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Abstract 
 
This paper investigates the propagation of horizontally polarised shear waves due to a point source in a mag- 
netoelastic self-reinforced layer lying over a heterogeneous self-reinforced half-space. The heterogeneity is 
caused by consideration of quadratic variation in rigidity. The methodology employed combines an efficient 
derivation for Green’s functions based on algebraic transformations with the perturbation approach. Disper-
sion equation has been obtained in the closed form. The dispersion curves are compared for different values 
of magnetoelastic coupling parameters and inhomogeneity parameters. Also, the comparative study is being 
made through graphs to find the effect of reinforcement over the reinforced-free case on the phase velocity. 
It is observed that the dispersion equation is in assertion with the classical Love-type wave equation in the 
absence of reinforcement, magnetic field and heterogeneity. Moreover, some important peculiarities have 
been observed in graphs. 
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1. Introduction 
 
The study of mechanical behaviour of a self-reinforced 
material has great importance in Geomechanics. Many 
elastic fibre-reinforced composite materials are strongly 
anisotropic in behaviour. It is desirable to study the shear 
wave propagation in anisotropic media, as the propaga-
tion of elastic waves in anisotropic media is fundamen-
tally different from their propagation in isotropic media. 
As the earth’s crust and mantle are not homogeneous, it 
is also interesting to know the propagation pattern of 
shear waves due to point source in heterogeneous me-
dium. The characteristic property of a self-reinforced 
material is that its components act together as a single 
anisotropic unit as long as they remain in elastic condi-
tion (i.e. the two components are bound together so that 
there is no relative displacement between them). Self- 
reinforced materials are a family of composite materials, 
where the polymer fibres are reinforced by highly orien- 
ted polymer fibres, derived from the same fibre. Alumina 
or concrete is an example of self-reinforced material. 
Under certain temperature and pressure some fibre mate-
rials may also be modified to self-reinforced materials by 

reinforcing a matrix material of the same fibre. In real 
life the fibres might be carbon, nylon, or conceivably 
metal whiskers. It has been observed that the propagation 
of elastic surface waves is affected by the elastic proper-
ties of the medium, through which they travel (Achen-
bach [1]). The Earth’s crust contains some hard and soft 
rocks or materials that may exhibit self-reinforcement 
property, and inhomogeneity is trivial characteristic of 
the Earth. These facts motivate us towards this study. 
The idea of introducing a continuous reinforcement at 
every point of an elastic solid was given by Belfield et al. 
[2]. Later Verma and Rana [3] applied this model to the 
rotation of tube, illustrating its utility in strengthening the 
lateral surface of the tube. Verma [4] also discussed the 
propagation of magnetoelastic shear waves in self-rein- 
forced bodies. The problem of magnetoelastic transverse 
surface waves in self-reinforced elastic solids was stu-
died by Verma et al. [5]. Chattopadhyay and Chaudhury 
[6] studied the propagation, reflection and transmission 
of magnetoelastic shear waves in a self-reinforced elastic 
medium. Chattopadhyay and Chaudhury [7] studied the 
propagation of magnetoelastic shear waves in an infinite 
self-reinforced plate. Chattopadhyay and Venkateswarlu 
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[8] investigated a two-dimensional problem of stress pro- 
duced by a pulse of shearing force moving over the 
boundary of a fiber-reinforced medium. Choudhary et al. 
[9] studied transmission of shear waves through a self- 
reinforced layer between two inhomogeneous elastic 
half-spaces. Choudhary et al. [10] also discussed the 
plane SH wave response from elastic slab interposed be- 
tween two different self-reinforced elastic solids. Recen- 
tly, Chattopadhyay et al. [11] has shown that the propa-
gation of Torsional waves in fibre-reinforced material is 
also possible. A class of interesting problem is concerned 
with an initially undisturbed body, which in its interior 
and at a specified time t = 0, is subjected to external dis-
turbances. The external disturbances give rise to wave 
motions propagating away from the disturbed region. In 
seismology the problem of the source mechanism con-
sists in relating observed seismic waves to the parame-
ters that describes the source. In the Earth, neglecting the 
force of gravity, body forces in the equation of motion 
may be used to represent the processes that generate 
earthquakes. In general, these forces are functions of the 
spatial coordinates and time, may be different for each 
earthquake and are defined only inside a certain volume. 
The time dependence of these forces simplifies the solu-
tion of many problems in seismology. A type of body 
forces of great importance in the solution of many prob-
lems of elastodynamics is that formed by a unit impul-
sive force in space and time with an arbitrary direction; 
this point action or impulse is usually described by the 
Dirac delta function. Thus the solutions of equations of 
motion represent the elastic displacement due to a unit 
impulse force in space and time. For this reason, the 
Green’s function called the response of the medium to an 
impulsive excitation. The form of this function depends 
on the characteristics of the medium, its elastic coeffi-
cients, and its density. In a finite medium, it depends also 
on the shape of the volume and the boundary conditions 
on its surface. For each medium there is a different 
Green’s function that defines how this medium reacts 
mechanically to an impulsive excitation force and is, 
therefore, a proper characteristic of each medium. 
Green’s functions play an important role in the solution 
of numerous problems in the mechanics and physics of 
solids. Articles on application of Green’s function to sei- 
smological problems have been published in a wide 
range of journals attracting the attention of both resear- 
chers and practitioners with backgrounds in the mechan-
ics of solids, applied physics, applied mathematics, me-
chanical engineering and material science. However, no 
extensive, detailed treatment of this subject has been 
available upto the present. The complete problem of 
Green’s function corresponds to an impulsive force in an 
arbitrary direction (Aki and Richards [12]). The propaga-

tion of Love type waves from a point source in either 
homogeneous or inhomogeneous elastic media has been 
considered by a number of authors. Notable are De Hoop 
[13], Brekhovskikh and Godin [14] Vrettos [15,16], 
Singh [17], Deresiewiez [18], Ewing et al. [19] etc. The 
propagation of Love waves due to point source in a ho-
mogeneous layer overlying a semi-homogeneous sub-
stratum has been discussed by Sezawa [20]. Sato [21] 
studied the propagation of SH waves in a double superfi-
cial layer over heterogeneous medium by taking varia-
tion in rigidity. Ghosh [22] studied the propagation of 
Love waves from the point source at the interface be-
tween an upper layer and a semi-infinite substratum; one 
medium is characterised by a slow linear variation in 
rigidity. Bhattacharya [23] described the possibility of 
the propagation of love type waves in an intermediate 
heterogeneous layer lying between two semi-infinite iso- 
tropic homogeneous elastic layers. Chattopadhyay and 
Kar [24] discussed the Love waves due to a point source 
in an isotropic elastic medium under initial stress. Covert 
[25] indicated a method for finding the Green’s function 
for composite bodies. Chattopadhyay et al. [26] studied 
the dispersion equation of Love waves in a porous layer. 
They used the Green’s function technique to obtain the 
dispersion equation. Watanabe and Payton [27] discussed 
the Green’s function for SH waves in a cylindrically mo- 
noclinic material. He derived the closed form expression 
for Green’s function for a few limited values of aniso-
tropic parameters and shown the contours of the displa- 
cement amplitude for the time harmonic wave. Manolis 
and Bagtzoglou [28] described a numerical comparative 
study of wave propagation in inhomogeneous and ran-
dom media. He employed the Green’s function approach 
for waves propagating from a point source, while tech-
niques to account for the presence of boundaries are also 
discussed. Awojobi and Sobayo [29] discussed the 
ground vibrations due to seismic detonation of a buried 
source. Kausel and Park [30] used a sub-structuring tech- 
nique to obtain the impulse response in the wave num-
ber-time domain for a layered half-space. Manolis and 
Shaw [31] developed the fundamental Green’s function 
for the case of scalar wave propagation in a stochastic 
heterogeneous medium. The present paper investigates 
the propagation of SH waves due to a point source in a 
magnetoelastic self-reinforced layer lying over a hetero-
geneous self-reinforced half-space. The heterogeneity is 
caused by consideration of quadratic variation in rigidity. 
The methodology employed combines an efficient deri-
vation for Green’s functions based on algebraic transfor- 
mations with the perturbation approach. Dispersion equ-
ation has been obtained in the closed form. The disper-
sion curves are compared for different values of magne-
toelastic coupling parameters and inhomogeneity para-
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meters. Also, the comparative study is being made throu- 
gh graphs to find the effect of reinforcement over the 
reinforced-free case on the phase velocity. It is observed 
that the dispersion equation is in assertion with the clas-
sical Love-type wave equation in the absence of rein-
forcement, magnetic field and heterogeneity. 

 
2. Formulation and Solution of the Problem 

 
We have considered a magnetoelastic self-reinforced 
layer of thickness H  lying over a heterogeneous self- 
reinforced half-space. The x-axis has been taken along 
the propagation of waves and z-axis is positive vertically 
downwards as shown in Figure 1. The source of distur-
bance S is taken at the point of intersection of the inter-
face of separation and z-axis. At first, we need to find the 
equation governing the propagation of SH wave in self 
reinforced magnetoelastic crustal layer. 

The constitutive equations used in a self-reinforced li-
nearly elastic model are (Belfield et al. 1983)  

 
  
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where ij  are components of stress, ije  components of 
infinitesimal strain, ij Kronecker delta, ia components 
of a


, all referred to rectangular cartesian co-ordinates 
 1 2 3, ,ix a a a a 


 is the preferred directions of reinfor- 

cement such that 2 2 2
1 2 3 1a a a   . The vector a


 may 

be function of position. Indices take the values 1, 2, 3 
and summation convention is employed. The coefficients 

* *, , ,T    and  2 L T   are elastic constants with 
dimension of stress. T  can be identified as the shear 
modulus in transverse shear across the preferred direc-
tion, and L as the shear modulus in longitudinal shear 
in the preferred direction. *  and * are specific stress 
components to take into account different layers for con-
crete part of the composite material. The model consi- 
dered here is of transversely isotropic material, also 
 

z = 0 

z = H 

Figure 1. Geometry of the problem. 

known as materials of hexagonal symmetry. 
Equations governing the propagation of small elastic 

disturbances in a perfectly conducting self-reinforced 
elastic medium having electromagnetic force J B

 
 

(the Lorentz force, J


 being the electric current density 
and B


 being the magnetic induction vector) as the only 

body force are 
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where  
i

J B
 

is the ix -component of the force 

 J B
 

 and   is the density of the layer. Here inte-

raction of mechanical and electromagnetic fields is con-
sidered.  

Let  1 1 1, ,iu u v w  and denoting 1 2, ,x x x y   

3x z  then Equation (2) can be written as 
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For SH wave propagating in the x-direction and caus-
ing displacement in the y-direction only, we shall assume 
that 

 1 1 1 10, , ,u w v v x z t   and 0.
y





     (4) 

Using Equation (4) in Equation (3), we have 
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where 
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For stresses 12  and 23 , the first part indicate the 
shear stress due to elastic members (steel) and the second 
part indicates effect of comparatively non-elastic mate-
rial of the composite section in the same direction. 

The first component would be having the term T , 
which can be termed as elastic coefficient and 
 L T   in the second term amounts for the effect 
comparatively non-elastic portion of the composite ma-
terial. 

The well known Maxwell’s equations governing the 
electromagnetic field are 
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where E


 is the induced electric field, J


 is the current 
density vector and magnetic field H


 includes both pri- 

mary and induced magnetic fields. e  and  are the 
induced permeability and conduction coefficient respec-
tively. 

The linearized Maxwell’s stress tensor  0 xM

ij due to 

the magnetic field is given by  

   0 xM

ij e i j j i k k ijH b H b H b     . 
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

 and  1 2 3, , .ib b b b ib  is the 

change in the magnetic field. In writing the above equa-
tions, we have neglected the displacement current. 

From Equation (6), we get 
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In component form, Equation (7) can be written as 
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(8) 

For perfectly conducting medium, (i.e.   ), it 
can be seen that Equations (8) become 
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Assuming that primary magnetic field is uniform 
throughout the space. It is clear from Equation (10) that 
there is no perturbation in xH  and zH , however from 
Equation (10) there may be perturbation in yH . There-
fore, taking small perturbation, say 2b  in yH , we have 
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 and   is the angle at which the wave 

crosses the magnetic field. Thus we have 
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We shall consider initial value of 2b to be zero. Using 
Equation (11) in Equation (10), we get 
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Integrating with respect to t , we get 
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Using the Equations (1) and (14), we obtain the equa-
tion of the motion for the magnetoelastic self-reinforced 
layer as 
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If  1 ,r t  be the force density distribution in the 
upper layer due to the point source, the equation of mo-
tion for SH wave propagation along x-axis becomes as 
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where r  is the distance from the origin, where the force 
is applied to a point of coordinates and t  is the time. 

Considering    1 1, , , i tv x z t V x z e   and 
   1 1, i tr t r e    in Equation (17), we obtain 
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where kc   is the angular frequency, k  the wave 
number and c  is the phase velocity. Here the distur-
bances caused by the impulsive force  1 r may be 
represented in terms of Dirac-delta function at the source 
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point as      1 r x z H     
Therefore the equation of motion for the upper magne- 

toelastic self-reinforced layer with an impulsive point 
source is 
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Defining the Fourier transform  ,rV z  of  ,rv x z  
as 
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Then the inverse transform can be given as 
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Now taking the Fourier transform of Equation (19), we 
obtain 
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The heterogeneity of the lower inhomogeneous self- 
reinforced elastic half-space has been considered in the 
form 

     
     

22 0

22 0

L L

T T

z H

z H

  

  

  

  
           (23) 

Now, the equation of motion for the lower heteroge-
neous self-reinforced elastic half-space is 

       
2 2 2 2

2 2 22 2 2 2 2
02 2 2

2
v v v v v

P Q R z H
x z zz x t

 
    

    
    

 

(24) 
where 0 is the density of the lower half-space, 

        
        

      

2 2 2 22
3

2 2 2 22
1

2 2 2
1 3

,

and 2 .

T L T

T L T

L T

P a

Q a

R a a

  

  

 

  

  

 

 

In view of substitution    2 2, , , i tv x z t V x z e   and 
Equation (20), Equation (24) becomes 

 
2

22 1
2 2 2 22

4
d V dV

f r V z
dzdz

         (25) 

where 

 

   

 

 

2 22
2 20 0 0

2 22 2 2
0 0 0

,
R Q

f i r
P P P

 
     

 

       

2

2
2 2 22 1

222
0

4

2

z

d V dV
z H z H z H V

dzdzP



 



 
      

 

 

          (26) 

        
        

      

2

2 0 0 02
0 3

0 0 02
0 1

2 0 0
0 1 3

,

and 2

T L T

T L T

L T

P a

Q a

R a a

  

  

 

  

  

 

 

Now it is clear from Equation (25) that the displace-
ment in the lower medium may be determined by assu- 
ming the lower medium to be homogeneous, isotropic 
having source density distribution  2 z . 

Substituting     2r
z

f

r rV z V z e


 in Equation (22) and 

Equation (25) for 1,2r   respectively, we obtain 

 
2

21 1
1 12

4
2

d V f z
V z e

dz
 


           (27) 

and  
2

22 2
2 22

4
2

d V f z
V z e

dz
 


          (28) 

where  
2 2

2 2 2 21 2
1 2,

4 4

f f
r r      

The boundary conditions are 

 1 1 1
1 0, at 0

2

dV f
P V z

dz

 
   

 
       (29) 

1 2 , atV V z H               (30) 

   1 21 1 2 2
1 2 , at

2 2

dV f dV f
P V P V z H

dz dz

   
      

   
 (31) 

Thus Equations (27) and (28) together with prescribed 
boundary conditions (29) to (31) give the complete ma-
thematical model for the problem. Now we apply Green’s 
function technique to solve it. If  1 0G z z is the Green’s 
function for the upper layer satisfying the condition 

1 0
dG

dz
 at 0z   and at z H , then the equation sa-

tisfied by  1 0G z z  is 

     
2

1 0 21
1 0 02

d G z z
G z z z z

dz
        (32) 

where 0z  is a point in the upper medium and z  is the 
field point. Multiplying the Equation (27) by  1 0G z z  
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and Equation (32) by  1V z , then subtracting and inte-
grating with respect to z  from 0z   to z H , we 
have 

       
1

1 2
1 0 1 0 1 01

2 f H

z H

dV
G H z e G H z V z

dz P

    
 

 (33) 

Since 
 1 0 0

dG z z

dz
  at 0z   and z H . 

Replacing 0z  by z and remembering that 

   1 1G H z G z H , the Equation (33) gives the value 

of 1V   at any point z  in the upper medium as 

       
1

12
1 1 11

2 f H

z H

dV
V z e G z H G z H

dzP 

     
 

 

Therefore, 

   
         

1
1 12

1 1 1 11

2

2

f
z H

z H

dV z f
V z e G z H G z H V z

dzP

 



       
    

                   (34) 

 
Now, let  2 0G z z  be the Green’s function for the 

lower medium, as per previous discussion may be as-
sumed to be homogeneous. We assume that  2 0G z z  
is the solution of the equation 

     
2

2 0 21
2 0 02

d G z z
G z z z z

dz
         (35) 

where 0z  is the point in the lower medium, satisfying 

the condition 2 0
dG

dz
  at z H  and approaches to  

zero as z  . Multiplying Equation (28) by 

 2 0G z z  and Equation (35) by  2V z , then subtract-

ing and integrating with respect to z  from z H  to 
z   , we have 

       
2

2 2
2 0 2 2 0 2 0/ 4

f z

Hz H

dV
G H z e z G z z dz V z

dz
 





     
 

  

       (36) 
Interchanging z  by 0z  in the Equation (36), the 

value of  2V z  at any point z  in the lower medium is 

       
2 0

2 2
2 2 2 0 2 0 04

f z

Hz H

dV
V z G z H e z G z z dz

dz
 





    
 

  

Therefore, 

           
2 02 2

2 22 2 2
2 2 2 2 0 2 0 0/ 4

2

f zf z f H

Hz H

dV z f
V z e e G z H V z e z G z z dz

dz
 





       
    

         (37) 

With the help of boundary condition (30), we have 

                   
2 02

1 21 2 2 2
1 1 1 2 2 2 0 2 01

2
4 /

2 2

f zf H

Hz H z H

dV z dV zf f
G H H G H H V z G H H V z e e z G z z dz

dz dzP
 



 

             
      

  

(38) 

Using boundary condition (31), Equation (38) can be written as 

           
2 02

1 1 2 2
1 2 2 0 2 0 01

1 0

1 2
4

2

f zf H

Hz H

dV z f
V z G H H e e z G H z dz

dz D P
 





          
      

         (39) 

where 1D  is given in appendix I. 

Substituting the value of 
   1 1

12
z H

dV z f
V z

dz


   
  

from 

Equation (39) and  2 04 z  from Equation (26) into 

Equation (34), we obtain 

       
       

 
       

         

2

1

2 2

2 0

2
1 2 12

1 1 1
0 1 2 0 1 2

2
2 222 2 2

0 0 0 2 0 2 0 02
00

2

2

f H
f

z H

f z

H

G z H G H H e G z H
V z e

P G H H P G H H P G H H P G H H

d V dV
z H z H z H V z e G H z dz

dzdz






 




 

 
         

    


         (40) 
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In view of boundary condition (31), relation (37) gives 

       
       

   

          
         

         

2

2

2 2 2

2 0

2

2

12
1 2 22

2 1 1
0 1 2 0 0 1 2

2
2 222 2 2

0 0 0 2 0 2 0 02
00

22
2 222 2

0 0 0 2 02
000

2 / / /

/ / / /

2 /

2

f z
f

z H

f z

H

f z

G H H G z H e G z H P
V z e

P G H H P G H H P P G H H P G H H

d V dV
z H z H z H V z e G H z dz

dzdz

d V dVe
z H z H z H V z

dzdzP





 


 





   
         

    

     



 
2 0

2
2 0 0/

f z

H

e G z z dz
   

 
    


       (41) 

 2V z can be obtained from the relation (41) by the 
method of successive approximations. The value of 

 2V z  obtained from Equation (41) when substituted in 
Equation (40) gives the value of  1V z . We are interes- 
ted in the value of  1V z , which will give the displace-
ment in the upper layer, and since the higher order of   
can be neglected; we take as the first order approximation 

       

       

2

2

2
1 2

2 1
0 1 2

2
f

z H
G H H G z H e

V z
P G H H P G H H

 




     (42) 

which gives the displacement at any point in the lower 
medium if it is taken as homogeneous. Putting this value 
of  2V z in Equation (40), we get 

       

       

     
        

             

1 1

2
2

2 2
1 2 1 1

1 21 1
0 1 2 0 1 2

2
2 22 02 0 22

0 0 0 2 0 2 0 02
00

2 2

2

f f
z H z H

H

G z H G H H e e G z H G H H
V z

P G H H P G H H P G H H P G H H

dG z Hd G z H
z H z H z H G z H G H z dz

dzdz





   



 
 

        
  


   (43) 

The solution of Equation (43) represents the elastic 
displacements due to a unit impulse force in space and 
time. Thus the Green’s function is the response of the 
medium to an impulsive excitation. If we know the val-
ues of  1G z H  and  2G z H , then the value of 

 1V z  can be determined from the Equation (43). We 
have assumed  1 0G z z  as the solution of Equation 
(32). A solution of Equation (32) may also be obtained in 
the following manner. 

We have the equation 
2

2
2

0.
d

dz


                (44) 

Two independent solutions of Equation (44), vanish-
ing at z    and z    are  1

zz e   and 
 2

zz e   . 
Therefore the solution of the Equation (44) for an infi-

nite medium is  

   1 2 0z z

W

   for 0 ,z z  

   1 0 2z z

W

 
 for 0 ,z z  

where 

       1 2 1 2 2 0.W z z z z           

So, the solution of Equation (32) is 
0

.
2

z ze 



 

  

Since  1 0G z z is to satisfy the condition 

1 0
dG

dz
  at 0z   and z H        (45) 

Therefore, we can assume that 

 
0

1 0 1 2 .
2

z z
z z e

G z z C e C e


 



 
    

where 1 2andC C are the arbitrary constants which can be 
evaluated using condition (45). We finally get 

 
         0 0 0 0

0
1 0

1
.

2

H z H z H z H zz z

z z

H H H H

e e e e e e
G z z e

e e e e

    


   

      

 
 

  
   
  
  

             (46) 

 
Therefore, 
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 1

1
,

z z

H H

e e
G z H

e e

 

 





 
    

        (47) 

 1

1
,

H H

H H

e e
G H H

e e

 

 





 
    

        (48) 

Similarly, the value of  2 0/G z z  can be written as 
 

   0 0 2
2 0

1
,

2
z z z z HG z z e e 


              (49) 

and so 

 
 0

2 0

z He
G H z





 

               (50) 

 2

1
.G H H


                (51) 

Substituting all these values in Equation (43), we get 

 
   

       

 
        

1

2 2

2

2 2

1 1 1
0 0

1
2

1
4

f H Hz H z z

H H H H H H H H

e e
e e e

V z
P e e P e e P e e P e e

 
 

       




    

  

   

  
               

  

      (52) 

Neglecting the higher powers of   the Equation (52) may be approximated as 

 
   

       
 

        

1

2

2

2

1 2

2
1

0
1

0

2

1

1
4

f
z H z z

H H

H H H H

H H H H

e e e
V z

e e

P e e P e e
P e e P e e

 

 

   

   




 
  

  



 

 

 


  
   

         
  

      (53) 

Taking the inverse Fourier transform of Equation (53), the displacement in the upper medium may be obtained as 

 
   

       
 

        

1

2

2

2

1 2

2
1

0
1

0

2

1

1
4

f
z H z z i x

H H

H H H H

H H H H

e e e e d
V z

e e

P e e P e e
P e e P e e

  

 

   

   




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The dispersion equation of SH waves will be obtained by equating to zero the denominator of the above integral, i.e. 
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          
  

     (55) 

In view of the substitutions 1 2andik k      the 
above Equation (55) gives the dispersion relation of 

shear waves in magnetoelastic self-reinforced layer lying 
over heterogeneous self-reinforced half-space 
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      (56) 

where   
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1 2 1 2, and    are given in the appendix I. 
 

3. Particular Cases 
 
3.1. Case I 
 
When 0   the dispersion relation (56) reduces to 

 
 

 

2

0 2
1 1

1

tan
P

kH
P





 . 

which is the dispersion equation of shear waves for the 
case of magnetoelastic self-reinforced layer lying over a 
homogeneous self-reinforced half-space due to a point 
source. 
 
3.2. Case II 
 

When    0 0
1 20, andL T L T           the dis-

persion relation (56) reduces to 

 

   

1/2
2

2 2
3

1/22

2 2
4

1/2
2

2
1 2 2

3

tan 1
1 sin

1

1 sin 1
1 sin

H

H

H

c
kH

c

c

  




  
  

    
  

 
 

 
    

  

 

where 

3 4, andH    are given in the appendix I. 
which is the dispersion equation of shear waves for the 
case of isotropic magnetoelastic layer lying over a ho-
mogeneous isotropic half-space due to a point source. 

 
3.3. Case III 

 

When    0 0
1 20, 0, andH L T L T              

the dispersion relation (56) reduces to 
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which is the classical Love wave equation. 
 
4. Numerical Examples 
 
For the case of a magnetoelastic self-reinforced layer 
lying over a non-homogeneous self-reinforced half space, 

we take the following data 
1) For Magnetoelastic Self-reinforced layer, [Mark-

ham [32]] 
9 2 9 2 3

15.66 10 N/m , 2.46 10 N/m , 7,800Kg/m .L T        

2) For Heterogeneous Self-reinforced half space, 
[Chattopadhyay and Chaudhury [6]] 

   0 09 2 9 2 3
27.07 10 N/m , 3.5 10 N/m , 1,600 Kg/m .L T        

Moreover the following data are used (Hool and Kinne 
[33]; Maugin [34]) 

2

1 0, 0.00316227, 0.0,0.05,0.1, 0.0,0.25,0.5H
T

H
a




    

The effect of reinforcement, magnetic field and hete-
rogeneity on the propagation of plane SH waves in a 
magnetoelastic self-reinforced layer lying over an hetero- 
geneous self-reinforced half spaces has been depicted by 
means of graphs. Figures 2 and 3 gives the variation of 
non-dimensional phase velocity  1c   with respect to 
non-dimensional wave number kH  for different values 
of inhomogeneity    and magnetoelastic coupling 
parameters  H  respectively. The small change in the 
non-dimensional wave number produces substantial 
change in non-dimensional phase velocity in both the 
cases. In each of these figures graphs are drawn for both 
in the presence and absence of reinforcement. In both the 
figures solid line curve 1, 2 & 3 refers to the case of 
reinforcement where as dotted line curves 4, 5 & 6 cor-
respond to the reinforced free case. The comparative stu- 
dy of the graphs reveals that with the increase in hetero-
geneity and magnetoelastic coupling parameter, the phase 
velocity increases for both reinforced and reinforced free 
cases. It is important to add that the impact of reinforce-
ment is dominant on the reinforced free case. 
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1: a1=0.00316227, =0.0

2: a1=0.00316227, =0.25

3: a1=0.00316227, =0.50

4: a1=a3=0.0, =0.0

5: a1=a3=0.0, =0.25

6: a1=a3=0.0, =0.50

 
Figure 2. Dimensionless phase velocity against dimension-
less wave number for = 0.0Hε  in presence and absence 

of reinforcement. 

1: a1 = 0.00316227,  = 0.0

2: a1 = 0.00316227,  = 0.25

3: a1 = 0.00316227,  = 0.50

4: a1 = a3 = 0.0,  = 0.0 

5: a1 = a3 = 0.0,  = 0.25

6: a1 = a3 = 0.0,  = 0.50

kH 

1c 
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Figure 3. Dimensionless phase velocity against dimension-
less wave number for = 0.0ε  in presence and absence of 
reinforcement. 
 

In Figure 4 curve 1 stands for the isotropic homoge-
neous layer lying over isotropic homogeneous half space, 
curve 2 stands for the isotropic magnetoelastic homoge-
neous layer lying over isotropic homogeneous half space, 
curve 3 stands for isotropic magnetoelastic homogeneous 
layer lying over isotropic heterogeneous half space, 
curve 4 stands for the self-reinforced homogeneous layer 
lying over a homogeneous self-reinforced half space, 
curve 5 stands for the magnetoelatic self-reinforced ho-
mogeneous layer lying over a homogeneous self-reinfor- 
ced half space and curve 6 stands for the magnetoelatic 
self-reinforced homogeneous layer lying over a hetero-
geneous self-reinforced half space. The comparative stu- 
dy shows that as anisotropy prevails through self-reinfor- 
cement, magnetoelasticity prevails through magnetoelas-
tic coupling parameter and heterogeneity prevails through 
inhomogeneity parameter in the medium, the phase velo- 
city of the SH waves due to a point source gets supported 
more and more. It is also evident that the coupling para-
meters  H  and the heterogeneity    both support 
the phase velocity but the effect of heterogeneity is pro- 
minent. 

 
5. Conclusions 
 
Massive earth crust with built up RCC and Masonry in-
frastructures considerably influence the seismic waves 
propagation mainly due to elastic properties of the media. 
The present study has established that the phase velocity 
dispersion curve is affected by its magnetoelastic rein-
forced parameters and irregular boundaries. Ground sha- 
king and earthquake loads can be visualized through this 
study. It is the fact that the earth crust and built up RCC 
and masonry structures over it will be proportionately af- 
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Figure 4. Dimensionless phase velocity against dimension-
less wave number for different cases. 
 
fected by the response of the ground motion for these 
wave propagation. RCC and masonry structures have dy- 
namic properties like mass, stiffness and strength respon- 
sible for vibration parameters due to ground motion. Seis- 
mic forces are proportional to the mass of the structures 
and the acceleration caused by the ground movement. Fre- 
quency is the measure of how often ground motion chan- 
ges direction. Amplitude is a measure of the magnitude of 
this motion. These parameters will be of great help for 
foundation design capable of translation. A well-designed 
and well-built RCC structure has a reliable load path that 
transfers these disturbing forces through the structures to 
the foundation where the soil can resist them. 

Besides earthquake, the ground motion may be due to 
heavy plant operation, blasting, rolling or falling of heavy 
masses. All these may cause harmonically forced vibra-
tion or transient vibration with impulse and arbitrary exci- 
tation to the reinforced media. For these conditions, there 
are well established methods to calculate principal modes 
of vibration and associated parameters. Wave propagation 
phenomenon in reinforced media is one of the most im-
portant information for the design and development of 
heavy civil construction projects. If the nature and sources 
of ground movement are predictable, then the design of 
RCC, masonry and steel structures for the construction of 
buildings, towers and bridges will be more accurate, sci- 
entific and safe. 

The present study has established that increase in he-
terogeneity and magnetoelastic coupling parameter in-
creases the phase velocity for both reinforced and rein-
forced free cases. It is important to add that the impact of 
reinforcement is dominant on the reinforced free case. 
Hence the study of magnetoelastic shear wave propaga-
tion due to a point source in magnetoelastic self-reinfor- 
ced layer over a heterogeneous self-reinforced half-space 
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provides valuable information for selection of proper 
structural materials for present day construction work. 

 
6. Acknowledgements 
 
The authors convey their sincere thanks to Indian School 
of Mines, Dhanbad for providing JRF to Mr. Abhishek 
Kumar Singh and also facilitating us with its best facility. 
Acknowledgement is also due to DST, New Delhi for the 
providing financial support through Project No. SR/S4/ 
MS: 436/07, Project title: “Wave propagation in aniso-
tropic media”. 
 
7. References 
 
[1] J. D. Achenbach, “Wave Propagation in Elastic Solids,” 

North Holland Publication Company, New York, 1975. 

[2] A. J. Belfield, T. G. Rogers and A. J. M. Spencer, “Stress 
in Elastic Plates Reinforced by Fibers Lying in Concen-
tric Circles,” Journal of the Mechanics and Physics of 
Solids, Vol. 31, No. 1, 1983, pp. 25-54. 
doi:10.1016/0022-5096(83)90018-2 

[3] P. D. S. Verma and O. H. Rana, “Rotation of a Circular 
Cylindrical Tube Reinforced by Fibres Lying along He-
lices,” Mechanics of Materials, Vol. 2, No. 4, 1983, pp. 
353-359. doi:10.1016/0167-6636(83)90026-1 

[4] P. D. S. Verma, “Magnetoelastic Shear Waves in Self- 
Reinforced Bodies,” International Journal of Engineer-
ing Science, Vol. 24, No. 7, 1986, pp. 1067-1073. 
doi:10.1016/0020-7225(86)90002-9 

[5] P. D. S. Verma, O. H. Rana and M. Verma, “Magnetoe-
lastic Transverse Surface Waves in Self-Reinforced Elas-
tic Bodies,” Indian Journal of Pure and Applied Mathe-
matics, Vol. 19, No. 7, 1988, pp. 713-716. 

[6] A. Chattopadhyay and S. Chaudhury, “Propagation, Ref-
lection and Transmission of Magnetoelastic Shear Waves 
in a Self Reinforced Medium,” International Journal of 
Engineering Science, Vol. 28, No. 6, 1990, pp. 485-495. 
doi:10.1016/0020-7225(90)90051-J 

[7] A. Chattopadhyay and S. Chaudhury, “Magnetoelastic 
Shear Waves in an Infinite Self-Reinforced Plate,” Inter-
national Journal of Numerical and Analytical Methods in 
Geomechanics, Vol. 19, No. 4, 1995, pp. 289-304. 
doi:10.1002/nag.1610190405 

[8] A. Chattopadhyay and R. L. K. Venkateswarlu, “Stresses 
Produced in a Fibre-Reinforced Half Space Due to Mov-
ing Load,” Bulletin of Calcutta Mathematical Society, 
Vol. 90, 1998, pp. 337-342. 

[9] S. Chaudhary, V. P. Kaushik and S. K. Tomar, “Trans-
mission of Shear Waves through a Self-Reinforced Layer 
Sandwiched between Two Inhomogeneous Viscoelastic 
Half-Spaces,” International Journal of Mechanical Scien- 
ces, Vol. 47, No. 9, 2005, pp. 1455-1472. 
doi:10.1016/j.ijmecsci.2005.04.011 

[10] S. Chaudhary, V. P. Kaushik and S. K. Tomar, “Plane 
SH-Wave Response from Elastic Slab Interposed be-

tween Two Different Self Reinforced Elastic Solids,” In-
ternational Journal of Applied Mechanics and Engineer-
ing, Vol. 11, No. 4, 2006, pp. 787-801. 

[11] A. Chattopadhyay, S. Gupta, S. K. Samal and V. K. 
Sharma, “Torsional Wave in Self-Reinforced Medium,” 
International Journal of Geomechanics, Vol. 9, No. 1, 
2009, pp. 9-13.  
doi:10.1061/(ASCE)1532-3641(2009)9:1(9) 

[12] K. Aki and P. G. Richards, “Quantitative Seismology: 
Theory and Methods,” W. H. Freeman & Co., New York, 
1980. 

[13] A. T. De Hoop, “Handbook of Radiation and Scattering 
of Waves: Acoustic Waves in Fluids, Elastic Waves in 
Solids, Electromagnetic Waves,” Academic Press, Lon-
don, 1995. 

[14] L. M. Brekhovskikh and O. A. Godin, “Acoustics of 
Layered Media,” Springer-Verlag, Berlin, 1992. 

[15] C. Vrettos, “Forced Anti-Plane Vibrations at the Surface 
of an Inhomogeneous Half-Space,” Soil Dynamics and 
Earthquake Engineering, Vol. 10, No. 5, 1991, pp. 230- 
235. doi:10.1016/0267-7261(91)90016-S 

[16] C. Vrettos, “The Boussinesq Problem for Soil with 
Bound Nonhomogeneity,” International Journal of Nu-
merical and Analytical Methods in Geomechanics, Vol. 
22, No. 8, 1998, pp. 655-669. 
doi:10.1002/(SICI)1096-9853(199808)22:8<655::AID-N
AG938>3.0.CO;2-R 

[17] K. Singh, “Love Waves Due to a Point Source in an 
Axially Symmetric Heterogeneous Layer between Two 
Homogeneous Half Spaces,” Pure and Applied Geophys-
ics, Vol. 72, No. 1, 1969, pp. 35-44. 
doi:10.1007/BF00875690 

[18] H. Deresiewich, “A Note on Love Waves in Homogene-
ous Crust Overlying an Inhomogeneous Substratum,” 
Bulletin of Seismological Society of America, Vol. 52, 
1962, pp. 639-645. 

[19] M. Ewing, W. S. Jardetzky and F. Press, “Elastic Waves 
in Layered Media,” McGraw-Hill, New York, 1957. 

[20] K. Sezawa, “Love Waves Generated from a Source of a 
Certain Depth,” Bulletin of the Eathquake Research In-
stitute, University of Tokyo, Vol. 13, 1935, pp. 1-17. 

[21] Y. Sato, “Love Waves Propagated upon Heterogeneous 
Medium,” Bulletin of the Eathquake Research Institute, 
University of Tokyo, Vol. 30, 1952, pp. 1-12. 

[22] M. L. Ghosh, “Love Wave Due to a Point Source in an 
Inhomogeneous Medium,” Gerlands Beitrage Zur Geo-
physik, Vol. 70, 1970, pp. 319-342. 

[23] J. Bhattacharya, “The Possibility of the Propagation of 
Love Type Waves in an Intermediate Heterogeneous 
Layer Lying between Two Semi-Infinite Isotropic Ho-
mogeneous Elastic Layers,” Pure and Applied Geophys-
ics, Vol. 72, No. 1, 1969, pp. 61-71. 
doi:10.1007/BF00875693 

[24] A. Chattopadhyay and B. K. Kar, “Love Wave Due to a 
Point Source in an Isotropic Elastic Medium under Initial 
Stress,” International Journal of Non-Linear Mechanics, 
Vo. 16, No. 3-4, 1981, pp. 247-258. 



A. CHATTOPADHYAY  ET  AL. 
 

Copyright © 2011 SciRes.                                                                                  AM 

282

doi:10.1016/0020-7462(81)90038-X 

[25] E. D. Covert, “Approximate Calculation of Green’s 
Function for Built-Up Bodies,” Journal of Mathematical 
Physics, Vol. 37, No. 1, 1958, pp. 58-65. 

[26] A. Chattopadhyay, M. Chakraborty and V. Kaushwaha, 
“On the Dispersion Equation of Love Waves in a Porous 
Layer,” Acta Mechanica, Vol. 58, No. 3-4, 1986, pp. 125- 
136. doi:10.1007/BF01176595 

[27] K. Watanabe and R. G. Payton, “Green’s Function for 
SH-Wave in Cylindrically Monoclinic Material,” Journal 
of Mechanics and Physics, Vol. 50, No. 11, 2002, pp. 
2425-2439. doi:10.1016/S0022-5096(02)00026-1 

[28] G. D. Manolis and A. C. Bagtzoglou, “A Numerical 
Comparative Study of Wave Propagation in Inhomoge-
neous and Random Media,” Computational Mechanics, 
Vol. 10, No. 6, 1992, pp. 397-413.  
doi:10.1007/BF00363995 

[29] A. O. Awojobi and O. A. Sobayo, “Ground Vibration 
Due to Seismic Detonation of a Buried Source,” Earth-
quake Engineering and Structural Dynamics, Vol. 5, No. 

2, 2006, pp. 131-143. doi:10.1002/eqe.4290050203 

[30] E. Kausel and J. Park, “Impulse Response of Elastic 
Half-Space in the Wave Number-Time Domain,” Journal 
of Engineering Mechanics ASCE, Vol. 130, No. 10, 2004, 
pp. 1211-1222. 
doi:10.1061/(ASCE)0733-9399(2004)130:10(1211) 

[31] G. D. Manolis and R. P. Shaw, “Wave Motions in Sto-
chastic Heterogenous Media,” Engineering Analysis with 
Boundary Element, Vol. 15, No. 3, 1995, pp. 225-234. 
doi:10.1016/0955-7997(95)00026-K 

[32] M. F. Markham, “Measurements of Elastic Constants of 
Fibre Composite by Ultrasonics,” Composites, Vol. 1, 
1970, pp. 145-149. doi:10.1016/0010-4361(70)90477-5 

[33] G. A. Hool and W. S. Kinne, “Reinforced Concrete and 
Masonry Structure,” McGraw-Hill, New York, 1924. 

[34] G. A. Maugin, “Review Article: Wave Motion in Magne-
tizable Deformable Solids,” International Journal of En-
gineering Science, Vol. 19, No. 3, 1981, pp. 321-388. 
doi:10.1016/0020-7225(81)90059-8 

 
 
Appendix I 
 

 
 

   

 

   

 

 

 

   

 

 

 

2 2

2 2 2

1

1 1 22

1/21/2 221 1 22
0 0 0

1 21 1 1

0 0 0

0 2
01 2

1 2 3 4 H
0 0 1

,
2 2

, , , andT

z H

eT

P
D G H H G H H

P

Q c RR c Q

P P P P P P

H

 

   
    

    



 
    

 

                              

    

 

 
 
 
 
 
 
 
 


