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Abstract 

In this article, we prove the existence of exponential attractors of the nonclassical diffusion equa- 
tion with critical nonlinearity and lower regular forcing term. As an additional product, we show 
that the fractal dimension of the global attractors of this problem is finite. 
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1. Introduction 

We consider the asymptotic behavior of solutions to be the following nonclassical diffusion equation: 

( ) ( )
( ) ( )0

, in  ,

,0 ,

0,

t tu u u f u g x

u x u x

u

+

∂Ω

 − ∆ − ∆ + = Ω×
 =
 =



                       (1.1) 

where ( )3N NΩ ⊂ ≥  is a bounded domain with smooth boundary ∂Ω , and the external forcing term 
( ) ( )1g x H −∈ Ω , non-linear function ( )1f ∈   with ( )0 0f =  and satisfies the following conditions: 

( )
2 1
20 1   for all  ,

N
Nf s C s s
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−
−
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and 

( )
1,liminf

s

f s
s

λ
→∞

> −                               (1.3) 

where 0C  is a positive constant and 1λ  is the first eigenvalue of −∆  on ( )1
0H Ω . The number 2 1

2
N
N
+

−
−

 is  

called the critical exponent; since the nonlinearity f  is not compact in this case, this is one of the essential 
difficulties in studying the asymptotic behavior. 

This equation appears as a nonclassical diffusion equation in fluid mechanics, solid mechanics and heat 
conduction theory, see for instance [1]-[3] and the references therein. 

Since Equation (1.1) contains the term tu−∆ , it is different from the usual reaction diffusion equation 
essentially. For example, the reaction diffusion equations has some smoothing effect, that is, although the initial 
data only belongs to a weaker topology space, the solution will belong to a stronger topology space with higher 
regularity. However, for Equation (1.1), if the initial data 0u  belongs to ( )1

0H Ω , the solution ( ),u x t  with 
( ) 0,0u x u=  is always in ( )1

0H Ω  and has no higher regularity because of tu−∆ , which is similar to the 
hyperbolic equation. Consequently, its dynamics would be more complex and interesting. 

The long-time behavior of the solutions of (1.1) has been considered by many researchers; see, e.g. [4]-[9], 
and the references therein. For instance, for the case ( ) ( )2g x L∈ Ω , the existence of a global attractor of (1.1) 
in ( )1

0H Ω  was obtained in [4] under the assumptions that f  satisfies (1.2) and (1.3) corresponding to 3N =   

and the additional condition ( ) ( )( )1f s c s sν≤ + ∀ ∈  with 
3

25
2 N

N
N

ν
=

 +
< = − 

, which essentially requires  

that the nonlinearity is subcritical. In [7] the authors investigated the existence of the global attractors for 
( ) ( )1g x H −∈ Ω , and proved the asymptotic regularity and existence of exponential attractors for 
( ) ( )( )2 2, ;bg x t L L∈ Ω  only under the conditions (1.2)-(1.3). Recently, the authors in [9] showed the  

asymptotic regularity of solutions of Equation (1.1) in ( )1H σ+ Ω  for any 0,min 1, 1
2
Nσ   ∈ −    

 and for  

( ) ( )1g x H −∈ Ω , ( )1
0 0u H∈ Ω  only under the assumptions (1.2)-(1.3). 

For the limit of our knowledge, the existence of exponential attractors of Equation (1.1) has not been achieved 
by predecessors for ( ) ( )1g x H −∈ Ω . On the other hand, we note that in [10] the authors scrutinized the 
asymptotic regularity of the solutions for a semilinear second order evolution equation when ( ) ( )1g x H −∈ Ω , 
and based on this regularity, they constructed a family of finite dimensional exponential attractors. However, 
they require the following additional technical assumptions besides (1.2) and (1.3): 

( ) ( )
2 2
21 ,as 3, 4,5; , as 6, for all  ,

N
Nf s C s N f s C N s
+

−
−

 ′′ ′′≤ + = ≤ ≥ ∈ 
 

  

and 

( ) , for all .f s C s′ ≥ ∈  

In this article, motivated by the work in [10]-[12], based on the asymptotic regularity in [9], we construct a 
finite dimensional exponential attractor of (1.1) only under the conditions (1.2) and (1.3). 

Our main result is  
Theorem 1.1 Assume ( )1f ∈   and satisfies (1.2)-(1.3), ( )1g H −∈ Ω . Then the semigroup ( ){ } 0t

S t
≥

 
associated with problem (1.1) has an exponential attractor   in ( )1

0H Ω .  
Remark 1.1 If   is a global attractor of (1.1) in ( )1

0H Ω , we know that ⊂  , then Theorem 1.1 implies 
that fractal dimension of the global attractor   is finite. 

2. Notations and Preliminaries 

In this section, for convenience, we introduce some notations about the functions space which will be used later 
throughout this article. 
• A = −∆  with domain ( ) 2 1

0D A H H=  , and consider the family of Hilbert space ( )2 ,sD A s∈  with the 
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standard inner products and norms, respectively, 

( ) ( )2 2
2 2 2, ,     and    .s s

s s s
D A D AA A A⋅ ⋅ = ⋅ ⋅ ⋅ = ⋅  

Especially, ,   and  ⋅ ⋅ ⋅  means the ( )2L Ω  inner product and norm, respectively. 

• [ ]
1

2 , 0,1
s

s D A s
+ 

= ∈  
 

  with the usual norm 
21

2 2
s

s

u A u
+

=


. Especially, we denote 0 1
0H= =   and 

1
0H⋅ = ⋅


. 

• ( ) ( ) [ ) [ ), : 0, 0, , 1, 2,iQ Q i⋅ ⋅ ∞ ∞ =   are continuous increasing functions. 
• , iC C  denote the general positive constants, 1, 2,i =  , which will be different from line to line. 

We also need the following the transitivity property of exponential attraction, e.g., see [[12], Theorem 5.1]: 
Lemma 2.1 ([13]) Let 1 2 3, ,    be subsets of   such that 

( )( ) ( )( )1 2
1 2 1 2 3 2dist , e , dist , e ,t tS t L S t Lµ µ− −≤ ≤      

for some 1 2, > 0µ µ  and 1 2, 0L L ≥ . Assume also that for all ( ) ( )1 2 0, 1, 2,3t jz z S t j≥∈ =   there holds 

( ) ( ) 0
1 2 0 1 1e ,tS t z S t z L z zµ−− ≤ −


 

for some 0 0µ ≥  and 0 0L ≥ . Then it follows that 

( )( )1 3dist , e ,tS t L µ−≤    

where 1 2

0 1 2

µ µ
µ

µ µ µ
=

+ +
 and 0 1 2L L L L= + . 

3. Exponential Attractor 

In this subsection, based on the asymptotic regularity obtained in [9], we will construct an exponential attractor 
by the methods and techniques devised in [10]-[12]. We first need the following Lemmas:  

Lemma 3.1 ([7]) Let ( )1f ∈   satisfies (1.2)-(1.3) and ( )1g H −∈ Ω . Then for any 0u ∈  and any 
> 0T , there is a unique solution u  of (1.1) such that 

[ ]( ) ( ) ( )1 20, ; 0, ; , 0, ; .tu T L u L T∞∈ ∞ ∈     

Moreover,the solution continuously depends on the initial data in  .  
In the remainder of this section, we denote by ( ){ } 0t

S t
≥

 the semigroup associated with the solutions of 
(1.1)-(1.3).  

Lemma 3.2 ([7]) Under conditions of above Lemma, There is a positive constant ρ  such that for any 
bounded subset B ⊂  , there exists ( )T T B=  such that 

( ) ( )0 0, for all  and .S t u u t T u Bρ= ∇ ≤ ≥ ∈


                    (3.1) 

From this Lemma, we know that the semigroup of operators ( ){ } 0t
S t

≥
 generalized by (1.1) possesses a 

bounded absorbing set 0  in  .  
Lemma 3.3 Under conditions of 3.1 Lemma , and ( ) ( ),u t v t  be two solutions of (1.1) with 
( ) ( )0 00 , 0u u v v= = , respectively, it follows that 

( ) ( ) ( ) ( )2 2
0 0 e , for all  0.Ctu t v t u v t− ≤ − ≥

 
                   (3.2) 

Proof Let w u v= −  satisfies the following equation 

( ) ( ) 0.t tw Aw Aw f u f v+ + + − =                         (3.3) 

Taking the scalar product of (3.3) with w , we find, 

( ) ( ) ( )2 2 21 d , .
2 d

w w w f u f v w
t

+ ∇ + ∇ = − −                     (3.4) 
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From the condition (1.2), by using the Hölder inequality, and noting the embedding 
 2

1 2
0

N
NH L − 

 
, we have 

( ) ( )
4 4 2

2 2, 1 , , .N Nf u f v w C u v w u v− −
 − ≤ + ∇ + ∇ ∇ ∀ ∈ 
 

  

And then, by means of (3.1), we obtain 

( ) ( ) 2, , , .f u f v w C w u v− ≤ ∇ ∀ ∈                      (3.5) 

So, combining with Equation (3.4), (3.5), we get 

( ) ( )2 2 2 2d ,
d

w w C w w
t

+ ∇ ≤ + ∇  

then using the Gronwall lemma to above inequality, we can conclude our lemma immediately.  
Lemma 3.4 ([9]) Let ( )1f ∈   and satisfies (1.2), (1.3), 1g H −∈ . Then, for any  

0,min 1, 1
2
Nσ   ∈ −    

, there exists a subset σ , a positive constant η  and a monotone increasing function  

( )Qσ ⋅  such that for any bounded set 1
0B H⊂ , 

( )( ) ( )1
0

1
0

dist , e , for all  0,t
HH

S t B Q B tη
σ σ

−≤ ≥                        (3.6) 

where σ  and ( )Qσ ⋅  depend on σ  but η  is independent of σ ; σ  satisfying 

( ){ }1
1
0 :

H
z H z x σσ σφ += ∈ − ≤ Λ < ∞                          (3.7) 

for some positive constant σΛ ; And ( )xφ  is the unique solution of the following elliptic equation 

( ) ( ) ( )1 ,in  ,

0,

f l g x gυφ φ φ

φ
∂Ω

−∆ + + + = − Ω


=
                         (3.8) 

where the constant ( )2> 0, l g Lυ ∈ Ω  such that 1 < 1
H

g gυ ζ−−  . Furthermore, we know that the solution 

( )xφ  only belongs to ( )1
0H Ω  when f  satisfies (1.2)-(1.3).  

Lemma 3.5 ([9]) Under the assumption of Lemma 3.4, for any bounded subset 1B σ⊂  , if the initial data 
( )0 1u x Bφ∈ + , then the solution ( )u t  of (1.1) has the following estimates similar to (3.7) in Lemma 3.4, more 

precisely, we have 

( ) ( ) ( ) ( ) ( )
1

2 2
0 0 1, 0, ,BS t u x u t x M t u x Bσ σφ φ φ− = − ≤ ∀ ≥ ∈ +

 
             (3.9) 

where the constant 
1BM  depends only on σ  and the σ -bound of 1B .  

Lemma 3.6 There exists > 0C  such that 

( )1
d ,  for all 0.

t
tt

u C tτ τ
+

≤ ≥∫ 
                           (3.10) 

Proof For the solution ( ),u x t  of (1.1), we now decompose ( ),u x t  as follows 

( ) ( ) ( ), , ,u x t x w x tφ= +                                (3.11) 

where ( )xφ  is a fixed solution of (3.8), and ( ),w x t  satisfies the following equation : 

( ) ( ) ( )
( ) 0

1 ,

,0 .
t tw w w f u f l g

w x u

υφ φ

φ

 − ∆ − ∆ + − − + =


= −
                     (3.12) 

At the same time, noticing the embedding H Hσ  , and from Lemma 3.5 we yield 

( ) ( )
1
.Bw t w t Mσ≤ ≤

 
                              (3.13) 
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Taking the inner product of (3.12) with tw , we get 

( ) ( ) ( )2 2 21 d , 1 , , .
2 dt t t t tw w w f u f w l w g w

t
υφ φ+ ∇ + ∇ = − − + + +            (3.14) 

By means of (3.1) and (3.13) and together with H o lder, Young inequalities, it follows that 

( ) ( ) 2 2
2 2 2 2

2 2

4 44 4
2 22 2

4 4 2
2 2

, 1 1

11 ;
3

N N
N N N N

N N

N NN Nt t tL L
L L

N N t t

f u f w C u w w C u w w

C u w w C w

φ φ φ

φ

− −
− −

− −− −
Ω

− −

  − − ≤ + + ≤ + + ⋅ ⋅       
 ≤ + ∇ + ∇ ∇ ≤ + ∇ 
 

∫



    (3.15) 

( ) ( ) 22 11 , 1 ;
3t tl w C l wφ φ+ ≤ + ∇ + ∇  

21, .
3t tg w C g wυ υ≤ + ∇  

Thus, combining with (3.14), there holds 

2 21 d .
2 dtw w C

t
+ ∇ ≤  

Integrating the above inequality on ( ), 1t t +  and noting t tu w= , the proof completes.  
Next, we will prepared for constructing an exponential attractor of ( ){ } 0t

S t
≥

 in   by applying the abstract 
results devised in [10]-[12] [14]. 

Firstly, for each fixed 0, min 1, 1
2
Nσ   ∈ −    

, we define 

( )
1

,S σ
τ

τ
≥

=



                                   (3.16) 

where σ  is the set obtained in Lemma 3.4. Then, from Lemma 3.5 we know that 

( ) < .x σφ− ∞


                               (3.17) 

Secondly, let us establish some properties of this set. 
•   is a compact set in 1

0H= , due to Lemma 3.4. 
•   is positive invariant. In fact, from the continuity of )(tS , we have 

( ) ( )
1

.S t S t σ
τ

τ
≥

⊂ + ⊂



                            (3.18) 

• There holds 

( )( ) ( )1
00dist , e , for all 0.t

HS t Q B tη
σ

−≤ ≥                      (3.19) 

Indeed, it is apparent that 

( )( )dist , 0,  1.S t tσ = ∀ ≥                           (3.20) 

Hence, (3.19) follows from Lemma 2.1. 
• There is > 0C  such that 

( )1
0d , , for all  0.

t
tt

u C u tτ τ
+

≤ ∈ ≥∫ 
                   (3.21) 

This is a direct consequence of Lemma 3.6. 
Therefore such a set   is a promising candidate for our purpose. 
Finally, we need the following two lemmas.  
Lemma 3.7 For every > 0T , the mapping ( ) ( )0 0,t u S t u  is Lipschitz continuous on [ ]0,T × .  
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Proof For 1 2,u u ∈  and [ ]1 2, 0,t t T∈  we have 

( ) ( ) ( ) ( ) ( ) ( )1 1 2 2 1 1 1 2 1 2 2 2S t u S t u S t u S t u S t u S t u− ≤ − + −
  

            (3.22) 

The first term of the above inequality is handled by estimate (3.2). Concerning the second one, 

( ) ( ) ( ) ( ) ( )2

1
1 2 2 2 1 2 1 2d .

t
tt

S t u S t u u t u t u y y C t t− = − ≤ ≤ −∫  
                (3.23) 

Hence, there exists a constant ( ) > 0L L t= , such that 

( ) ( )1 1 2 2 1 2 1 2 .S t u S t u L t t u u − ≤ − + − 
                        (3.24) 

On the other hands, for each initial data ( )0uξ ∈ , we can decompose the solution ( )u t  of (1.1) as 

( ) ( ) ( ) ( ) ( )1 20 0 ,u uu t S t S tξ ξ= +                              (3.25) 

where ( ) ( ) ( )1 0uv t S t ξ=  and ( ) ( ) ( )2 0uw t S t ξ=  solve the following equations respectively: 

( )
( ) ( )

,

0 0 ,

0,

t t

u

v v v g x

v

v

ξ

∂Ω

 − ∆ − ∆ =
 =
 =

                              (3.26) 

and 

( )
( )

0,

0 0,

0.

t tw w w f u

w

w
∂Ω

 − ∆ − ∆ + =
 =
 =

                           (3.27) 

Therefore, we will have the following lemma:  
Lemma 3.8 The following two estimates hold: 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
1 2 1 2 1 21 1

10 0 0 0 , for all  0 , 0 ,
4u u u u u uS t S tξ ξ ξ ξ ξ ξ∗ ∗− ≤ − ∈


         (3.28) 

and 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
1 2 1 2 1 22 20 0 0 0 , for all  0 , 0 ,u u u u u uS t S t K

σ
ξ ξ ξ ξ ξ ξ∗ ∗− ≤ − ∈


        (3.29) 

where the constant K  depends only on t∗  and ( )x σφ−


 . 
Proof Given two solutions 1 2,u u  of Equation (1.1) origination from ( ) ( )

1 2
0 , 0u uξ ξ ∈ , respectively. 

Set 

( ) ( ) ( ) ( )
1 21 2 0 0 .u uu u u S t S t v wξ ξ= − = − +  

where ( )v t  and ( )w t  solve the following equations respectively: 

( ) ( ) ( )
1 2

0,
0 0 0 ,

t t

u u

v v v
v ξ ξ

 − ∆ − ∆ =
 = −

                                (3.30) 

and 
( ) ( )

( )
1 2 0,

0 0.
t tw w w f u f u

w

 − ∆ − ∆ + − =


=
                           (3.31) 

It is apparent that ( ) ( ) ( ) ( ) ( )
1 21 10 0u uv t S t S tξ ξ= −  and ( ) ( ) ( ) ( ) ( )

1 22 20 0 .u uw t S t S tξ ξ= −  

Taking the product of (3.30) with v  in ( )2L Ω , we get 

( ) ( )( ) ( ) ( )( )2 2 2 2
1

d 0
d

v t v t C v t v t
t

+ ∇ + + ∇ ≤                      (3.32) 



Y. J. Zhang, Q. Z. Ma 
 

 
21 

So 

( ) ( ) ( ) ( )( ) 1
2 2 2 2

0 0 e C tv t v t C v v −+ ∇ ≤ + ∇                      (3.33) 

Hence, setting 

1

1 log 4 ,t C
C

∗ =                                    (3.34) 

we have 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
1 2 1 2 1 21 1

10 0 0 0 , for all  0 , 0 .
4u u u u u uS t S tξ ξ ξ ξ ξ ξ∗ ∗− ≤ − ∈


  

So, we obtain the result (3.28). 
On the other hands, taking the product of (3.31) with A wσ  in ( )2L Ω , we ge 

( ) ( )
2 2 21 1

2 2 2
1 2

1 d , .
2 d

A w A w A w f u f u A w
t

σ σ σ
σ

+ + 
 + + = − −
 
 

               (3.35) 

Since 0,min 1, 1
2
Nσ   ∈ −    

, we have 
( )

2 2 2<
4 2 6 2
N N N

N N Nσ
≤

− + − −
.  

So, from (1.2) and using H o lder inequality, we have 

( ) ( )

( ) ( )
( )

( ) ( )

2 2
2 62 2 2 2

2 2 2 2

4 4
2 21 2 1 2

4 4 84
2 2 2 22 1 2

24 4 1 1
22 2 2 2

2 1 2 2

, 1

1

, 1 , ,

N N
N NN N N

N N

N N

N
N N N N N

L L
L L

N N

f u f u A w u u u A w

C u u u A w

C C u u u A w C C u A w

σ σ
σ σ

σ σ

σ σ

σσ
σ

σ σ

σ σ

− + − − +
− − − −

− −
Ω

−
−− − −

+ +
− −

 − − ≤ + + 
 

 
≤ + + ⋅ ⋅ ⋅ Ω  

 

 
≤ Ω + + ≤ Ω +  

 

∫

  

        (3.36) 

where the constant 2C  comes from the embedding 
 

( ) ( ) ( )
2 21

1 2 2 22
0 , 

N N
N NH L D A L

σ
σ

+
− − −

 
= Ω Ω Ω  

 
      

,

 
( )

21
2 22
N

ND A L
σ

σ
−

− +
 

Ω  
 


  

. 

From Lemma 3.3, we obtain the inequality 
2 21

22 2
1 2

d e .
d

CtA w A w C u u
t

σ σ+ 
 + ≤ −
 
 

 

and an integration on ( )0, t∗ , we can get the estimate (3.29). 
Proof of Theorem 1.1 Applying the abstract results devised in [10]-[12], from Lemma 3.7 and Lemma 3.8, 

we can prove the existence of an exponential attractor   for ( ){ } 0t
S t

≥
 in ( )1

0H=  immediately.  
Remark 3.9 As a direct consequence of Theorem 1.1 and the a priori estimates given in [[9], Lemma 3.5] and 

Lemma 3.8, we decompose   as ( )xφ ′= +  , where ′  is bounded in σ  for any  

0,min 1, 1
2
Nσ   ∈ −    

 and ( )xφ  is the unique solution of (3.8). 
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