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Abstract 
The ground plan in order to disentangle the hard problem of modelling the motion of a bicycle is 
to start from a very simple model and to outline the proper mathematical scheme: for this reason 
the first step we perform lies in a planar rigid body (simulating the bicylcle frame) pivoting on a 
horizontal segment whose extremities, subjected to nonslip conditions, oversimplify the wheels. 
Even in this former case, which is the topic of lots of papers in literature, we find it worthwhile to 
pay close attention to the formulation of the mathematical model and to focus on writing the 
proper equations of motion and on the possible existence of conserved quantities. In addition to 
the first case, being essentially an inverted pendulum on a skate, we discuss a second model, 
where rude handlebars are added and two rigid bodies are joined. The geometrical method of 
Appell is used to formulate the dynamics and to deal with the nonholonomic constraints in a cor-
rect way. At the same time the equations are explained in the context of the cardinal equations, 
whose use is habitual for this kind of problems. The paper aims to a threefold purpose: to formu-
late the mathematical scheme in the most suitable way (by means of the pseudovelocities), to 
achieve results about stability, to examine the legitimacy of certain assumptions and the compati-
bility of some conserved quantities claimed in part of the literature. 
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Nonholomic Constraints; Lagrangian Equations; Pseudovelocities; Nonlinear Order Differential 
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1. Introduction 
1.1. The Equations of the Model 
A very simple scheme can be formulated by assuming that the body is a planar rigid system   sketched by 
three points A, B and 0P ; A and B, performing the two contact points of the wheels, belong to a horizontal plane 
and 0P  is the centre of mass of  . The rigid body can lean with respect to the vertical direction and bend with 
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respect to a fixed horizontal direction. Let O be the projection of 0P  on B A−  and take a fixed reference 
frame { }1 2 3, , ,Ω e e e , 3e  being the upward vertical, and a body reference frame { }0, , ,i j k  such that ψ   
is the angle 1e i , θ  is the angle 3ke . The mutual disposal of the two frames is given by  

( )
( )

1 2

1 2 3

1 2 3

cos sin
cos sin cos sin

sin sin cos cos

ψ ψ
θ ψ ψ θ
θ ψ ψ θ

= +
 = − + +
 = − − + +

i e e
j e e e
k e e e

 

and sketched in Figure 1. 
Set 0 1 0 2O ξ η−Ω = +e e : the geometrical restrictions A O a− = , B O b− = , 0P O h− =  lead us to con- 

sider the four lagrangian coordinates ( )0 0, , ,ξ η ψ θ . Therefore  
( ) ( )0 0 1 0 2 3sin sin sin cos cosP h h hξ θ ψ η θ ψ θ−Ω = + + − +e e e . The angular velocity of the rigid body is 

3ω θ ψ= +i e

 . 
The Lagrangian function of the system writes 

( )( )2 2 2 2 2
0

1 1 sin cos cos
2 2 i j kT mP I I I mghθ ψ θ θ θ= + = + + + −

                    (1) 

where ( ) ( ) ( )( )2 2 2 2 2 22
0 0 0 0 0 0 02 sin cos sin cos sin cossinP h hξ η ψ θ θ ψ θ ξ ψ η ψ θ θ ξ ψ η ψ= + + + + + + −    

      and iI , 

jI  and kI  are the moments of inertia with respect to the body reference frame { }0 , , ,P i j k , which is supposed 
to be principal. 

The only kinetic constraint we are going to consider is B ∧ =i 0 , whose expression in the Lagrangian 
coordinates is 

0 0sin cos 0.bψ ξ ψ η ψ+ − =

                                  (2) 
The first kind Lagrangian equations of motion 

( )

0 0

d sin , cos , ,0 ,
d

sin cos 0,

b
t

b

λ ψ ψ

ψ ξ ψ η ψ

 ∇ −∇ = −

 + − =

q q



 

 
                          (3) 

where ( )0 0, , ,ξ η ψ θ=q  are the lagrangian coordinates and λ  is the unknown multiplier, will be suitably 
handled if one defines the pseudovelocities (see [1] for the concepts and the method we are pursuing) 

( )
( )

0 0

0 0

cos sin ,

sin cos ,

U b

V b

W

ξ ψ η ψ

ξ ψ η ψ

θ

= +

= − +

=











                              (4) 

We point out the following relationships involving U, V and the real velocities: 
 

 
Figure 1. The geometrical model.  
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( ) ( )( )1 1, , 1 ,B bU O b U V A b U a V= = + = + +i i j i j                        (5) 

where a a b=  and 1 3 1 2sin cos cos sin .ψ ψ θ θ= ∧ = − + = −j e i e e j k  
Together with the kinetic constraint, Equations (4) give the set of possible velocities in terms of ( ), ,U V W : 

( )

0

0

cos sin 0
sin cos 0
0 1 0
0 0 1

b b
U

b b
V
W

ψ ψξ
ψ ψη

ψ
θ

Γ

−   
    
    = =              

q

q













                            (6) 

It is known (see [1]) that linear kinetic constraints allow to refine the equations of motion (3) in a way similar 
to the holonomic case: as a matter of fact, the constraints identify a subspace in the tangent space of the lagran-
gian coordinates, giving the virtual displacement of the system. The geometrical method consists of projecting  

the equations according to T d
dt

 Γ ∇ −∇ = 
 

0


 q q  where Γ  is defined in (6). Joining to the kinetic constraint 

(2) and the definition (4) we get, dividing by suitable constants, 

( )
( ) ( )

( ) ( )

2

2 2

2 2

0 0

sin 2 cos 0

sin 1 sin cos sin 2 cos sin 0

cos cos sin cos sin 0

cos sin , sin cos ,

k

i

U hV V hVW

hU I I V hW UV hW IVW

hV I h W IV hUV gh b

W
b U V b U V V

θ θ

θ θ θ θ θ θ

θ θ θ θ θ

θ

ξ ψ ψ η ψ ψ ψ

 + − + =


+ + + − + + + =
− + + − − − =


=
 = − = + =

 

  

 





 

          (7) 

where 
( )2 2 2, ,j k i ih h b I mh I I mb I I mb= = + − =                           (8) 

are dimensionless constants. Since the rigid body is practically plane and contained in the plane orthogonal to j, 
it is reasonable to assume >j kI I , i k jI I I+  , so that 

2> 0, .iI I h I+                                       (9) 
From here on we adopt (9). 
The seven ODEs (7) contain the seven unknown quantities ( )0 0, , , , , ,U V W ξ η ψ θ . With respect to the first 

kind system (3) they have the advantage of no exhibiting multipliers and of reducing the kinetic variables of one 
unity. 

It is not at all worthless to explain (7) in the context of the the cardinal equations of dynamics, seeing that 
many models in literature (some of them are [2]-[5]) rest on such equations: the first three equations in (7) are 
respectively 

( )( )
( )( ) ( ) ( )

0

30

0

0

0
e

mP
B B mP

O O mP O

 ⋅ =
 + ∧ ⋅ =


+ ∧ ⋅ = ⋅

i

L e

L i M i



  

 

 

where L is the angular momentum and ( )eM  the resultant momentum of the external forces. Actually, since no 
friction is present, the constraint AΦ  in A is along 3e , while the constraints in B can be modelled as a force 

BΦ  along 3e  plus a horizontal force ( )v
BΦ  perpendicular to B A=  (see Figure 2), acting the constraint (2): 

( ) ( )
3 3 1, , .v v

A A A A B Bφ φ φ= = =e e jΦ Φ Φ                            (10) 

Hence no force exists along i  (first equation) and ( ) ( ) 3 0e B ⋅ =M e  (second equation), along 3e  (and not 
k , as stated in [6]). Finally, third equation is simply due to the fact that the only external force with a non zero 
momentum along i  is the weight force. 

Notice that any of the three equations do not give rise to a conserved quantity: the only evident constant of  
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Figure 2. The system of forces. 

 
motion is the total energy 0T= − =   : 

( )( ) ( ) ( ) ( )2 2 2 22
0

1 1 sin cos cos .sin
2 kU I I V IW hV U W gh b mbθ θ θ θ+ + + + + − + =        (11) 

Actually, even if the system is nonholonomic, the first integral 0≡   can be achieved starting from  

T d d0
d d

U
V

t t
W

 
    = Γ ∇ −∇ ⋅ = ∇ −∇ ⋅        

 
q q q q q
 

     and performing the usual calculations as in the holonomic  

case, achieving at last 0= . 
In the same matter of integral invariants for the system, we find it not correct to claim, as in [7], that the ab-

sence of 0ξ , 0η , ψ  from   entails three constant of motion, in order that four conserved quantities (includ-  

ing the total energy) can be obtained: as a matter of fact, the equations of the model are not d 0
d

L L
t
∇ −∇ =
q q   

and cyclic variable does not mean conserved quantity. Besides that, even if   is written in terms of U  and 
V , ψ  is not a cyclical coordinate, being implicitily in such variables. For this reason we question the validity  

of d 0
dt ψ

∂
=

∂ 
  (Equation (14) in [7]), which would imply an integral invariant. 

With regards to the same subject, we emphasize that equation d0 sin cos
d

U hV hVW
t U

θ θ∂
= = + +

∂
 

  (Equa-  

tion (16) in [7]), giving rise to the conservation of sinU hV θ+ , is not correct in our advice, since U does not 
refer to a lagrangian coordinate. 

1.2. The Mathematical Problem 
We perform now a brief analysis of (7). It is evident that the first four equations in (7) form the sub-system 

( ) ( ) ( )

( )

( )
( )

( ) ( )
2

, , , , ,

2 cos1 sin 0 0
sin 2 cossin 1 cos 0sin , .

0 cos 0 cos sin sin
0 0 0 1

k

F U V W

V V hWh
UV W hW IVh I I h

h I V IV hU gh b

W

θ θ

θθ
θ θθ θ θ

θ θ θ θ

= =

 −      − − ++ + −   = = −  + +         



 

X X X

X
   (12) 



F. Talamucci 
 

 
50 

The last three equations in (7) give simply 0ξ , 0η , ψ  once (12) has been solved. 
Statement 1.1 System (7) admits locally one solution, for any set of data ( )0 0ξ , ( )0 0η , ( )0ψ , ( )0θ , 
( )0U , ( )0V , ( )0W . 
Proof. The assigned data provide ( )0q  and ( )0q , by means of (6). Furthermore 

( ) ( )( )2 2 2det 1 sin 1 1 sin 0,k kI I I h I I I Iθ κ κ κ θ = + + − = − + + − + >             (13) 

where we defined (see also (8) and (9)) 
2

1.h
I

κ = <                                      (14) 

Therefore (12) can be solved in an appropriate time interval. Finally one obtains 0ξ , 0η  e ψ  from the last 
three equations in (7) and the rest of the given data. □ 

Remark 1.1 If in (7) we let 0h = , we are dealing with the simpler case of a bar on a horizontal plane with 
one point moving at each time along the direction of the bar: since 0I =  equations reduce to 

( )
2

1 k

U V

I V UV

 =


+ = −





 

The energy conservation ( ) ( )2 2 2
01 2kU I V mb+ + ≡   gives the orbits on the phase plane ( ),U V , namely 

each point of the U -axis and the semi-ellipses ( )2 2
0 2 1 kV mb U I= ± − + . Moreover ( )lim 0

t
V t

→+∞
= , 

( ) ( )2
0lim 2

t
U t mb

→+∞
= ±  , that is ( ) constanttψ → , constantB → . 

Again for 0h = , the special case 0B P≡ , that concerns with one typical instance in nonholonomic con-
straints (see for instance [1]), cannot be recovered from the system of Remark 1.2, but it requires the definition 
of the pseudovelocity 0 cosU ξ ψ=  . 

We are going now to investigate the stability of the system at 0θ = . 
For what concerns with the initial data, we can certainly assume with no loss in generality ( )0 0 0ξ = , 
( )0 0 0η = , ( )0 0ψ = , hence ( ) ( ) ( ) ( ) ( )( )0 0 , 0 , 0 , 0bU bV V W=q . 
Let us first check whenever ( ) 0tθ ≡  is a solution of (7). 
Statement 1.2 ( ) 0tθ =  is solution of (7) if and only if U is constant and 0V ≡ . 
Proof. Set 0θ =  in (7), first three equations: 

( )
2

1 k

U V
I V UV

V UV

 =


+ = −
 = −







 

which entails 0V = , ( )0U U= . We incidentally notice that if 1kI   then U, V consistent with 0θ ≡  are 
those we discussed in Remark 1.3. 

On the other hand, U constant and 0V ≡  make us write (12), second and third equation, as 

( ) ( ) ( )( )2cos 0 cos 0 , cos sin 0W W IW gh bθ θ θ θ≡ − =                   (15) 

(it is physically correct to assume ( )π 2 < 0 < π 2θ− ), which implies ( ) 0tθ ≡ . □ 
Remark 1.2 The following statement also follows from the previous analysis: if the angle ψ  is constant 

(that is B A−  never changes direction), then U has to be constant and ( )tθ  has to be zero. 
Corollary 1.1 Assume ( )0 0θ = , ( ) ( )0 0 0Wθ = = ; then ( ) 0tθ =  is solution of (7) if and only if ( )0 0V = . 
Proof. If 0θ =  is solution, then V  must be zero at any time; on the other hand, the set of data ( ) 00U U= , 
( )0 0V = , ( )0 0θ = , ( )0 0W =  give univocally the solution ( ) 0tθ = , ( ) 0U t U= , ( ) 0V t = . □ 
Our aim points now to discuss the stability of ( ) 0tθ = . Thre physical problem requires 0 > 0U  (see (5)). 

Incidentally we notice that if ( ) ( ) ( ) ( )( ), , ,U t V t W t tθ  is the solution of (7) starting from ( )0 0 0 0, , ,U V W θ , then 
( ) ( ) ( ) ( )( ), , ,U t V t W t tθ− − −  is the solution of the same equations corresponding to ( )0 0 0 0, , ,U V W θ− − − . 

It may be helpful by the way to set 0t =  in (7) in order to figure out the behaviour of the solution for short 
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times: 

( ) ( ) ( )2
0 0 0 0 0

10 , 0 , 0
1 1

k

k k

IU V V U V W U V
I h I

κ κ
κ κ
−

= = − =
− + − +

                  (16) 

that is, assuming for istance 0 > 0U , 0 > 0V , U and W are initially increasing, V decreasing. 
Let us now show the following 
Proposition 1.1 The equilibrium point ( )0 0 ,0,0,0U=X  of (12) is unstable. 
Proof. We set (12) in normal form: calling ( ) detG Iθ =  , where det  is computed in (13), it is easily 

found 

( )

( )
( )

( ) ( ) ( )
( )

2

1

2

1 sin sin cos sin 0

sin 1 cos 01

cos sin cos 1 sin 1 0

0 0 0

k

k

I I h

h h
G h I I

G

κ κ θ θ κ θ θ

θ κ θ

θ κ θ θ κ θ κ θ

θ

−

 − + + + − −
 
 −
 =
 − − + +
 
 
 

  

so that ( ) ( ) ( )1 θ−=F X X   can be calculated (see (12) for  ). 
We now compute the Jacobian matrix of ( )F X  at the equilibrium ( )0 0 ,0,0,0U=X : calculations lead to 

( ) ( )
( )

( ) ( )
( )

0

0
0

0 0 0 0
0 1 01
0 0 10

0 0 0 0
k k

U g b

I U h I g bhG

G

κ κ

κ κ

 
 − − =  + 
 
 

XJ F X  

where ( )0 1 0kG Iκ= − + > . The eigenvalues σ  are found by solving 

( ) ( ) ( )( )3 2
0 00 1 1 0, .k

gG U I U
b h
κσ σ κ σ γ σ γ γ+ − − + − = =                   (17) 

Since 0 > 0U , the polynomial ( )ψ σ  in brackets is such that ( )0 < 0ψ  and ( )lim
σ

ψ σ
→+∞

= +∞ , so that 
there exists one real and positive eigenvalue σ  and standard results in this sense (see e.g. [8]) can be imple-
mented. □ 

The linear approximation ( )0= XX J F X X  entails 0U =  and 

( ) ( ) ( ) ( )0 00 1 , 0 1k k
gG V U V h G W I U V I

h b
κκ γθ θ = − − + = + + 
 

                   (18) 

which give the equation for θ : 

( ) ( ) ( )( )
3

0 03

d0 1 1 0
d kG U I U
t
θ κ γ θ θθ+ − − + + =

                           (19) 

whose solution contains 1e tσ , 1 > 0σ . As to ( )V t , the linear approximation gives 

( ) ( ) ( ) ( ) ( ) ( )0
0

e d 0 e , 1 0
0

t
tgV t V U G

b G
αζ ακ θ ζ ζ α κ− 

= + = − 
 
∫  

which diverges the same. 
An analytical investigation can be performed directly for system (7): choosing for istance, as it is natural, 
( )0 0ϑ = , ( )0 0W =  and 0 0V ≠ , (16) shows that ϑ  initially increases, so that P0 enters the quarter ( )0 1 3,V− j e . 

Furthermore, setting sinZ V ϑ= , ( ) ( )2 21 cos 1 sin 0kI Iψ ϑ κ θ κ θ= − + + − >  one writes (7) as 

( ) ( ) ( )

( ) ( ) ( )

2
1

2
2

1 1 cos , , ,

1 1 cos , ,

U hUZ F V W

Z hUZ F V W

κ ϑ ϑ
ψ θ

κ ϑ ϑ
ψ θ

 = − +


 = − − +
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with appropriate 1F , 2F ; on the other hand, using also 

( ) ( ) ( )( )2 2 2 2
0 0

1 1cos 1 , , , 1
2 2 kIb W gh G U V W U I Vθ θ+ − + = + +  

which is (11) with the appropriate G, one should acquire information about the maintenance of > 0U  ( A B−  
does not change verse), of < 0Z  (the transverse velocity of O is opposite to the position of 0P  with respect to 
the vertical direction) and of > 0W  (absence of inversion with respect to ϑ ). Such as analysis will be not ex-
panded, in order not to overload the Section. 

Remark 1.3 We have not imposed any constraint on the velocity of A yet: the velocity A  can be calculated a 
posteriori by means of (5) and the angle β  between i  and A  is such that 

( )22 2
cos

1

U

U a V
β =

+ +
 

where a a b= . 
Remark 1.4 It is sometimes assumed in literature (more or less expressly) to know U e V: in that case system 

(7) is obviously simpler, but such an assumption corresponds to impose the constraints 0 0cos sin Uξ ψ η ψ+ =

 , 
0 0sin cos Vξ ψ η ψ− + =

 , with given U and V. Hence ( )cos sin , sin cos ,0,0u v u vλ ψ λ ψ λ ψ λ ψ− +  must appear 
on the right-hand side of (3), with uλ , vλ  unknown multipliers. As a whole, we get seven equations in the sev-
en unknown quantities q , λ , uλ  and vλ . 

1.3. Adding a Stabilizing Device 
Following the approach in [6], we add an external force in order to modify the dynamics of the system and to 
infer the stability of the stationary solution. 

We impose a force 1A AF=F j  in A , where 1 3= ∧j e i  (horizontal versor perpendicular to B A− ) and 
( )1

1e e eF F= +F j j  in 0P ; we expect ( ), , ,A Af f U V W θ= , the same for the other coefficients. Notice that a 
force along 1j  in B  would have no effects. 

Computing the Lagrangian components θF  of the vector of forces in the tangent space and taking the pro-
jection T

θΓ F  (see (6)), one can check that the term to add to the right-hand side of (7), first three equations, is 

( ) ( )( )
( )( )

1
2

1

0
1 cos

cos

A e e

e e

a b F b f F
mb

h F F

θ

θ

 
 
 + + + 
 
 − + 

 

The conclusion of Statement 1.1 about existence and uniqueness is not altered, since the matrix A of (12) is 
still the same. 

Let us investigate about the effect of stabilization by the external device in the case of the force in A only: 
( )1 0e eF F= =  (actually the overlap of eF  does not change the substance). Moreover, AF  has to vanish at the 

equilibrium: 

( ) ( )2 , , , , ,0,0,0 0.A
a b F f U V W f U
mb

θ+
= =                        (20) 

It can be easily seen that the characteristic polynomial (17) changes into 

( ) ( ) ( )
2

3 2
0 0

1

0 0

0

0 1 1

0

k

a a

a

f f f fG U U I
V h W h W

f fU U
V h

κ κσ σ κ σ γ σ
θ

κγ
θ


 ∂ ∂  ∂ ∂    − − + + − + + +      ∂ ∂ ∂ ∂    



 ∂ ∂  − − + =   ∂ ∂  








          (21) 



F. Talamucci 
 

 
53 

where the partial derivatives are calculated in ( )0 0 ,0,0,0U=X . The following Proposition sets a selection of 
choices for f. 

Proposition 1.2 (o) If 0 > 0a  then the system is unstable. 
1) for 0 < 0a : 
a) if 1 0a ≥  or 2 0a ≥  then the system is unstable, 
b) if 1 < 0a  and 2 < 0a  and ( )1 2 0< 0a a G a−  [resp. ( )1 2 0> 0a a G a− ], then the system is unstable [resp. 

stable]. 
2) For 0 0a = : 
c) if 1 > 0a  or 2 > 0a , then the system is unstable, 
d) if 1 0a ≤  and 2 0a ≤ , then the (real or complex) eigenvalues different from zero have negative real part. 
Proof.  
(o) Call ( ) ( ) 3 2

2 1 00p G a a aσ σ σ σ= − − − . If 0 > 0a , then ( )0 < 0p : since ( )lim p
σ

σ
→+∞

= +∞ , a real posi-

tive eigenvalue certainly exists. 
1) a) If 0 < 0a  then at least one real negative eigenvalue 1σ  exists and p can be written as 

( ) ( ) ( )( )
( )

2
1 1 0 1

2 1 1 1 1 1 0 0 0 1

0 0, 0

0 , , .

p G b b

a G b a b b a b

σ σ σ σ σ σ

σ σ σ

= − + + = <

= − = − =
                       (22) 

If 2 0a ≥ , then 1 < 0b : since 0 > 0b , the equation ( ) 2
1 00 0G b bσ σ+ + =  has either two real positive solu-

tions or two complex solutions with positive real part 1 2b− . Likewise, if 1 0a ≥ , then it must be 1 < 0b  and 
we conclude in the same way. 

b) It has to be checked the sign of 1b : from (22) we see that 1b  must solve 

( ) ( )2
02

1 2 1 1
2 1

0
0 .

G a
b a b G a

a b
+ − =

+
 

The latter equation has a unique positive [resp. negative] solution 1b  if and only if ( )1 2 0> 0a a G a−  [resp. 
( )1 2 0< 0a a G a− ]. For 1 < 0b  we conclude as before; on the other hand, if 1 > 0b  the real part of the (real or 

complex) solutions of 2
1 0 0b bσ σ+ + =  is negative. 

2) c) If 0 0a =  then ( )0 0p = . The rest of the eigenvalues are the roots of ( ) 2
2 10 0G a aσ σ− − = . If 

1 > 0a  then a real positive root exists, while if 2 > 0a  then either a real positive eigenvalue exists or the real 
part of the complex roots is positive. 

d) In that case the eigenvalues are 0 (twice) and the two roots of ( ) 2
2 10 0G a aσ σ− − = , which are nonposi-

tive if real or with nonpositive real parts if complex. □ 
The linear approximation ( )0= XX J F X X  of (7) with the “new” F  encompassing the external force af  

is 0U =  and 

( ) ( )

( ) ( )

0

0

10 1 ,

0 1k k

f f fG V U V W h
V W h

f f f gG W U I V W I
V W bh

κ γ θ
θ

κ θ
θ

 ∂ ∂ ∂   = − − + + +    ∂ ∂ ∂   


 ∂ ∂ ∂     = + + + + +     ∂ ∂ ∂    





                  (23) 

which generalizes (18). The partial derivatives are calculated at the equilibrium ( )0 ,0,0,0U . The equation for 
θ  replacing (19) is 

( )
3

2 1 03

d0 0
d

G a a a
t
θ θ θθ− − − =

  

(see (21) for the definition of 2a , 1a , 0a ). Hence the stable case 1), b) in Proposition 1.2 is asymptotic stabil-  

ity for θ . Case 2), d) concerns with ( ) 2 10 0G W a W a W− − =   so that 
2

2 1
1,2

4
2

a a a
σ

− ± −
=  (real or com-  

plex) and (assume 2
14 0a a∆ = − ≠ ) 

( ) ( ) ( )( )2 2 2 2
0 2 0 1 0 0

1 e e ea t t tW t W W W Wσ σ− ∆ −∆= − + −
∆
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where 0W  comes from (23), second equation. Obviously each specific case (coincident eigenvalues, 1a  or 2a  
equal to zero, ...) can be examined deeper. 

Remark 1.5 A simple guess for f is 1 2f UV Wα α= + , with 1a  and 2a  constant: in that case 1 1α <  or 
2 0α ≥  gives instability. The stability region located by case 1), b) in the quarter ( )1 21, 0α α> <  is not empty:  

actually, 1 < 0a  and 2 < 0a  corresponds to the set ( )( )1 2 00 1 1 hUα κ α< − < − + , possibly cut on the upper  

part by the line ( ) ( )2 01 kI g bUα = − + , if the latter value is lower than 0U h− . Such a set has a nonempty in-
tersection with ( )1 2 0> 0a a G a− : indeed, it is sufficient to take, for each fixed 1 > 1α , 2α  large enough in 
module. 

Furthermore, the case 2), d) is simply ( ) ( )2 0 2 0> > 1 kU h I h Uα α γ κ− ∧ − + . 
Inversely, the achieved conditions can be also read in terms of finding 0U , for a given external force af  as 

in (20), in order to get stability. In particular, the case 1 1α =  studied in [6] concerns with a counterbalance 
effect, so that the term UV in (7), second equation, vanishes. 

Remark 1.6 The simplyfing assumption 0U   sometimes used in models makes sense only around the equi-
librium position: far from 0X  the linear approximation U constant would force the system to non reasonable 
predictions. Besides that, the same assumption is not a consequence of the equations, as we pointed out in Re-
mark 1.1. 

2. A Two-Body Model 
2.1. The Equations of Motion 
We now consider a rigid device simulating the front wheel, adding to the body   a rigid part   (say the 
front wheel together with handlebars) hung in A and forming the angle β  (front steering) between the direc-
tion i  and a direction fixed in the body frame  : 

1 1 3 1 2cos sin , sin cos .β β β ψ ψ= + = ∧ = − +e i j j e i e e  

For the sake of simplicity, we may imagine   as a rigid bar laying on 0z = , with no active force operating 
on it. We now consider the five lagrangian coordinates ( )0 0, , , ,ξ η ψ θ β=q . The angular velocity of   is 
hence ( ) 3ω ψ β= + e . 

The Lagrangian function of the whole system is 1 T= +   , where   is the same as (1) and 

( )

( )( ) ( )

2

22 2 2 2
0 0 0 0

1 1
2 2
1 12 cos sin
2 2

T m A A

m a a I

ω σ ω

ξ η ψ ψ η ψ ξ ψ ψ β

= + ⋅

= + + + − + +



  

    

   

 

 

where β  is a new lagrangian coordinate and m  and I  are respectively the mass of   and the central 
inertial momentum of   with respect to the direction 3e . The equation of motion with respect to β  is 
simply 

( ) 0.I ψβ + =

                                     (24) 

Equation (24) gives 

( ) ( ) ( )( ) ( )ˆ ˆ0 0 0t tβ β ψ β= + +

  

where β̂ β ψ= +  is the angle between 1e  and  . 
Remark 2.1 If no further constraints are enjoined, the system is unstable the same: actually, changements in 

(7) are not essential: still keeping ( ), , ,U V W θ=X , ( )0 0 ,0,0,0U=X  is again an equilibrium point for the 
system ( ) ( )µ µθ =X X  , where 

( ) ( )22

1 sin 0 0

sin 1 sin 1 cos 0 ,
0 cos 0
0 0 0 1

k

h

h I I a h
h I

µ

µ θ

θ θ µ θθ
θ

 +
 

+ + + + − =  − 
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( )

( )( )( )
( )( ) ( )

( ) ( )

1 1 2 cos

1 1 sin 2 cos

cos sin sin

V a V hW

a UV W hW IV

V IV hU gh b

W

µ

µ θ

µ θ θ

θ θ θ

 + + −
 
 − + + − +
 =
 + +
 
 
 

X  

and (13), (17) are replaced respectively by 

( ) ( )( ) ( )( ) ( ) ( )

( ) ( ) ( ) ( ) ( )( ){
( ) ( ) ( ) ( )}

( )

22

3 2
0

2
0

det 1 1 1 sin 1 0

0 1 1 1 1 1

1 0 1 0 0

1

k

k

k

I I I I a IG

G U a I a a

G a I a U G

a a

µ µ

µ

µ µ

θ κ κ µ κ θ µ θ

σ σ µ κ σ γ µ σ

γ µ κ

µ

 = − + + − + + + + = > 

+ + − + − + + + +

 − + + − + + = 
= +



 

which has in the same way one real positive solution. 
We now add the kinetic constraint of no skidding of   at A : A β∧ =e 0  which gives 

( ) ( )0 0sin cos cos 0.aξ β ψ η β ψ ψ β+ − + − =

                            (25) 

A possible way to face the problem is to neglect the mass m  of the anterior part, so that the Lagrangian 
function is the same as (1). However, a complication is, in our point of view, the role of β , which does not ap-
pear in  , but only in the constraint (25). 

This is a nontrivial point for the theory-building of the correct equations of motion: the way we are going to 
follow is not to neglect the mass m  and consider 1  as the Lagrangian function. Even more, if we think of 
the problem as a “bicycle'” model, the front mass is not at all unsignificant for the overall frame. 

We now consider the set of Lagrangian coordinates ( )0 0, , , ,ξ η ψ θ β=q : system (3) of the first kind Lagran-
gian equations is now replaced by the seven equations 

( ) ( ) ( )( )

( ) ( )

1 1 1 2

0 0

0 0

d sin , cos , ,0 sin , cos , cos ,0,0
d

sin cos 0,

sin cos cos 0.

b a
t

b

a

λ ψ ψ λ ψ β ψ β β

ψ ξ ψ η ψ

ξ β ψ η β ψ ψ β

 ∇ −∇ = − + + − + −
 + − =
 + − + − =


q q



 



 

 

        (26) 

where 0ξ , 0η , ψ , θ , β , 1λ  and 2λ  are the seven unknown quantities. Concening with the initial condi- 
tions for (26) we can choose, with no loss in generality: 

( ) ( ) ( ) ( ) ( ) ( )0 0 00 0, 0 0, 0 0, 0 0, 0 π 2,π 2 .ξ η ψ θ β β= = = = = ∈ −  

Let us change for the sake of convenience β  into the variable 

1
tgy

a
β

=
+

                                       (27) 

so that 
( )2 2

1
1 1

a y
a y

β +
=

+ +


 . The velocities q  are not independent, because of (2), (25): if on the one hand 

( ) 00θ θ=   and ( ) 00β β=   are arbitrary, on the other hand once ( )0 0ξ  has been fixed the initial velocities 

( ) ( ) ( )
( ) ( ) ( )

0 0

0

0 0 0 ,

0 0 0

y

y b

η ξ

ψ ξ

=

=









                                 (28) 

are imposed. In order to reduce (26) and eliminate the multipliers, we define, similarly to (4), the pseudoveloci-
ties 
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( )

( )

0 0

2 2

1 cos sin

1 .
1 1

U
b

W
aY y
a y

ξ ψ η ψ

θ

ψ


= +

 =
 + = +
 + +







 

                              (29) 

Joining (29) with (2) and (25), the lagrangian velocities q  are written in terms of the parameters ),,( YWU : 

( )
( )

( ) ( )
1

0

0

cos sin 0 0
sin cos 0 0

0 0
0 1 0

0

b y
Ub y
Wy
Y

y y yy

ψ ψξ
ψ ψη

ψ
θ

ρ ρ
Γ

 −  
   +         =          
   −   












 

where ( ) ( )2 21 1
1

a y
y

a
ρ

+ +
=

+
 and, we recall, a a b= . 

The equations of motion replacing (7) are now T
1 1 1

d
dt

 Γ ∇ −∇ = 
 

q q

0  , ( )0 0, , , ,ξ η ψ θ β=q  together with 

(2), (25) and (29): straightforward computations lead to 

( ) ( ) ( ) ( )

( ) ( ) ( )

( )( )

2

2

d d d2 sin cos sin 2 cos sin ,
d d d

dcos cos 1 sin sin ,
d

, , 0,

cU y U Uy W Uy y UW
t t t

Uy W y U y g b
t

W y y Y Uy I Y

θ τ θ θ θ θ θ

θ θ θ θ

θ ρ

  + + − + = −   

− + = + +

 = = − =









 

 



         (30) 

( ) ( )0 0cos sin , sin cos ,b y U b y U Uyξ ψ ψ η ψ ψ ψ= − = + =

                    (31) 

where 

( ) ( ) ( )( )221 , , 1 sin 1kc h h I h I I a hµ κ τ θ θ µ= + = = = + + + +               (32) 

and, as before, m mµ =  , a a b= , h h b= , 2I I mb= , 2
k kI I mb= . 

Even in this case the equations of motion can be led back to the cardinal equations: indeed, calling   the ri-
gid part containing A, B and 0P  (30), the second cardinal equation of the whole system    using B for 
calculating the momenta and projecting along 3e  writes 

( ) ( )( ) ( ) ( )0 3 3
eB B mP B B mA B+ ∧ + + ∧ ⋅ = ⋅L L e M e    

                      (33) 

where ( )eM  is the momentum of the external forces of the whole system. Since the constraints are smooth, the 
force in A  realizing the kinetic constraint (25) can be modelled as 

( ) ( ) ( )1sin cosv v
A Aφ β β= − +i jΦ  

so that (see also (10)) ( ) ( ) ( ) ( )
3 cose v

AB a b φ β⋅ = +M e . On the other hand, the first cardinal equation for the 

whole system along i  is ( )
0 2sin .v

A m m APφ β= − = + 

   Carring out all the computations, here omitted, one gets  
exactly (33). The second equation in (30) is again ascribable to the momentum balance of the system along i , 
similarly to what discussed in Remark 1.1: 

( ) ( )( ) ( ) ( )0 sin .e
P O O mP O O m A O mgh θ+ ∧ + + ∧ ⋅ = ⋅ =L L i M i    
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Finally, the fourth equation in (30), namely (24), is simply the second cardinal equation written only for   
and with respect to the point A , where all the momenta of the external forces vanish. 

As we already remarked in Section 1, the overview of the system in the frame of the cardinal equations does 
not determine any conserved quantity: the only evident one is the energy conservation 

( ) ( ){ } ( ) ( ) ( )2 2 2 2 21 1 sin cos cos
2

hy U IW I Y hUy U W gh b mbµ τ θ θ θ θ + + + + + − − =     

2.2. The Mathematical Problem 
System (30), (31) consists of eight ODEs for the eight variables 0ξ , 0η , ψ , θ , y , U , W , Y . The five 
equations (30) form a sub-system for ( ), , , ,U W y Yθ  together with the initial conditions 

( ) ( ) ( ) ( ) ( ) 0
0 0 0 0 00 0 , 0 , 0 , 0 ,

1
tgU b U W y y

a
βξ θ θ θ= = = = = =
+

                  (34) 

while the constant value Y is deduced from (24), (27) and (28)): 

( ) ( )0 0 0 0 0
0

1 0 .Y U y y U y
y

β
ρ

= + = +

                          (35) 

Once (30) has been solved, (31) and (28) allow to solve 0ξ , 0η , ψ . 
As in the case of Section 1, we incidentally remark that, if ( ), , ,U W yθ  and Y as in (35) is solution of (30), 

then ( ), , ,U W yθ− − − , 0 0 0Y Uβ β− = − −  is solution of the same system, as we expect. 
Statement 2.1 For any set of data (34), (35) system (30) admits one solution. 
Proof. System (30) can be concisely written as 

( ) ( )1 1, ,
,

0

y Y

Y

θ =


=





X X 
                             (36) 

with ( ), , ,U W yθ=X  and 

( )( )

( )

( ) ( )( )( ) ( )
( ) ( )( ) ( )

( )( )

1

1

2sin cos 0 0

cos 0 0 ,
0 0 1 0
0 0 0 1

sin sin 2cos 1 sin

cos 1 sin sin
,

c y y y

y

y U y Y Uy yW W y U

U y y U y Y Uy g b
Y

W
y Y yU

θ τ θ θ

θ

ρ θ τ θ θ θ θ

θ θ ρ θ

ρ

 + + −
 

− =  
  
 

 − + − − + +   
+ + − +   =  

 
 − 

X








 

the normal form being ( ) ( ) ( )1
1 1, , ,y Y Yθ−= =X X F X    with 

( ) ( )
( )( )

( )
( )

1
1

1 1

1

cos 0 0
cos 2sin 0 01,

, 0 0 , 0
0 0 0 ,

y
y c y y

y
G y G y

G y

θ
θ θ τ θ

θ
θ θ

θ

−

 
 + + =  
  
 



  

and 

( ) ( )( )

( )( ) ( ) ( ) ( )( )

2 2
1 1

22 2 2 2 2

, det 2sin cos

1 1 1 1 sin 1 1 sin 0. k

G y c y y y

a y hy I y I y

θ θ τ θ θ

µ θ κ κ κ θ
κ

 = = + + − 

 = + + + + + − + + + − >  


 
 

It is evident that the unique solution of (30) corresponding to the initial data ( ) 00U U= , ( )0 0W = , 
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( )0 0θ =  ( )0 0y = , 0Y =  is 0U U≡  and W, θ  y  identically zero. We notice that no other solutions such 
that the plane 0ABP  is vertical are possible: 

Statement 2.2 If ( ) 0tθ ≡ , then ( ) 0U t U≡ , ( ) 0y t ≡ , 0Y = . Conversely, if ( )0 0θ = , ( )0 0W =  and 
( ) 0U t U≡ , ( ) 0y t ≡ , 0Y = , then ( ) 0tθ ≡ . 
Proof. Set 0θ ≡  in (30) and call ( )1 0c cτ= : 

( ) ( )( )
( )( ) ( )

( )( )

2
1 1 11 ,

,

,

c y U c Uy y Y Uy c Uyy

yU U Uy y Y Uy U Uy y

y y Y Uy

ρ

ρ

ρ

 + = − − = −
− = + − = +   


= −











 

The first two equations give ( ) ( )2 2
0 1 1 01 1U U c y c y= + + ; on the other hand, eliminating y  from second 

and third equations yields ( ) ( ) ( ) ( )2 2
1 0 0 1 0 01 1 1 1c y y Uy U y c y yρ ρ   − + = − +    , hence 0y y≡  and 0U U≡ . 

But 0y  is consistent with the second equation only if 0 0y =  and the third equation leads to 0Y = . 
Conversely, if 0U U= , 0y = , 0Y =  are replaced in (30), one gets ( )sinW g b θ=  that, together with 

the initial conditions, gives 0θ ≡ . □ 
Still concerning with the initial data assignment, we notice that if 0 0β =  (which is a reasonable condition 

for 0t = ) we get from (35) 0 0Y U y= : we wonder whether solutions such that 0 0Uy U y≡  (meaning 0β ≡  
and Yψ ≡  constant) are possible. From (30), fourth equation, one gets 0y y≡ , 0U U≡ . If 0 0y =  we 
clearly have 0β ≡ , 0ψ ≡  and ( )sinW g b θ=  for ( )tθ . If on the other hand 0 0y ≠ , by replacing 0U  
and 0y  in the first two equations of (30) we achieve the first integrals 

( ) ( )

( ) ( ) ( )

0 0 0 0

2 2
0 0 0 0

cos sin 2 sin 0 ,
2

2cos 1 cos 0 0

W U y W U y

gW U y W W U y W
b

θ θ θ

θ θ

 − + = +

 − − − = −





 
 

so that only 0θ θ≡ , 0W ≡  can be a solution. Substituting in the first integrals we see that 0 0θ = , 0 0y = , 
that is the stationary solution. 

We are going to investigate the stability of the stationary solution. 
Proposition 2.1 The equilibrium point ( )0 0 ,0,0,0U=X , 0Y =  of (36) is unstable. 
Proof. The Jacobian matrix at the equilibrium is 

( ) ( )( )
( ) ( )( ) ( )( )

( ) ( )
0

2
0 0

1,
0

0

0 0 0 0 0
0 0 1 1

, ,0 0 1 0 0 0
0 0 0 1 1 1
0 0 0 0 0

Y
Y

g b aU a U a
J Y

U a a
=

 =

 
 + + 
 =
 

− + + 
 
 

X XX F X
  

 

whose eigenvalues are 0 , ( )0 1U a− + , ( )g b±  . The linearized system 

( ) ( ) ( )
( )

0 0

0

0
1

1
0

U
g b aU y Y U a

a y U y Y
Y

θ θ
 =
 − = + +


+ + =
 =










 

gives 

( )
0

1
0 0 0 0 0

0

, , 1 e ,
U t

aYU U Y U y y t y
U

β
−
+

 
≡ = + = + −  

 
  

( ) ( ) ( ) ( ) ( )( ) 0
0 0 0 0 1 2

1 e e e
2

g b t g b t u tt W b g W b g C Cθ θ θ − −= + + − + +    
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with ( )0 0 1u U a= + , ( )( )0
1 0 01

bu
C a Y aU y

g
= + + , 

( )
0

2 2
0

aYu
C

u g b
−

=
−

. □ 

We remark that, as bigger is I h=  as longer is the time when the planar body 0ABP  falls to the ground 
( )π 2θ = . 

3. Discussing Some Specific Assumptions 
It is evident that the stability of the system can be achieved by introducing an external force as in Paragraph 1.3: 
instead of replay such a theme, we prefer to discuss some assumptions recurring in literature which indeed sem-
plify the mathematical problem. 

First of all, let us see what happens if we let 0U U≡ , known constant. If 0 0β =  then 0 0Y U y=  and the 
solution is ( ) 0y t y≡  (that is ( ) 0tβ β≡ ) and ( ) 0t tψ ψ=  . The point ( )0 0,ξ η  draws the circle  

( ) ( ) ( ) ( )2 2 2 2
0 0 0 0 01b b y b y yξ η+ + − = + , ( )0 1y tg aβ= + . 

On the other hand, if 0 0β ≠ , the angle β  can be calculated by (30), fourth and fifth equations, regardless 
of the rest of the system: 

( )
( )( )( )

( )0 0 0 0 02 2
0

1
1, , 1 .

1 1

a y
Y u tg u U a

a y Y U y
β β

+
= = + = +

+ + −



                  (37) 

By integrating one gets in terms of β : 

( )
( )( )

( )( ) ( )2 2
0 00

0

2 2
22 0

2 2
00

12
22 0

2
0

1 1e e   if  0

1 e 1                                    if  0

t u Y uY t

u t

tg t tg Y
Y u tg t

utg Y

β ββ β
ββ

β
β

+−

−

+ +
= =/

−

  
= + − =     





 

In any case, if (30) is accepted, the assumption U constant allows the immediate calculation of β , irrespec-
tive of θ  and ψ . 

The same system (30) is worth considering together with the assumption, not uncommon in literature [2] 
[9]-[11], β θ∝ . Actually, assuming β αθ= , α  constant, would lead to the invariant quantity W Uy Yα + =  
and, by integration, ( )0 Ytα θ θ ψ− = − . Hence also ψ  is proportional to θ  and (30), second equation, can 
be written in terms of θ  only: 

( ) ( ) ( )2 1cos sin cos sin
tan

aW g b Y Wα θ θ α θ θ
αθ
+ + = + − + 

 
   

On the other hand, also (30), first equation, turns out to be written in terms of θ , since ( ) ( )1 tana y αθ+ =  
and ( )U Y W yα= − : it should be checked that two obtained equations show compatibility. 

Hence, in our mind the angle β  also must be governed by the equations of motion which do not make room 
for an assumption such as β θ∝ . 

Nevertheless, assume that the mass of   is negligible, so that 1µ   and 1 =  , as it is found in some 
models: in that case fourth and fifth equations in (30) have to be disregarded and β  cannot longer be com-
puted by means of (37). Following this point of view, the system is not closed, since β  enters only the con-
straint condition (25) and not in the Lagrangian function  . This is the reason why an additional condition (say 
a constitutive law) is needed, as for instance β θ∝ . 
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