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Abstract 
Complex variables method has been used to solve the first and second fundamental problems for 
an infinite plate weakened by a generalized curvilinear hole C. The curvilinear hole is conformally 
mapped on the domain outside or inside a unit circle γ using a general rational mapping function 
with complex constants. Many special and new cases are derived from this work. Some of the work 
of the previous authors in this domain will be considered as special cases of this paper. Also the 
interesting cases when the shape of the hole takes different famous shapes are included. The 
components of stresses for some examples are obtained. 
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1. Introduction 
The boundary value problems for isotropic homogeneous performed infinite plates have been discussed by sev-
eral authors: see Colton and Kress [1], Popov [2], Noda et al. [3] and Schinzinger and Laura [4]. Some authors 
used Laurent’s theorem to express the solution in the series form, see England [5], Parkus [6] and Kalandiya [7]. 
Others used complex variables method of Cauchy integrals to express the solution of the boundary value prob-
lems in the form of two complex potential functions, Goursat functions, by using many rational mappings, see 
Muskhelishvili [8], El-Sirafy and Abdou [9], Abdou and Khar-Eldin [10], Abdou and Khamis [11], Abdou [12] 
and Abdou et al. [13]. In all previous works, the coefficients of the rational mappings were real.  

It is worth mentioning that Exadaktylos and Stavropoulou [14] and Exadaktylos et al. [15] considered rational 
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mapping functions with complex constants that conformally maps the holes inside a unit circle, using Laurent’s 
method. Also Abdou and Asseri [16] [17] considered more general rational mapping functions with complex 
constants that conformally maps the holes outside and inside a unit circle, using Cauchy singular method. All the 
previous four works will be considered as special cases of this work. 

It is known that, see Muskhelishvili [8], the first and second fundamental problems in the plane theory of 
elasticity are equivalent to finding two analytic functions ( )1 zφ  and ( )1 zψ  of one complex argument 

iz x y= + . These analytic potential functions, Goursat functions, must satisfy the boundary conditions  

( ) ( ) ( ) ( )1 1 1k t t t t f tφ φ ψ′− − = ,                                (1) 

where, 1k = −  and ( )f t  is a given function of stress, for the first fundamental problem. While  
3 1k λ µχ

λ µ
+

= = >
+

, and ( ) ( )2f t g tµ=  is a given function of the displacement for the second fundamental  

problem; λ, µ are called the Lame’s constants and t denotes the affix of a point on the boundary. 
In terms of the rational mapping function ( ) ( ), 0,z cw z c w z′= >  does not vanish or become infinite for 

1ζ > , the infinite region outside a closed contour conformally mapped outside the unit circle γ . The two 
complex potential functions ( )1 zφ , ( )1 zψ , in this case, take the forms 

( ) ( ) ( )1
i ln

2π 1
X Yz cφ ζ ζ φ ζ

χ
+

= − + Γ +
+

                            (2) 

( ) ( )
( ) ( )*

1

i
ln

2π 1
X Y

z c
χ

ψ ζ ζ ψ ζ
χ

−
= + Γ +

+
,                           (3) 

where X, Y are the components of the resultant vector of all external forces acting on the boundary and Γ , *Γ  
are complex constants. The two complex functions ( )φ ζ  and ( )ψ ζ  are single valued analytic functions 
within the region outside the unit circle and ( ) ( ) 0φ ψ∞ = ∞ = . For the first fundamental problem, we have 

0X Y= = , and Γ = Γ . 
In the absence of body forces, Muskhelishvili [8] has considered the stress components in the plane theory of 

elasticity in the form 

( ){ }4Re ,xx yy zσ σ φ′+ =                                 (4) 

( ) ( )2i 2yy xx xy z z zσ σ σ φ ψ ′′ ′− + = +                              (5) 

In this work, the complex variables method will be applied to solve the first and second fundamental prob-
lems for an infinite plate with a generalized curvilinear hole C conformally mapped on the domain outside a unit 
circle γ  by the generalized rational mapping function 

( ), 1, i , 1
1

d mz n z x y i
n

ζ ζ
ζ

−

−

+
= < = + = −

−





                         (6) 

where 1 2 1 2 1 2i , i , i , 1, 2, ,d d d m m m n n n P= + = + = + =  ; and m d  is a parameter restricted such that 
( )z ζ′  does not vanish or become infinite outside the unit circle ( )1γ ζ > . The holes take different famous 

shapes which make these studies applicable for many phenomena throughout the nature like tunnels, caves, ex-
cavations in soil or rock, etc. Moreover, the results of Goursat functions when the transformation mapping (6) is 
conformally mapped inside the unit circle ( )1γ ζ <  are discussed and obtained. 

Also, many applications for the first and second fundamental problems are considered and the components of 
stress and strain have been obtained and plotted to investigate their physical meaning. Moreover, computer work 
using maple 9.5 has been used in applications to give the shapes of holes and curves of stresses with some cal-
culations of stresses at their important points. 

2. The Rational Mapping 
The physical interest of the mapping (6) comes from its special cases and its different shapes of holes that can be 
obtained, see Figures 1-6. 
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From the rational mapping we can discuss the following:  
1) The number of the holes corners is subjected to  ’s values. There are given by 1+ .  
2) The shape of the hole depending on the values of n’s and m’s. 

 

 
Figure 1. ℓ = 2, n = (0, 0), m = (1, 2), d = (2, 6).                  

 

 
Figure 2. ℓ = 2, n = (0.1, 0.1), m = (0.2, −0.2), d = (1, 1).           

 

 
Figure 3. ℓ = 3, n = (0.001, 0.001), m = (0.1, −0.05), d = (1, 1).      

 

 
Figure 4. ℓ = 5, n = (0.001, 0.001), m = (0.1, −0.05), d = (1, 1).      



M. A. Abdou, A. R. Jan 
 

 
731 

 
Figure 5. ℓ = 7, n = (0.001, 0.001), m = (0.1, −0.05), d = (1, 1).      

 

 
Figure 6. ℓ = 10, n = (0.009, 0.007), m = (0.1, −0.05), d = (2, 2).     

 
3) Entering none zero values of the complex constants m and d never gives symmetric graphs. While, entering 

zero values for all imaginary parts of both m and d, we get symmetric shapes around the x-axis. On the other 
hand, entering zero values for all real parts of both m and d, we get symmetric shape around the y-axis. 

4) The complex constant m works on circling the shape from the symmetry situation and the circling angle is  
given by ( )1

2 1tan m mθ −= , 1 2im m m= + . Positive values of θ means that the circling will be in the positive 
direction i.e. in the anti clockwise direction and for negative values the circling will be in the negative direction 
i.e. in clockwise direction. 

5) Using the rational mapping function
π i
4

1 e , i 1z z= = − , enables us to enter none zero vales of d, m and n  
complex constants and getting symmetric shapes around the x-axis. But by substituting zero values for real parts, 
we get the same shapes that have been gotten by using the rational mapping ( )z ζ , and the invested shapes of it 
will be given by substituting zero values for the imaginary parts of the complex constants d, m and n . 

6) The complex constant d works on expanding the corners of the hole shape. 

3. Goursat Functions 
In this section, we use the transformation mapping (6) in the boundary conditions (1), and complex variables 
method, Cauchy method, to obtain a closed form expression for the Goursat functions ( )φ ζ  and ( )ψ ζ  re-
spectively. Therefore, we write 

( )
( ) ( ) ( )1

ω ζ
α ζ β ζ

ω ζ −
= +

′
,                                 (7) 

where 

( ) h
n

α ζ
ζ

=
−

,                                      (8) 

( )( )
( )

2
1 1, 1 ,

1 1

dn m nn
h

d nn lmn

ν

ν
ν

+ −  = = +    − + − 




                           (9) 
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and ( )β ζ  is a regular function for 1ζ > . 
Using (7) in the boundary conditions (1) and on ζ σ= , we get  

( ) ( ) ( ) ( ) ( ) k a fφ σ σ φ σ ψ σ σ∗ ∗′− − =                            (10) 

where 

( ) ( ) ( ) ( )ψ ζ ψ ζ β ζ φ ζ∗ ′= +                                (11) 

( ) ( ) ( ) ( ) ( )
*

,df F dk Nζ ζ ζ ζ α ζ β ζ
ζ∗
Γ  = − Γ + + +                        (12) 

( ) ( )
i

2π 1
X YN dζ ζ

χ
−

= Γ −
+

                                (13) 

and 

( ) ( )F f tζ = .                                     (14) 

The function ( )F ζ  with its derivatives must satisfy the Hölder condition. Multiplying both sides of (10) by 

1 1
2πi σ ζ−

 and integrating with respect to σ on γ , we have 

( ) ( ) ( )( )
*

1d hk A b N n
n

νφ ζ ζ
ζ ζ

−Γ
− = − − +

−
                        (15) 

where 

( ) ( ) ( )1

0

1 d , 1
2πi

j j

j
A F

γ

ζ ζ σ σ σ ζ
∞

− +

=

= − >∑ ∫                          (16) 

and the complex constant b, will be determined, is given by  

( ) ( )1 d .
2πi

hb
nγ

α σ φ σ
σ

σ ζ ζ
′

=
− −∫



                              (17) 

Differentiating (15) with respect to ζ, then using the result in (17), the complex constant b takes the form 

2

kE hEb
k hh

η
ηη
−

=
−

,                                     (18) 

where 

( ) ( ) ( )2 11 * 1E A n d n hN nνν νη−− − ′= − + Γ +  
, 

( )

( ) ( )( )
2 1

21 1 1

n

n n

ν

ν ν
η

−

− −
=

−
 

Also, the function ( )ψ ζ  can be determined from (1) in the form 

( )
( )
( ) ( ) ( ) ( )

1
1

* * ,
1

kd h n B B
n

ν
ω ζ ζψ ζ ϕ ζ ϕ ζ

ζ ω ζ ζ

−
−Γ

= − + + −
′ −





                   (19) 

where 

( ) ( ) ( ) ( ) ( ) ( )1 1, d , d .
2πi 2πi

F F
N B B

γ γ

σ σ
φ ζ φ ζ ζ ζ σ σ

σ ζ σ∗ ′= + = =
−∫ ∫  

The two formulas (15) and (19) are representing the Goursat functions for the first and second fundamental 
problems for an infinite elastic plate weakened by The two formulas (15) and (19) are representing the Goursat 
functions for the first and second fundamental problems for an infinite elastic plate weakened by a generalized 
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curvilinear hole C, that can be transformed outside a unit circle γ by the rational mapping (6). 
An important new case for discussion is using the transformation mapping  

1

, 1
1

d mz n
n

ζ ζ
ζ

− +
= <

−





                                 (20) 

This mapping function, when ( ) 0z ζ′ ≠ ; 1ζ < , transforms the points in the z-plane inside the unit circle γ 
in ζ-plane. And, in this case, the Goursat functions, become 

( ) ( ) ( )( )1 * 1 ,
1

hk A d b N n
n

νζφ ζ ζ ζ
ζ

− −= − + Γ + +
−





                     (21) 

( ) ( )
( ) ( ) ( ) ( )1 1 1

* *1
.hkd n B B

n
νω ζ

ψ ζ ζ ϕ ζ ϕ ζ
ζω ζ

− − −
−

= Γ − + + −
′ −

                   (22) 

4. Special Cases 
Here, we discuss the following: 

1) By considering the reality of the constants of the mapping (1.6), the Goursat functions, in this case, are 
agree with work of Abdou and Khar-Eldin [10] of Equations (15) and (19), on notation the difference in nota-
tion. 

2) When 1=  and { }0,0m =  and for finite expansion, the transformation mapping (6), in this case, be-
comes 

1

M
J

J
J

Z d nζ ζ −

=

= +∑ , d, nJ are complex constants                      (23) 

The Goursat functions, in this case, become 

( ) ( )

( )
( ) ( )

*

1

2 1 2
1 0 1

01 1 1 0
1 !

J kM J M
J J

k J
J k J

dk A

n n
N

J kd d

φ ζ ζ
ζ

ϕ
ζ ζ

−−

+
= = =

Γ
= − +

+ +
− −∑∑ ∑

                     (24) 

( )
( )
( ) ( ) ( ) ( )

( ) ( ) ( )

1

* 2
1

1
1

2
1 0

0

1 0
1 !

M
J

J
J

M J
kJ k

J
J k

kd d n N B B
d

d n
J kd

ω ζ
ψ ζ φ ζ ζ ζ

ζ ω ζ

ϕ ζ

−

=

−
+−

= =

Γ
= − + + −

′

+
− −

∑

∑∑

                      (25) 

The results of the two formulas (24) and (25) are in agreement with the work of Abdou and Asseri [16], on 
noting the difference in notation. 

3) When 1=  , the transformation mapping (6) becomes  
1

1 ,
1

d mz
n

ζ ζ
ζ

−

−

+
=

−
 (d, m, n are complex constants).                     (26) 

The Goursat functions, in this case, of the two formulas (15) and (19) agree with the all results of Abdou and 
Asseri [17]. 

4) In the mapping function (20) if we let m = 0, then for finite expansion, we will have the following mapping 
function 

( )1 1

1
1

M
J

J
J

z d nζ ζ ζ− −

=

= + <∑ .                                (27) 

with the corresponding Goursat functions 
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( ) ( ) ( )
( ) ( ) ( )

1
1 * 1

2 2
1 0 1

1 1 10 0 ,
1 !

M J M
J k k J

J J
J k J

k A d n N n
J kd d

φ ζ ζ ζ ϕ ζ ζ
−

−− +

= = =

− = + Γ − −
− −∑∑ ∑          (28) 

( ) ( )
( ) ( ) ( ) ( )

( ) ( ) ( )

1 1
* 21

1

1
1

2
1 0

0

1 0 .
1 !

M
J

J
J

M J
kJ k

J k

dkd N n B B
d

d
J kd

ω ζ
ψ ζ ζ φ ζ ζ ζ

ω ζ

φ ζ

− − −
−

=

−
− +−

= =

= Γ − + + −
′

+
− −

∑

∑∑
                (29) 

The three Formulas (27)-(29) are equivalent to those derived by Exadaktylos and Stavropoulou [14], where 
they used Laurent's theorem, after considering in (27)-(29) the following special cases: 3, 1, ,M k= = − Γ = Γ  

0X Y= =  and ( ) *2 ,0 1f P z zλ λ λ= Γ + − Γ ≤ ≤ . The constant λ is called the situ stress relief factor i.e. for λ 
= 0 no excavation has been occurred and for λ = 1, the tunnels is fully excavated. More information and physical 
meaning for λ can be found in the work of Exadaktylos and Stavropoulou [14]. 

5) Also, in (27), if we allow the index inside the summation sign to take the form 2 1
2 1

1

M
J

J
J

dz n ζ
ζ

−
−

=

= +∑ , in  

addition to the consideration of the reality all constants. Then using in (28) and (29) the following: 1k = − , 
Γ = Γ , 0X Y= =  and ( )f z Pz= − ; P is the intensity of the tensile stress and z is the above rational mapping, 
the results will agree with the work of Exadaktylos et al. [15].  

5. Applications 

1) For 2i11, 4, e
2

k G P P ϑ∗ −= − = Γ = −  and 0X Y f= = =  , we have the Goursat functions in the form 

( ) ( ) ( )( )2i 1 11 e ,
2

hdP b N n
n

ϑ νφ ζ ζ
ζ

− −= − +
−

                       (30) 

( )
( )
( ) ( ) ( )

1
1 11 .

4 1
hdP n

n
ν

ω ζ ζψ ζ ζ φ ζ φ
ω ζ ζ

−
− −

∗ ∗= − − +
′ −





                    (31) 

The complex constant b has been determined by Equation (18) and its value was calculated by using Maple 
9.5. Here, we have the Goursat functions for an infinite plate weakened by a curvilinear hole C which is free 
from stresses. The plate stretched at infinity by the application of a uniform tensile stress of intensity P, making 
an angle θ with the x-axis. 

For 2, 0.1 0.1i, 0.2 0.2i, 1 in m d= = + = − = + , 1 4P =  and π 4,ϑ =  π 3.1415≈  the relation between 
the stress components σxx, σyy, σxy and the angle θ are considered in Figures 7-9.  

2) For *1, 0k X Y= − = = Γ = Γ =  and f = Pt, P is a real constant, we have 

( ) ( ) ( )
dn m hbP

n n

ν

φ ζ
ζ ζ

+
= − −

− − 

,                            (32) 

( )
( )
( ) ( ) ( )

1
1 .

1
h dPn

n
ν

ω ζ ζψ ζ ϕ ζ ϕ
ω ζ ζζ

−
−′ ′= − + −

′ −





                     (33) 

Thus, (32) and (33) give the solution of the first fundamental problem for an isotropic infinite plate with a 
curvilinear hole, when there are no external forces and the edge of the hole is subject to a uniform pressure P.  

If in application (2) we write ( )  if t Tt= − , we have the case of the first fundamental problem, when the 
edge of the hole is subject to uniform tangential stress T. The Goursat functions, in this case, are obtained di-
rectly from the two formulas (32) and (33) by putting –iT instead of P. 

For 2, 0.1 0.1i, 0.2 0.2i, 1 in m d= = + = − = +  and 1 4P =  the relation between the stress components 
σxx ,σyy ,σxy and the angle θ, using Maple 9.5 are considered in Figures 10-12.  
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Figure 7. Max. and Min. values of σxx are [2.09232, [θ = 3.7365]], 
[−0.49508, [θ = 1.82742]].                                     

 

 
Figure 8. Max. and Min. values of σyy are [1.24503, [θ = 1.84222]], 
[−2.63598, [θ = 0.73521]].                                    

 

 
Figure 9. Maximum value of σxy is [0.25045, [θ = 2.75306]], Mini-
mum value of σxy is [−7.61349, [θ = 3.65448]].                    
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Figure 10. Max. and Min. values of σxx are [7.26497, [θ = 3.66684]], 
[−0.74520, [θ = 2.95389]].                                    

 

 
Figure 11. Max. and Min. values of σyy are [0.45410, [θ = 1.87226]], 
[−6.94161, [θ = 3.66649]].                                    

 

 
Figure 12. Maximum value of σxy is [1.99460, [θ = 3.77003]], 
Minimum value of σxy is [−0.63053, [θ = 0.63788]].                 



M. A. Abdou, A. R. Jan 
 

 
737 

3) For ( )* 2i1 1, , e , 0, 2
4 2

k P P X Y f g tϑχ µ−= Γ = Γ = − = = =  and ( ) ig t tε= , we have 

( )
*

2i
4

dn m d h dPb
n n

ν

χφ ζ µε
ζζ ζ

 + Γ
= + + +  − −  

 

,                   (34) 

( )
( )
( ) ( ) ( )

1
1 1

*2i
4 1

l

l

P hd n
n

ν
ω ζ ζψ ζ χ µε ζ φ ζ φ
ω ζ ζ

−
− −

∗
 = + − +  ′ − 

,                 (35) 

where  

( ) ( ) 1
4

dPφ ζ φ ζ∗ ′= +  

Here, we have the case of uni-directional tension of an infinite plate with a rigid curvilinear centre. The con-
stant ε, which represents the angle of rotation, can be determined from the condition that the resultant moment 
of the forces, acting on the curvilinear centre from the surrounding material, must vanish i.e. 

( ) ( )2iRe e d 0.
2
dM P ϑψ ζ ζ ω ζ ζ−   ′= − =    

∫                      (36) 

Hence, we have 

( ) ( ) [ ] ( )

( ) ( ){ }
( )

1 2 1 sin 2
Re for 1 ,

4 1 2

p m nn m nn

m m nn nn m

χ ϑ
ε

µ χ

 + − + + = =
 + + − + 



                 (37) 

( ) ( )
( )

( ) ( )( ) ( )
( ) ( ) ( )

2 3 2 3 2
2

2 23 2 3 2 2
3

1 1 2 3 11 sin 2
Re 2

4 1 2 3 2 2 7

n m n n n mn nn JP nn
n for

mn nn nn m n n n nn J

χϑ
ε

µχ

  + + + + + + −−   = + = 
− −  + − + +

 

   (38) 

where 

( )( ) ( )( )

( )

13 2 3 3 2
2

3 2

2 3 2 3 1

4 2 3 1

J nn nn m n n mn nn m n

mn nn
n

χ

−
= − + + + − +

 + + −  

                 (39) 

( )3 2 2
3

21 2 3 mJ mn nn n n n
η

 
= − − + + 

 
 

For θ 1, 0.1 0.1i, 0.2 0.2i, 1 i, 1 4, π 4, 2n m d P ϑ χ= = + = − = + = = =  and µ = 0.6 the relation between the 
stress components σxx, σyy, σxy and the angle θ are considered in Figures 13-15. 

From the previous results, we can establish the following 

Case (1): In the case of Bi-axial tension, we have *1, 0, , 0, 1, 0.
2

k X Y Pχ ε= = = Γ = Γ = Γ = = =   

Hence, we get  

( ) ( )
1

2
h dPb

n
φ ζ

χ ζ
 

= +  −  
,                               (40) 

( )
( )
( ) ( ) ( )

1
1

2 1
dP h n

n

ω ζχ ζψ ζ φ ζ φ
ζ ω ζ ζ

−
−

∗ ∗= − +
′ −

,                      (41) 

where 

( ) ( ) 1
2

dPφ ζ φ ζ∗ = + . 
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Figure 13. Max. and Min. values of σxx are [19.94724, [θ = 
3.72527]], [−31.09023, [θ = 1.48899]].                          

 

 
Figure 14. Max. and Min. values of σyy are [43.21619, [θ = 
1.52536]], [−28.86760, [θ = 3.68310]].                          

 

 
Figure 15. Maximum value of σxy is [27.14849, [θ = 4.28087]], 
Minimum value of σxy is [−18.54277, [θ = 3.15247]].               
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The complex constant b has been determined by Equation (18) and its value was calculated by using Maple 
12. For n = 0.1 + 0.1i, m = 0.2 − 0.2i, d = 1 + i, P = 1/4 and χ = 2. The relation θ between the stress components 
σxx, σyy, σxy and the angle θ are considered in Figures 16-18. 

Case (2): When the curvilinear centre not allowed to rotate, i.e. when 1=  and 0ε = . This means that the 
rigid curvilinear kernel in restrained in its original position by a couple which is not sufficient to rotate. The 
Goursat functions, in this case, become 

( ) ( )( )
2i

11 e
2

dP h b N n
n

ϑ
νφ ζ

χ ζ ζ
− 

= − + + − 
,                        (42) 

( )
( )
( ) ( ) ( )

1
1

* .
4 1
dP h n

n

ω ζχ ζψ ζ φ ζ φ
ζ ω ζ ζ

−
−

∗= − +
′ −

                       (43) 

For 1, 0.1 0.1i, 0.2 0.2i, 1 i,n m d= = + = − = +  
4
P

Γ = , 2i1 e
2

P ϑ∗ −Γ = − , P = 1/4 and π 4ϑ = , π ≈3.14159  

the relation between the stress components σxx ,σyy , σxy and the angle θ , using Maple 12 are considered in Fig-
ures 19-21. 

4) When the force acts on the centre of the curvilinear kernel and the stresses vanish at infinity. In this case 
the kernel can not be rotate and it remains in its original position. Hence, we get 

( ) ( ) ( )
1 i ,

2π 1
h X Yb n

n
φ ζ

χ ζ χ
 −

= − 
− +  

                            (44) 

( ) ( ) ( )
( ) ( )

1
1

1
h n

n

ω ζζψ ζ φ φ ζ
ω ζζ

−
−

∗ ∗= −
′−

,                          (45) 

where 

( ) ( ) ( )
i

2π 1
X Yφ ζ φ ζ

χ ζ∗
+

= −
+

. 

Therefore, we have the solution of the second fundamental problem in the case when (X, Y) acts on the centre 
of curvilinear hole. 

For 1= , n = 0.1 + 0.1i, m = 0.2 − 0.2i, d = 1 + i, * 0Γ = Γ = , k = χ and X = Y = 10 the relation between the 
stress components σxx,σyy, σxy and the angle θ, using Maple 9.5 are considered in Figures 22-24. 

6. Conclusion and Discussion 
From the previous work the following discussion and results can be concluded 

1) In the theory of two-dimensional linear elasticity one of the most useful techniques for the solution of the 
boundary value problem for a region weakened by a curvilinear hole is to transform the region into a simpler 
shape to get the solution directly without difficulties.  

2) The transformation mapping ( )z cω ζ= , ie θζ ρ= , c is a complex or real constant, transforms the do-
main of the infinite plate with a curvilinear hole onto the domain outside (when 1ζ > ) or into the domain in-
side ( )1ζ <  a unit circle. 

3) The physical interest of the using mapping transform comes from its different shapes of holes it treats and 
different directions it takes. This mapping function deals with famous shapes of tunnels, thereon it is useful in 
studying the stresses around tunnels. In underground engineering the tunnel is assumed to be driven in a homo-
geneous, isotropic, linear elastic and pre-stressed geometrical situation. Also, the tunnel is considered to be deep 
enough such that the stress distribution before excavation is homogeneous. Excavating underground openings in 
soils and rocks is done for several purposes and in multi-sizes. At least, excavation of the opening will cause the 
soil or rock to deform elastically. The excavation in soil or rock is a complicated, dangerous and expensive process. 
The mechanics of this can be very complex. However, the use of conformal mapping that allows us to study 
stresses and strains around a unit circle makes it useful for engineers and easier for mathematicians. 



M. A. Abdou, A. R. Jan 
 

 
740 

 
Figure 16. Max. and Min. values of σxx are [0.19217, [θ = 2.88015]], 
[−0.21424, [θ = 4.21641]].                                     

 

 
Figure 17. Max. and Min. values of σyy are [0.20395, [θ = 4.29250]], 
[−0.21998, [θ = 2.93249]].                                     

 

 
Figure 18. Maximum value of σxy is [0.21042, [θ = 3.54667]], 
Minimum value of σxy is [−0.13798, [θ = 2.47646]].               
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Figure 19. Max. and Min. values of σxx are [0.42251, [θ = 3.40048]], 
[−0.32725, [θ = 2.60422]].                                      

 

 
Figure 20. Max. and Min. values of σyy are [0.29017, [θ = 4.09478]], 
[−0.47644, [θ = 2.04499]].                                     

 

 
Figure 21. Maximum value of σxy is [0.24900, [θ = 3.77559]], 
Minimum value of σxy is [−0.22325, [θ = 1.68785]].               
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Figure 22. Max. and Min. values of σxx are [0.06313, [θ = 6.28319]], 
[−0.02863, [θ = 2.37434]].                                        

 

 
Figure 23. Max. and Min. values of σyy are [0.04161, [θ = 2.45943]], 
[−0.02730, [θ = 5.01912]].                                     

 

 
Figure 24. Maximum value of σxy is [−0.00237, [θ = 3.58676]], 
Minimum value of σxy is [−0.04160, [θ = 1.06868]].               
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4) The complex variables method (Cauchy method) is considered one of the best methods for solving the in-
tegro differential equation, boundary value problem, of Equation (1) and obtaining the two complex potential 
functions, Goursat functions, ( )zφ  and ( )zψ  directly. 

5) The stress is an internal force whereas positive values of it mean that stress is in the positive direction, i.e. 
stress acts as a tension force. On the other side, negative values of stress mean that the stress is in the negative 
direction, i.e. stress acts as a press force. 

6) The most important issue deduced from mapping the stress components is that max minxx yyσ σ= −  and 

vice verse ( )min maxxx yyσ σ= − .  

7) When 0xx

yy

σ
σ

→  the perpendicular stress on y-axis is the maximum value and presents the body interior  

resistance of treatments (like rocks for example), whereas the perpendicular stress on x-axis is small according 
to y-axis. Thereon, it is better to treat the problem at points determined by angles that give minimum values of  

xx

yy

σ
σ

. 
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