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Abstract 
Several nondestructive assay (NDA) methods to quantify special nuclear materials use calibration 
curves that are linear in the predictor, either directly or as an intermediate step. The linear re-
sponse model is also often used to illustrate the fundamentals of calibration, and is the usual de-
tector behavior assumed when evaluating detection limits. It is therefore important for the NDA 
community to have a common understanding of how to implement a linear calibration according 
to the common method of least squares and how to assess uncertainty in inferred nuclear quanti-
ties during the prediction stage following calibration. Therefore, this paper illustrates regression, 
residual diagnostics, effect of estimation errors in estimated variances used for weighted least 
squares, and variance propagation in a form suitable for implementation. Before the calibration 
can be used, a transformation of axes is required; this step, along with variance propagation is not 
currently explained in available NDA standard guidelines. The role of systematic and random un-
certainty is illustrated and expands on that given previously for the chosen practical NDA example. 
A listing of open-source software is provided in the Appendix. 
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1. Introduction 
“Simple linear regression” refers to fitting a response y as a linear function of a single predictor x [1]. Although 
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calibration of assay methods sometimes requires more than a single predictor x, simple linear regression is often 
adequate. In fact, assay developers often aim for a simple linear relation between a quick-to-measure response 
and a single predictor, such as radioactive source strength. Regression fitting is used during calibration and then 
to apply the assay method, the quick-to measure response is used to predict the source strength (such as grams of 
nuclear material) of new test items. 

This paper illustrates simple linear regression, residual diagnostics, and variance propagation in a form suita-
ble for implementation, intended both for practitioners who calibrate instruments and also as a case study of 
good applied statistical practice. In particular, much of our experience is in nondestructive assay (NDA) mea-
surements such as neutron and gamma detection which through careful physics-based modeling and calibration 
can infer grams of source material without touching or sampling from the item [2]. The NDA professional has, 
however, only a meager set of widely used texts that have partial examples to serve as a common, basic ap-
proach for all NDA practitioners [3]-[5]. Within the NDA literature, we are not aware of any examples that fully 
describe the statistical procedures and illustrate good practice. The classic book by Sher and Untermyer [5] sur-
veys a broad range of NDA techniques. Statistical analysis for assay systems is covered in Chapter 8, where 
Jaech [5] provides an example of establishing a calibration that is linear in the predictor by the method of 
weighted least squares (WLS), and shows how to apply it to assay a group of items. A large and important class 
of NDA applications is that for nuclear safeguards [6], with the goal to measure and account for special nuclear 
material to meet international agreements. 

Given the ubiquitous nature of linear calibrations, and also because such analysis often provides a stepping off 
point for more complicated forms of instrument response (such as models that are linear in the parameters but 
that include transformations of the predictors), it is important for NDA practitioners to understand the standard 
underlying statistical approach. The treatment in [5] covers a number of salient points but is insufficient in sev-
eral important ways. The purpose of this article is to extend the analysis in [5] and create a worked example that 
informs the uncertainty quantification sections of NDA standard guides with respect to good practice. In partic-
ular, we: 
• Extend the analysis to non-transformed coordinates because this is what most NDA software uses and illu-

strate how random and systematic error variances are estimated from non-transformed coordinates; 
• Evaluate the impact of estimation errors in the variances that are used for weights in WLS; 
• Extend the uncertainty treatment by including scaling for the “external” estimate of how well the regression 

lines represents the calibration data set; 
• Present graphical uncertainty bands; 
• Examine whether repeat data is consistent with the assigned uncertainties; 
• Discuss overall goodness of fit metrics including the use of residual plots, the correlation coefficient, and the 

chi-squared ( )2χ  per degree of freedom; 
• Transform (or invert) the calibration line of regression so that it may be used to perform assays. This pro-

vides an example of propagation of variance (POV) based on first order Taylor series expansion. This step is 
usually not developed in NDA standard guides. 

2. Statement of the Measurement Problem 
Calibration data for a uranium assay system is given in Table 1. The uncertainty in the mass of each calibration 
item is negligible compared to other contributions so is ignored here. The uncertainty in the net observed count-
ing rate is defined as the standard deviation. The standard deviation estimates are based on historical experience 
and are given in [5] without further justification. A model that is linear in the predictor is assumed. If explorato-
ry analysis suggests that a more complicated model is necessary, then in practice least squares fitting is still of-
ten used, particularly if the chosen model is linear in its parameters and covering a limited dynamic range of op-
eration is adequate. 

After calibration, the system is used to assay three unknown items of the same type as used for calibration. 
The measured data is listed in Table 2. The purpose of the measurement is to estimate the total amount of 235U 
present in the three unknown items and to provide a defensible uncertainty on the aggregate amount. 

In adapting the problem from [5] we are retaining more significant digits in the rates than can be statistically 
justified simply to avoid gross rounding errors in our comparison to the treatment in [5]. 

As a second problem we assume the calibration data were acquired by taking each calibration item through a 
complete measurement cycle four times as shown in Table 3. Supposing this is all the information one had, we  



S. Croft, T. Burr 
 

 
787 

Table 1. Calibration data; counts per second as a function of 235U mass in grams.                                      

Datum, i 235U mass, m, grams Net counting rate, s, cps 
1 1 28.533 ± 2.03 
2 4 116.108 ± 2.42 
3 7 180.715 ± 2.75 
4 10 275.540 ± 3.33 
5 15 386.488 ± 4.16 
6 20 534.640 ± 5.59 

 
Table 2. Assay data.                                                                                      

Datum, i Net counting rate, s, cps 
1 174.19 ± 5.44 
2 80.49 ± 4.51 
3 351.08 ± 7.75 

 
Table 3. Alternate calibration data with four repeat measurements of each calibration item.                             

Datum, i 235U mass, m, grams Net counting rates, s, cps Standard deviation 
1 1 33.06; 28.60; 26.62; 25.85 3.23 
2 4 117.95; 110.52; 115.68; 120.28 4.17 
3 7 184.03; 190.86; 188.65; 159.32 14.54 
4 10 274.82; 273.49; 278.63; 275.22 2.19 
5 15 405.94; 375.63; 399.78; 364.60 19.60 
6 20 540.70; 523.34; 539.95; 534.57 8.01 

 
perform the calibration and apply it to the same unknown set. 

3. Recap of the Well-Known Weighted Least Squares (WLS) Solution 
We assume there is a linear relation between the predictor variable, x , and the measured quantity, y , so 

0 1y b b x e= + ⋅ +  

with 0 0b ≠ . The error term e is assumed to be randomly distributed around a mean value of zero. 
It is assumed that experimental uncertainties exist in the y  values but that the x  values are known exactly. 

The calibration data consists of a set of 2n >  measured points ( ), ,i i ix y σ , with standard deviation 
iyσ  de-

noted iσ  when the meaning is clear from context, which in problem 1 we assume known, following the treat-
ment in [5]. Because we are fitting y to x at this stage, the next stage will solve for unknown x values in terms of 
observed y values. Alternatively [7], one could directly fit x as a function of y, but this involves “errors in pre-
dictors” so we do not consider that approach here. 

We introduce the notation: 
2

1
2

1
1
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n
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The WLS solution [3] [4] [8] may be written, using the “hat” notation to denote estimates based on the data: 
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The variance and covariance estimators are given by the following expressions: 
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where S  is the external variance of the calibration set defined as the weighted sum of the deviations between  

the 
y

y
σ

 values and the predicted values 
ˆ

y

y
σ

; in this case, for ( )2n −  degrees of freedom, 

( )
( )

2

0 1
ˆ ˆ

2y

y b b x
S

nσ

 − + 
=

−
 

For large data sets for which the assumed standard deviations i are approximately correct, S  will be close to 
unity. In the treatment by [5], S  is implicitly set to unity. However, using S  as a separate parameter to judge 
the overall quality of the fit is recommended, as we do in the numerical example below. Also, as in the case of 
the present worked example, often ( )2n −  is not “large.” 

The WLS expressions can be understood by transforming the measurement equation y = b0 + b1x + e to one 
for which the error variances are all identical. That is, ordinary least squares is a special case of WLS and the 
WLS expressions are the same as the OLS expressions on transformed variables. Specifically, to motivate the 
WLS expressions using matrix notation, write y Xb e= +  with the X matrix being a matrix with two columns 
and the covariance matrix of e denoted. The first column of X is a column of 1’s and the second column is the  

values 1 2, , , nx x x . Then the OLS solution is ( ) 1T Tb̂ X X X y
−

= and the WLS is the same as the OLS but with 

the factor 1 2−Σ  multiplied on both sides of y Xb e= +  to transform the unequal-variance case to the equal va-

riance case for which OLS is appropriate. The result is ( ) 1T 1 T 1b̂ X W X X W y
−− −= . In the simple case considered 

here, 1 2−Σ  is a diagonal matrix with entries 
y

y
σ

along the diagonal. 

The equations can be simplified by a translation of variables to center the coordinate system about the point  
( ),T Tx y  where Tx  and Ty  take on numerically exact values equal to x  and y  respectively. Thus  
writing (and through context avoiding any possible confusion with the X-matrix): 

X x x= − , Y y y= −  

we have  

0X = , 0Y =  

and the WLS expressions simplify in the sense that the covariance term between coefficient estimates vanishes 
because the estimated intercept is always zero. Reference [5] elects to work exclusively in terms of this trans-
lated coordinate system. However, when calibration parameters are to be entered by an operator into NDA anal-
ysis software the normal convention is to work in the original data space. In what follows, therefore, we work 
with the non-translated coordinates. 

The WLS line passes through the weighted centroid of the calibration data so that the relation between x  
and y  can also be written as: 

( ) ( ) ( )
( )

( )2

x x y y
y y x x

x x

− ⋅ −
− = ⋅ −

−
 

If we define 

( )22ˆ X x xσ = − , ( )22ˆY y yσ = −  

and  

( ) ( )
( ) ( )2 2

x x y y
r

x x y y
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then we can write the relation between x  and y  as: 

( ) ( )
ˆ ˆY X

y y x x
r

σ σ
− −

=  

The quantity r  is known as the coefficient of correlation. Numerically it is bounded by the interval [ ]1,1−   
having the same sign as ( ) ( )x x y y− ⋅ −  and hence the same sign as the gradient. It is a measure of the  
strength of the correlation between the variables x  and y  and is often also reported along with the extracted 
coefficients, although [5] does not do so. More generally, r2 measures the fraction of variance of y that is ex-
plained by the linear function of x. Values of r2 near 1 such as 0.99 indicate that there is very little room for im-
proved calibration by using some more complicated function of x, such as a polynomial in x. We caution that if 
many different functional forms are evaluated, then artificially high 2r  can be obtained, so there must be some 
adjustment for “data mining” [9] [10]. However, if the simple linear relation was chosen prior to data collection, 
and if 2r  is close to 1, then there is little to be gained by examining other possible functional relations between 
y and x. 

4. Calibration 
The calibration step can be expressed by the relationship: 

0 1 errors c c m= + ⋅ +  

where m  is the certified 235U mass, 𝑠𝑠 is the observed net counting rate, and the error term is assumed to be 
random with zero mean value. The model parameters 0c  and 1c  are the fitted calibration coefficient estimated 
in our example by the technique of WLS as just described. Recall that one could instead directly fit x as a func-
tion of y, but this involves “errors in predictors” so we do not consider that approach here [7] [11]. 

5. Application 
To use the calibration line to perform an assay we invert the relation as: 

0
0 1

1

s cm a a s
c
−

= = + ⋅  

where we have now introduced the assay “calibration” coefficients 0a  and 1a  so that the relation is in the 
usual form required by typical NDA software. That is to say, a user is prompted to enter the coefficients 0a  
and 1a  (not 0c  and 1c ) along with the corresponding uncertainty information. Upon substitution and after 
applying the standard rules for propagation of variance (POV) we arrive at: 

1

0 0
0

1

ˆ
ˆ
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= = , 
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2 2
0 1

0 0 1 0 1

cov ,
2a c c c c

a c c c c
σ σ σ   

= + − ⋅    ⋅  
, 1

1 1

1 1
ˆa

c b
= = , 1 1

1 1

a c

a c
σ σ

=  

( ) ( )1
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The expression for the covariance term ( )0 1cov ,a a  is the expectation value of the first order expansion, 
written in terms of statistical deviation ( )sδ ′  about the mean, of the product 

0 1 0 1 1
0 0 1

0 1 1
a a c c c

a a a
c c ac

δ δ δ δ δ
 ∂ ∂ ∂

⋅ ≈ ⋅ + ⋅ ⋅ ⋅ ∂ ∂ ∂ 
. 

It is common in nuclear materials accounting to need to assign a total mass and uncertainty to a collection of 
N  items. Each item has an individual assay measurement is  along with associated standard deviation esti-
mate iσ , where the index i  runs from 1 to N  (and for an individual assay 1N = ). The estimate for the total 
mass present in the collection is therefore: 

( )0 1 1tot Nm N a s s a= ⋅ + + + ⋅  
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Propagating variances yields: 

( ) ( )( ) ( ) ( )

( ) ( )( )
0 1

2 22
1 1 0 1

22
1 1 1

2 cov ,
totm a N a N

N

N s s N s s a a

a a

σ σ σ

σ σ

= ⋅ + + + ⋅ + ⋅ ⋅ + + ⋅

+ ⋅ + + ⋅

 



 

which we can re-express more concisely as: 

( )
0 1

2 2 2 2 2 2 2
0 1 12 cov ,

tot totm a tot a tot sN s N s a a aσ σ σ σ = ⋅ + ⋅ + ⋅ ⋅ ⋅ + ⋅   

with 2
totsσ  being the sum of the variances of the individual rates calculated, assuming there is no additional 

connection among the N measurements other than the shared calibration parameter estimates. That is, each of 
the measurements is assumed to be independently determined. For this assumption to be valid requires, for ex-
ample, that the collection of measurements for the items under consideration do not share a common background 
count subtraction. In the case of a gamma-ray spectroscopic assay the intensity under the full energy peak is de-
termined from the counts in the pulse-height spectrum itself on either side of the peak and so this assumption is 
met, resulting in: 

2 2 2
1tots Nσ σ σ= + +  

The first three terms in the result for 2
totmσ , those enclosed in the square bracket, would be zero if the calibra-

tion coefficients were known perfectly. Collectively these three terms therefore represent the systematic uncer-
tainty, which is specific to the particular collection of items because of the 2

tots  factor in the second term. The 
fourth term in the result for 2

totmσ  is the variance arising from the uncertainty in the observed counting rates, 
which in the case of a nuclear counting experiment may be dominated by the Poisson nature of the detection of 
particles emitted by the radioactive decay process. In such cases the uncertainty in the counting rate may be ap-
proximated for each item even when only a single repeat count has been taken, even if a Poisson-distributed 
background count is subtracted from a Poisson-distributed gross count to calculate the net count. 

Perhaps surprisingly, note that some of the pairwise covariances cov(mi,mj) can be negative because when the 
true regression line is overestimated in one region of the data, it tends to be underestimated in other regions, as 
we illustrate in Section 6. 

6. Numerical Examples 
6.1. Example 1 Using Table 1 Data 

Applying WLS to the Table 1 calibration data, we obtain 0̂ 4.69b = , 1̂ 26.18b = , S = 6.28, r2 = 0.998, and 

( )0 1

3.17 0.30ˆ ˆcov ,
0.30 0.05

b b
− 

=  − 
. Applying the POV results for ( )ˆ ˆcov ,i jM M  we get the results in Figure 1 for i  

= 1 and j = 2 to 30 in equally simulated test data ranging from the minimum of x (1) to the maximum of x (20) in 
the training data in Table 1. All analyses, plots, and simulations were performed in the statistical programming 
language R [12]. For reader convenience, the Appendix lists the R source code to duplicate and extend our ana-
lyses—for instance, to create other visualizations of the data or to perform additional calculations. However, any 
available software including Microsoft ® Excel ™ is adequate for these simple linear regression analyses. 

Notice in Figure 1 that ( )ˆ ˆcov ,i jM M  can be negative, which is contrary to the typical situation with syste-

matic errors leading to positive covariance. The reason ( )ˆ ˆcov ,i jM M  can be negative is illustrated in Figure 2.  

Figure 2 uses the original 6-point (x,y) training data pairs from Table 1 and a second set of 6 (x, ysimulated) where 
ysimulated = y + ey with ey drawn from a Normal distribution with zero mean, that is ey~ N(0, σy) with standard 
deviation σy given in Table 1. Figure 2 illustrates that a fitted line that lies above the “true” line for large x val-
ues will tend to lie below the “true” line for small x values (“true” is in quotes because in practice one never 
knows the true relation between y and x, but this paper assumes the true relation is exactly linear). This means  
that distantly-spaced x values tend to have oppositely-signed estimation errors, and so ( )ˆ ˆcov ,i jM M  can be nega- 

tive. In our experience, nuclear safeguards metrology almost never reports negative values of ( )ˆ ˆcov ,i jM M   
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Figure 1. Predicted cov(M1,M2) and observed cov(M1,M2) in 
105 simulations.                                        

 

 
Figure 2. The training set data in Table 1 and a second simu- 
lated training set, with the fitted lines to both. Estimation error 
in the fitted line leads to positive cov(M1,M2) for M1 and M2 that 
are close in value and to negative cov(M1,M2) for M1 and M2 
that are distant in value.                                  

 
because safeguards tends to use measurement control data rather than calibration data to estimate random and 
systematic error variances [2] [5] [9] [13]. However, it is helpful to recognize that calibration data can indeed lead  
to negative estimates of ( )ˆ ˆcov ,i jM M  as seen in Figure 1. 

6.2. Example 2 Using Table 3 Data 
Next we repeat the previous example but use Table 3 to estimate the standard deviation of y, instead of using the 
known values of yσ  as used in Example 1. The resulting estimates (the sample standard deviations of each of 
the four repeated measurements as given in Table 3) are 3.23, 4.17, 14.54, 2.19, 19.60, and 8.01 for  

1 2 6
, , ,y y yσ σ σ , respectively. The resulting WLS estimates are 0̂ 4.75b = , 1̂ 26.92b = , and  

( )0 1

8.73 0.84ˆ ˆcov ,
0.84 0.12

b b
− 

=  − 
, S = 0.89, and r2= 0.999. So, although 0̂b  and 1̂b  did not change much from  
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the previous example, ( )0 1
ˆ ˆcov ,b b  did change considerably. The estimates 0̂b  and 1̂b  did not change much  

from the previous example because the points all lie close to a line (Figure 2), so changing the weights has little 
impact. In other examples, changing the weights can have more impact. 

6.3. The Three Test Cases in Table 2 with Variance Propagaion 
The three test cases in Table 2 are estimated as 6.47, 2.90, and 13.23 using the first estimate of 0̂b  and 1̂b  
from Example 1 and as 6.29, 2.81, and 12.87 using the second estimate of 0̂b  and 1̂b  from Example 2. Then, 
applying our approximate result for 2

totmσ  from Section 5, we predict a standard deviation of 0.14 for the ag-
gregate of the three items (22.60 using the first estimate of 0̂b  and 1̂b  and 21.97 using the second estimate of 

0̂b  and 1̂b ). To test the quality of our approximate result for 2
totmσ  we simulated 105 realizations of the calibra-

tion data, repeated the WLS fit, calculated the sum of the three predicted masses, and obtained a standard devia-
tion across the 105 realizations of 0.14 (repeatable across sets of 105 realizations to 0.14), indicating excellent 
agreement with the predicted standard deviation of 0.14. 

6.4. Impact of Estimation Error in the Weights in WLS 

Example 1 assumed that that true yσ  values are known, which implies that the exact weights 2
1

yσ
 are known.  

Example 2 assumed that the sample standard deviations of the four items were the true yσ  values as a consis-
tency check (see Section 6.5.3 below). In practice, in most situations, the variances will be estimated using a few 
repeats per item, so uncertainty in the estimated weights should be considered. 

In Example 2 with Table 3 data, one might question whether four repeated measurements of each standard is 
sufficient to obtain reliable estimates of the standard deviation; and, in general, WLS is vulnerable to perfor-
mance degradation when the weights are not reliably estimated [14]-[16]. Reference [15] showed that estimating 
weights using the reciprocal of the sample variances is inefficient compared to using a preliminary fit of the re-
gression function as an intermediate step to estimating the weights. But, regardless of the method used to esti-
mate the weights for WLS, the standard deviation of the estimated model parameters is larger than those pre-
dicted on the basis of assuming the true weights are known, unless the sample size is quite large, more than 10 
per standard. Reference [16] suggested a bootstrap simulation strategy to address the impact of uncertainty in the 
weights for the purpose of obtaining more reliable confidence statements. Reference [16] gave guidelines that 
the estimated standard deviation of the estimated slope 0̂b  and estimated 1̂b  are each approximately 20% or 
more too small for fewer than 10 repeats per standard. So, the effect of estimation error in the weights cannot be  

ignored if in our context we do not simply assume the exact weights 2
1

yσ
 are known. 

Fortunately, it is simple by simulation to include the impact of estimation error in the weights (Appendix). 
Figure 3 plots the root mean squared estimation error (RMSE) in the estimated intercept and slope for n = 2, 
3,4,5, 10, and 20 assuming the weights are known, or using the sample variances to estimate 2

yσ , or inappro-
priately using the actual repeated data in Table 3 using unweighted least squares. This third option of using the 
raw data in unweighted least squares is not advised because we know that the variance is not constant across the 
standards. However, its RMSE performance is still of interest. Notice that for 10n ≥ , all three methods have 
approximately the same RMSE. But, for 10n < , estimation error in the weights cannot be ignored.  

Recall from Section 6.3 that to test the quality of our approximate result for 2
totmσ  we simulated 105 realiza- 

tions of the calibration data, repeated the WLS fit, calculated the sum of the three predicted masses, and ob- 

tained a standard deviation across the 105 realizations of 0.14, assuming the weights 2
1

yσ
 are known exactly.  

The standard deviation of 0.14 agreed with our approximate variance propagation result of 0.14. However, if we 
include the impact of estimation error in the weights, the observed standard deviation of the sum of the three 
masses is 0.18, 0.15, and 0.14, for n = 4, 10, and 25, respectively. So, in this context, again there is close agree-
ment between our approximate result that assumes the variances are known for 10n ≥ . But, for n = 4 we should 
not use the 0.14 estimate if we must estimate the variances to be used in WLS. Instead, for small n such as n = 4,  
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Figure 3. The root mean squared error (RMSE) in estimating the intercept b0  and the slope b1  assuming the weights are 
estimated or known exactly in WLS. Also, the RMSE for unweighted LS is plotted.                                   
 
we rely on simulation to find that the standard deviation of the sum of the three masses is 0.18, which is sub-
stantially larger than 0.14. 

6.5. Goodness of Fit Testing 
No regression model can be blindly accepted without some assessment of goodness of fit (GOF). There are 
many GOF options and here we describe three that are in common use. 

6.5.1. Cook’s Distance to Measure Influence 
Cooks’ distance is used to gauge whether any particular calibration data pair (x, y) has unjustified large influ-
ence on the values of 0̂b  and 1̂b  [1]. Large influence points tend to be those xi with high leverage, meaning 
that xi is far from the middle x values in the calibration data. This data does not have any calibration data with 
large influence on the values of 0̂b  and 1̂b . 

6.5.2. Residuals versus Fitted Values Plot 

Another GOF option is shown in Figure 4, a plot of the scaled residuals 
y

e
σ

 versus the predicted y values, 

calculated as 0 1
ˆ ˆŷ b b x= + . Any pattern in this type of plot indicates a lack of fit to the assumed simple linear  

regression. Interestingly, Figure 4 shows a see-saw pattern, with alternating signs. Such a pattern raises concern 
and so a statistical test called a “crossings” test is included in some quality control programs. Here, with only 6 
calibration pairs, we will not fail this GOF test, but it does raise concern. It is possible that the dataset chosen by 
[5] is synthetic; however, because the results of this analysis are not mission critical, no additional investigation 
is necessary in this case. Another recommended GOF plot is a normal probability plot of the scaled residuals to 
check for approximate normality of the scaled residuals [1]. It should be noted however that although it is com-
mon to assume the residuals e are normally distributed, WLS does not rely on this assumption. Nevertheless, in 
most applications, it is of interest to evaluate whether the scaled residuals have approximately a normal distribu-
tion, because this is informative about how the detector is operating and, for example, whether there is operator 
bias. 

6.5.3. Consistency Checks 
Another GOF test available here is based on the scaled variance of the residuals, S , which should be nearly  
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                         Figure 4. Scaled residuals versus predicted y values.          
 
equal to one. Formally, the quantity S is distributed as a scaled 2

2nχ −  random variable. So the value of S = 6.28 

for the first values of 0̂b  and 1̂b  is large, but not extremely so, because ( )2
2 6.28 0.18nP χ − ≥ = . The value S =  

0.88 for the second values of values of 0̂b  and 1̂b  is quite close to 1. Another consistency check compares the 
estimated total source strength in the three test items using the first values of 0̂b  and 1̂b  to the estimated total 
source strength using the second values of 0̂b  and 1̂b . Recall that the total source strength is estimated at 22.60 
(in grams) using the first estimate of 0̂b  and 1̂b  and estimated at 21.97 using the second estimate of 0̂b  and 

1̂b . The difference 22.60 – 21.97 = 0.63 is much larger than twice the estimated standard deviation of estimated 
total ( 2

totmσ  is predicted to be 0.15 by our approximate result and observed to the 0.14 in 105 simulations, which 
is repeatable across sets of 105 simulations to values that round to 0.14). Therefore, there is some indication of 
disagreement between our assumed eσ  values from [5] and those calculated from the four repeat measure-
ments in Table 3. One might question whether four repeated measurements of each standard is sufficient to ob-
tain reliable estimates of the standard deviation, and in general, WLS is vulnerable to performance degradation 
when the weights are not reliably estimated [14]. Because four repeats is not many and because most of the GOF 
tests indicate reasonable fit, we are satisfied with simple linear regression and with either the first or the second 
estimate of 0̂b  and 1̂b . 

Because the GOF tests suggest that the simple linear regression is adequate, we show in Figure 4 a plot of 
point-wise approximate 95% confidence intervals around the fitted line from the calibration data. These point- 
wise confidence intervals are calculated at a value x using the well-known result  

( ) ( )( ) ( ){ }1 TT 1
ˆˆ 1 1, 1,y yx x X W X xσ σ

−−= + , where X is a matrix with 6 rows and 2 columns (column 1 is a vector  

of 1’s and column 2 is the 6 x values in the calibration data) as in Section 3 [1] [5]. The 95% point-wise confi- 
dence intervals in Figure 5 are at the predicted y value ( ) ( )ˆˆ ˆ2 yy x xσ± . Simultaneous confidence intervals that  
have 95% probability of simultaneously including all true y values are somewhat wider [17]. 

7. Discussion 
In the NDA of special nuclear materials it is common to encounter linear calibrations based on weighted least 
squares. This article revisited a “text book” example to describe simple linear regression applied to calibration 
data and variance propagation for the inversion step used to infer the source strength of unknown test items. In 
evaluating the mass of a collection of test items, the partition between systematic (calibration) and random (as-
say) variance is important and was clarified and illustrated. Separate reporting of these distinct contributions is 
not always done by the NDA community. Indeed, many databases in use in the NDA community do not have a  



S. Croft, T. Burr 
 

 
795 

 
Figure 5. Point-wise approximate 95% confidence intervals 
around the fitted line from the calibration data.               

 
convenient means to record such information, although it is strongly recommended and may be of great practical 
importance—for instance in reconciling shipper/receiver differences in nuclear materials accounting or in using 
a collection of measurement items as a quality control working standard. 

Materials control and accounting systems for nuclear safeguards typically estimate random and systematic 
error variances from either the internals of the measurement process, calibration data (as presented here), mea-
surement control data, or measurement comparison data [2] [5] [13]. We are not aware of published studies 
showing how such variance estimates vary across the four data sources, but it is usually assumed that measure-
ment comparison data (that provides for inter-comparison of different measurement techniques), are necessary 
in order to monitor for model departure effects that the three other data sources are unlikely to detect unless ex-
periments are designed and conducted with field conditions in mind. 

Although we have not discussed experimental design one can assess whether six standards is adequate by  

considering the covariance matrix of the estimators, ( ) ( ) 1T 1 2
0 1

ˆ ˆvar , yb b X W X σ
−−= , whose diagonal entries (the  

variance of 0̂b  and of 1̂b ) can be reduced by spreading out the x values and including more x values.Whether 
four repeats of each calibration item is enough depends on the magnitude of the true variance 2

yσ . Many practi-
tioners consider six repeats to be a minimum, as a general rule of thumb, before the sample standard deviation 
becomes a reliable estimator of the true standard deviation yσ . To put this in context, the coverage factors for 
Student’s t-distribution with 5 degrees of freedom are about 1.11 and 2.57 for 68.27% and 95% confidence le-
vels respectively (compared with multipliers of about 1.00 and 1.96 in the limit that the number of degrees of 
freedom becomes large) [1]. When the number of samples is small one must accept that the uncertainty in the 
estimates of yσ  will be large and one cannot address the likelihood of rare events in the tail of the distribution. 
That is, identification and rejection of all but gross outliers is not possible, because with 9 points of fewer the 
spread is always covered by ±3-sigma. Also, recall that Section 6.4 illustrated that if 10n ≤ , then simulation is 
necessary to estimate the standard deviation of the sum of source strengths of the three test items. 

The use of linear fitting can also form an important aspect of NDA methods in a more subtle way. For in-
stance, the step change in the transmitted intensity of a Bremsstrahlung beam across the K-shell absorption edge 
is used to the assay uranium concentration of aqueous solution samples. One way to determine the magnitude of 
the step is to linearly extrapolate a double logarithm of the reciprocal transmission from below, and also to li-
nearly extrapolate from above, with both extrapolations being made to the channel in the spectrum correspond-
ing to the K-edge energy, where the energy calibration is itself also based on a linear relation in terms of channel 
number. So in this case, which we will not discuss further here, extraction of the predictor variable and placing 
realistic confidence limits on it involves combining three separate linear dependences. The discussion presented 
here provides the basis for analyzing this more complicated case and underlies the need to establish good con-
sistent practice among NDA professionals. 
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We note that if a stable instrument is used for a long sequence of assays on many items of similar type using 
the same calibration ( )n →∞  then the fractional random uncertainty will become small and the group uncer-
tainty will be dominated by systematic uncertainty contributions. In such cases the assumption that the calibra-
tion items are known perfectly (perhaps reasonably so for an individual assay) may need to be checked to con-
firm it remains fit for purpose. 

A complementary generalized treatment that admits uncertainties in both x and y has been presented else-
where [11]. Under this scheme the approach described here for transforming between calibration and assay axes 
can be avoided because the calibration can effectively be performed as a regression of mass (or source strength) 
on counting rate directly, with the uncertainties in the rates being propagated into the coefficients in the form 
they are required for assay. This approach is straightforward to implement but is not yet in common use within 
the NDA community; this is why we focused on the traditional approach here. 

The case of a proportionate response, where the line is known for physical reasons to pass through the origin,  

0 0b = , 1 2

x y y
b

xx
⋅

= = , can also be treated using simple statistical concepts [18]. 

And, in this case, neglecting correlation in the calibration data can result in misleading conclusions. This is 
well illustrated by the efficiency calibration of gamma-ray spectrometers that often makes use of nuclides that 
emit more than one line. In such cases the gamma-ray line intensities are correlated being linked to the same ac-
tivity certification. An example of how to treat polynomial calibrations with correlated input data of this sort is 
provided by Henry et al. [19]. 

8. Conclusion 
The numerical and statistical procedures used to calibrate and interpret the data collected from assay instruments 
are fundamental to materials accountancy measurements for nuclear safeguards. We have pointed out that there 
is a lack of explanatory examples in the non-destructive assay literature. Therefore, we extended the treatment of 
a problem originally posed by [5] to clarify the traditional approach and provided a framework for standard 
non-destructive assay guides to build on. The treatment of total measurement uncertainties in non-destructive 
assay measurements presents many more challenges than we have covered in the present discussion. We antic-
ipate increased attention will be given to this field of study in the near future, commensurate with both the im-
portance of achieving high quality assays and the opportunity to improve the state of non-destructive assay prac-
tice. 
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Appendix. Example R Code 
x = c(1,4,7,10,15,20) 
y = c(28.533,116.108,180.715,275.540,386.488,534.640) 
sigma.y = c(2.03,2.42,2.75,3.33,4.16,5.59) 
yvar.est = c(10.45209,17.40249,211.5402,4.79046,384.0128,64.20487) 
xmat = cbind(rep(1,6),x) 
tempcov1 = solve(t(xmat) %*% diag(1/sigma.y^2) %*% xmat) 
tempcov2 = solve(t(xmat) %*% diag(1/yvar.est) %*% xmat) 
fit0 = solve(t(xmat) %*% diag(1/sigma.y^2) %*% xmat) %*% t(xmat) %*% diag(1/sigma.y^2) %*% y 
fit1 = lm(y ~ x,weights=1/sigma.y^2) #  using lm() function in R gives same results as in fit0 
ytrue = predict(fit1)  # ytrue is used below in simulation 
xt = x/sigma.y 
yt = y/sigma.y 
# alternate: lm(yt ~ xt) 
# Example simulation 
nsim = 10^5; xtrain = x; ntest = 3; xuse = xtrain  
ytest = c(174.19,80.49,351.08) # Table 2 
xest = matrix(0,nrow=nsim,ncol=ntest) 
coef.est = matrix(0,nrow=nsim,ncol=2) 
for(isim in 1:nsim) { 
ymeas = ytrue + sigma.y*rnorm(length(ytrue)) 
temp1 =  lm(ymeas ~  xuse,weights=1/sigma.y^2)   
xest[isim,] = (ytest-temp1$coef[1])/temp1$coef[2] 
coef.est[isim,] = temp1$coef 
} 
temp2 <- apply(xest,1,sum) 
var(temp2)^.5 
[1] 0.14 # agrees closely with approximate result 𝜎𝜎𝑚𝑚𝑡𝑡𝑡𝑡𝑡𝑡

2 = 0.15 
# var(coef.est) also agrees with known results 
## Impact of estimation error in the weights for WLS 
nsim = 10^5; ntest = 3 
n = 4; ytest = c(174.19,80.49,351.08) 
fit1 = lm(y ~ xtrain) 
ytrue = fit1$coef[1] + fit1$coef[2]*xtrain 
xest = matrix(0,nrow=nsim,ncol=ntest) 
coef.est = matrix(0,nrow=nsim,ncol=2) 
for(isim in 1:nsim) { 
ymeas =  ytrue + sigma.y*rnorm(length(ytrue)) 
temp = rep(sigma.y,each=n)*rnorm(6*n) 
temp.mat = matrix(temp,ncol=n,byrow=T) 
sigma.y.est =  apply(temp.mat,1,var) 
junk = lm(ymeas ~  x,weights=1/sigma.y.est)  # note 
#junk = lm(ymeas ~  x, ,weights=1/sigma.y.est)  # not used here   
xest[isim,] = (ytest-junk$coef[1])/junk$coef[2] 
coef.est[isim,] = junk$coef 
} 
temp = apply(xest,1,sum) 
var(temp)^.5 
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