realization of the new attractor and section 4 
discusses and examines a new scheme [4]. 

2. A New Chaotic System and Its Analysis 

Most researchers developed a new chaotic system depend-
ing on one chaotic system like Lorenz or Rossler systems 
the proposed scheme in this paper based on merging two 
chaotic systems Lorenz chaotic system and Rossler chaotic 
system. Therefore will be added two chaotic systems in (1) 
and (2), a new system is shown in (3). 
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We note after adding the two chaotic systems, it is no-
ticed (1) and (2) that the control parameter increased 
from three (δ, r, β) to six (δ, r, β, b, a, c) but to check the 
new system is suitable for achieving the chaotic re-
quirements, by plot phase plane for a new system we 
note a new system loss chaotic behavior shown in Figure 
1. 

Therefore we try to manipulate the above equation to 
achieve a chaotic behavior, so we will add cuomo Cir-
cuit shown in (4) (linear transformation of Lorenz equ-
ations with a new scale) [2,5] to Rossler equations after 
changing z instead x in last equation of Rossler system, 
the final system is shown below in (5) and (6). 
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To check that the new system has a chaotic behavior or 
not, no definition of the term chaos has been universally 
accepted yet but most researchers agree on the three in-
gredients used in following definition “Chaos is aperiodic 
long term behavior in a deterministic system that exhibits 
dependence on initial condition” [1-4,6]. Even though the 
definition of chaos has not been agreed upon by mathe-
maticians, two properties that are generally agreed to 
characterize it are sensitivity to initial conditions and the 
presence of period-doubling cycles leading to chaos. 
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Figure 1. Phase plane at adding Lorenz with Rossler sys-
tems. 

The new system has six terms, two quadratic nonlin-
earities (xz, xy) and six real constant parameters (δ, r, a, b, 
β and c). The state variables of the system are x, y, and z. 
The new system equations have one equilibrium point. 
This point which satisfies this requirement is found by 
setting x, y, z = 0, in (5), and solving for x, y and z: 
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The fixed point just we have one point (0,0,0), The Ja-
cobian of the system is: 
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For the case when the fixed point is (x*,y*,z*) = (0,0,0), 

the Jacobian becomes 
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The eigenvalues are found by solving the characteristic 
equation, 0 J I , for which is yielding eigenvalues 

λ1 =18.4561, λ2 = –30.6770 and λ3 = –8.279 the equilib-
rium points are unstable and this implies chaos. Thus, the 
system orbits around the unstable equilibrium point. Us-
ing a Matlab-Simulink model as shown in Figure 2. The 
xy, xz, and yz phase portraits of the new system achieved 
are shown in Figure 3, Figure 4, and Figure 5, also the 
time series for the new chaotic system is shown in Figure 
6. 
 

 
Figure 2. The Matlab-Simulink model of the new system. 
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Figure 3. xz phase portrait of the new system. 
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Figure 4. xy phase portrait of the new system. 
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Figure 5. yz phase portrait of the new system. 

 
Another important test is the Lyapunov exponents, 

which measures the exponential rates of divergence and 
convergence of nearby trajectories in state space, and the 
Lyapunov exponent spectrum provides additional useful 
information about the system as shown in Figure 7. A 
positive and zero Lyapunov exponent indicates chaos, 
two zero Lyapunov exponents indicate a bifurcation, and 
a zero and a negative Lyapunov exponent indicates perio-
dicity, however as noticed from Lyapunov exponent the 
sum of the Lyapunov exponents must be negative. A pos-
itive Lyapunov exponent reflects a “direction” of stret- 

 
Figure 6. The time series for new chaotic system. 

 

0 20 40 60 80 100 120 140 160 180 200
-20

-15

-10

-5

0

5
Dynamics of Lyapunov exponents

Time

Ly
ap

un
ov

 e
xp

on
en

ts

 
Figure 7. Dynamics Lyapunov exponent of the new system. 
 
ching and folding and therefore determines chaos in the 
system, 3D continuous dissipative (λ1,λ2,λ3) ,(+,0,–)—A 
strange attractor; (0,0,–)—A two-torus; (0,–,–)—A limit 
cycle; (–,–,–)—A fixed point [7-11]. 

 
3. Circuit Realization of the New Attractor 
 
A simple electronic circuit is designed, so that it can be 
used to study chaotic phenomena. The circuit employs 
simple electronic elements, such as resistors, and opera-
tional amplifiers, the operational amplifiers and associ-
ated circuitry perform the operations of addition, sub-
traction, and integration. Analog multipliers implement 
the nonlinear terms in the circuit equations, and is easy to 
construct [12]. Circuit schematic for implementing the 
new chaotic system in (6). By applying standard node 
analysis techniques to the circuit of Figure 8, a set of 
state equations that govern the dynamical behavior of the 
circuit can be obtained. This set of equations is given by  
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Figure 8. The electronic circuit schematic of the new chaotic system. 
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For the chosen component value is equivalent to after 
rescaling time by a factor of 1500. An electronic circuit 
of the new chaotic system is implemented with parame-
ters of (δ = 20, r = 20,a = 9, β = 8.5, b = 0 and c = 8 ) 
and initial conditions x0 = 0.0010, y0 = 0.001, z0 = 0.1 
LM741 opamps, and the analog multipliers are used with 
R1 = R2 = R5 =20 K, R3 = R4 = R6 = R8 = R12 = 400 K, R9 = 
44.44 K, R10=8 K, R11 = 47.06, R7 = 2 K, R13 = 40 K and 
R14 = 50 K and C1 = C2 = C3 = 1 nF. The output voltage 
is the products of the inputs multiplied by 10 V. PSpice 
simulations of the new chaotic system are also attained in 
Figure 9, Figure 10, and Figure 11 for xy, xz, and yz 
attractors, respectively. In this simulation, the parameters 
(δ,r,a,β,b and c) are set at a value of 20,20,9,8.5,0 and 8. 

 

Figure 9. PSpice simulation result of the new chaotic sys-
tem’s electronic oscillator (Figure 3) for xz strange attrac-
tor. 
 
4. Conclusions 
 
In this paper, we have displayed a three-dimensional 
continuous autonomous chaotic system modified from 
the Lorenz system and Rössler system, which the first 
equation has not non-linear cross-product term but the 
second equation has one non-linear cross-product term  
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Figure 10. PSpice simulation result of the new chaotic sys-
tem’s electronic oscillator (Figure 4) for xy strange attrac-
tor. 
 

 

Figure 11. PSpice simulation result of the new chaotic sys-
tem’s electronic oscillator (Figure 5) for yz strange attrac-
tor. 
 
and the third one has two non-linear cross-product term. 
Part of the basic dynamic behavior of the system is ex-
plored further investigation in the Lyapunov Exponent 
and bifurcation diagrams. Moreover, this was the new 
system also physically realized using analogue electronic 
circuits. 
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