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Abstract 
The shortest k-dimension paths (k-paths) between vertices of n-cube are considered on the basis a 
bijective mapping of k-faces into words over a finite alphabet. The presentation of such paths is 
proposed as ( )1n k n− + ×  matrix of characters from the same alphabet. A classification of the 
paths is founded on numerical invariant as special partition. The partition consists of n parts, 
which correspond to columns of the matrix. 
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1. Introduction 
Discovery of n-cube combinatoric properties remains a relevant topic, which extends the connections of mathe-
matical fields [1]-[4]. The bijective mappings play an important role in enumerative combinatorics as broad 
alighted in classical works of G.-C. Rota and R. P. Stanley [5] [6]. Bijective form for some constructive world [7] 
could be considered not only as suitable for enumerative problems, but also with point of view of effective compu-
ting synthesis (algorithms and operations with the potential large parallelism) in such frame. Such approach is 
considered in the article on the base of constructions (computing) for k-paths as complexes of k-faces in n-cube. 

2. Shortly on Cubants 
One of bijections for k-faces of n-cube was proposed in [8]. Let be { }1 20, , , , nB = e e e —reper in n

 , alpha-
bet { }0,1,2A =  and the set { }*

1, , ,n n iA d d d A= ∈  of all n-digits words. So some word of the set is 
1, , nD d d=  . Each k-face can be represent as Cartesian product ( )∏  of unit-segments ( )iI e  for 
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1i B B∈ ⊂e  and translation ( )T  along the rest basis such, that ( )2 2 1\j B B B B B∈ ⊂ =e . So the bijection for 
k-face ( )1 2,nkf B B  can be written as next: 

( ) ( ) ( ) [ ]1:1
1 2 1, , , ,Tnk i j n

n kk
f B B d d

−
= + ←→∏ I e e  

where 2id =  for 1i B∈e  and { }0,1jd ∈  for 2j B∈e . 1jd =  for translation along je  and 0jd = , when 
translation is out. Such representation allows to store traditional coding for n-cube vertex coding (vertice is 
0-face). Let character ∅  be supplement and then { },0,1, 2A′ = ∅ . Character-oriented operation multiplication 
(intersection) is determined on *

nA ′  (all quaternary n-digital words) with next rules: 
0 0 0,0 1 1 0 ,0 2 2 0 0,
1 1 1,1 2 2 1 1,2 2 2,

, .x x x A

× = × = × = ∅ × = × =
× = × = × = × =

′∅× = ×∅ = ∅ ∀ ∈
                         (1) 

Really it’s intersection of sets: “0, 1”—endpoints of unit-segment and “2” corresponds full unit-segment. For 
short all words from *

nA ′  are titled as cubants. So we can say the set of cubants forms monoid with unit-cubant 
22 2 (n-face in n-cube, i.e. itself n-cube). 

The character-oriented operation of addition for cubants is prescribed by next rules:  
0 0 0,0 1 1 0 2,0 2 2 0 2,
1 1 1,1 2 2 1 2, 2 2 2,

, .x x x x A

+ = + = + = + = + =
+ = + = + = + =

′∅ + = + ∅ = ∀ ∈
                       (2) 

Result of the operation is cubant for convex hull face and therefore one can write: 

( )1 2 1 2conv ,D D D D+ = . 

Short-list of operations on cubants is outlined below: 
1) ( )# x D —counting of character x A′∈  in cubant D . Result is from  . 
2) 1D D¬ = —exchanging of all “0” to “1” and all “1” to “0” in cubant D . Result 1D  is cubant for antipo-

dal (a.p.) face. 
3) 1 2D D× —operation multiplication. Result is cubant 3D  for common face, if ( ) 3# 0D∅ = . In case 
( ) 3# 0D∅ ≠  it’s ( )min 1 2,L D D —length of shortest path along edges between faces with cubants 1D  and 2D , 

in accordance with (1). 
4) 1 2 3D D D+ = . Result is cubant ( )3 1 2conv ,D D D=  in accordance with (2). 
5) ( )1 2 3D D Dµ = . Exchanging letters “2” on “0” in such 1id  of 1D , for which 2 1id = , and “2” on “1”, 

for which 2 0id = . Result 3D  has got properties 3 1D D∈  and ( )( ) ( )( )3 2 min 3 2# max ,D D L D D∅ × = .  
6) ( ) ( ) ( )( ) ( ) ( )( ){ }1 2 1 2 2 2 1 1, max # ;#HH D D D D D D D Dρ µ µ= ∅ × ∅ × . 

Calculation of Hausdorff-Hamming (HH) distance for faces with cubants 1D , 2D  [9]. 
7) D∂ —boundary for face with cubant D . Result is a set of cubants corresponding the all hyperfaces. 
Algorithm of HH-distance calculation was proposed in [9] and all k-faces of n-cube form finite metric 

HH-space. Simplicity of the algorithm gives foundation to add it to operations for cubants. By the way the same 
algorithm realized calculation of Gromov-Hausdorff (GH) distance between cubes (as finite metric spaces) of 
different dimensions.  

3. Matrix Representation of k-Path 
Below we consider complexes of k-faces (here k-dimension of face in contrast to [4], where k-length along 
edges as shortest paths between vertex). Now we will give definition of k-path between two of antipodal (a.p.) 
vertices in terminology of cubants. No limits of common we can consider cubants 00...0  and 11...1 for a.p. 
vertices. Then the set of cubants { }1 2, , , sD D D , s n≤  is bijectivial form of shortest k-path such, that next 
conditions are satisfied for min s : 

( )
( )( )

1

1

00 0 11 1
# 2 , 1, ,

# 2 1, 1, , 1

s

i

i i

D D
D k i s

D D k i s+

∈ , ∈

=  =

× = −  = −

 





                            (3) 
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We represent set of such cubants in more visible form of n s×  matrix T : 

1 11 12 1

2 21 22 2

1 2

.

n

n

s s s sn

D d d d
D d d d

T

D d d d

   
   
   = =
   
   
   





    



 

It’s easy to check next matrix corresponds to k-path for available n  and k : 

22 200 00
12 220 00

.112 220 0

11 1112 2

T

 
 
 
 =
 
 
 
 

 

 

 



 

                                  (4) 

The columns of the matrix are denoted by , 1, ,jD j n∗  =  . Then available permutation of columns stores sa-
tisfying of conditions (3) and ( )# 2j jDλ ∗= . All such matrices (under permutations from symmetric group nS ) 
represent the isomorphic k-paths with partition λ : ( )1k n kλ = − + . For case (4):  

{ } ( ) ( ){ }22 1 2 2
1 2, , , , 1 , , 2 ,1 ,  for 3.n k

n k k kλ λ λ λ − −= = − > 
 Evidently the matrices with different partitions cor-

respond non-isomorphic k-paths. Therefore we can define the such partitions as numerical invariants, which al-
low one to distinguish among non-isomorphic k-paths, i.e. to classify k-paths. Now we must remark a specific 
property of jD∗ . Here the columns are written as horizontal rows. So each jD∗  can have view only of four 
types: 

22 2, 22 211 1, 00 022 2, 00 022 211 1.            
Roughly speaking the sequence of the same characters in jD∗  denies “gaps”, since otherwise the condition of 

min s  is not satisfied.  
The specific property leads to situation, when some partitions are not represented in frame of T. For example 

the number of non-isomorphic k-paths classes ( ),K k n  for 3k = , 6n =  is equal 4, though ( )# 4,6,12 7λ = , 
( ) { }4,6,12 441111;432111;422211;333111;332211;322221;222222λ = : 

{ }1 2 3 4, , , , , ,T T T Tλ → − − − , 1

222000
221200
221120
221112

T

 
 
 =
 
 
 

, 2

222000
221200
221120
211122

T

 
 
 =
 
 
 

, 3

222000
212200
211220
211122

T

 
 
 =
 
 
 

, 4

222000
122200

.
112220
111222

T

 
 
 =
 
 
 

 

At that time ( ) ( )2,6 # 5,6,10 5K λ= = , ( ) { }5,6,10 511111;421111;331111;322111;222211λ = : 

{ }5 6 7 8 9, , , ,T T T T Tλ → , 5

220000
212000
211200
211120
211112

T

 
 
 
 =
 
 
 
 

, 6

202000
201200
201120
221110
121112

T

 
 
 
 =
 
 
 
 

, 7

202000
201200
221100
121120
121112

T

 
 
 
 =
 
 
 
 

, 8

200200
200120
220110
122110
112112

T

 
 
 
 =
 
 
 
 

, 9

220000
122000

.112200
111220
111122

T

 
 
 
 =
 
 
 
 

 

So ( ) ( )( ), # 1, , 1K k n n k n k n kλ≤ − + − + . 

Now we consider common form of n s×  matrix T  of special type (conditions (3) are satisfied): 

2 2 2 20 0
2 2 12 20 0

.2 2 112 20 0

2 2 1 12 2

VC SC

T

← →←            → 
 
 
 =  
 
 
 
 

  

  

  



  

                                (5) 
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Number of vertical columns with “2” (VC) can lay in interval from 0 to 1k −  and each of them corresponds 
to “2-stairs” (SC) from n k−  to 1, for [ ]2k n≤ . The case [ ]2k n>  must be analyze separately. So 

( ),K k n k≥  for [ ]2k n≤  and common bounds of classes number are next: 

( ) ( )( ) [ ], # 1, , 1 , for 2 .k K k n n k n k n k k nλ≤ ≤ − + − + ≤                     (6) 

Now about case [ ]2k n> . Set SC columns includes such, which have k  character 2, i.e. coincide with one 
of VC-column. The number of such SC columns is equal to [ ]2k n− . Therefore: 

( ) ( )( ) [ ], # 1, , 1 , for 2 .n k K k n n k n k n k n k nλ− ≤ ≤ − + − + > >                  (7) 

One can combine (6) and (7) in single result: 

{ } ( ) ( )( )min , , # 1, , 1 .k n k K k n n k n k n kλ− ≤ ≤ − + − +                     (8) 

One can give title the staircase for T  of type (5). 
We considered above k-paths for antipodal (a.p.) vertices 00 0  and 11 1 . Now let available two vertices 

in n-cube are given and hamming distance between them is equal to ( )0r r n< < . Then computing of matrix 
T  for k-path is reduced to a.p. case. Therefore we delete in pares the same n r−  digits. So the rest r  digits 
correspond a.p. vertices in face-convex hull for these cut vertices. Our previous techniques may be successfully 
here with addition of deleted n r−  digits in columns of jD∗ . Shortly speaking the sequence of steps looks like 
this: extraction of a.p. part in given vertices (deleting of differing in pairs digits) →  the choice of matrix T  of 
type (5) → inserting of columns jD∗  with deleted digits in T .  

More general problem is to construct of k-path, when two a.p. vertices 1 00 0v =  , 2 11 1v =   and k-face 
( )1D  are given ( )1 1v D∈ . Without loss of generality let left digit of 1D  is “2”. So the first row of matrix T  
is 1D . Algorithm consists of sequential generations 1iD + , which follows iD  in matrix T . For case 2D  and 

1D  we assign 21 1d =  and shift character 2 in nearest digit 2 jd , for which 1 2jd ≠ . In common case if such 
digit in 1D  is absent, the procedure is completed. Let here j n<  then we assign for digits 22 2, , jd d  cha-
racter “2” and the same characters from 1D  for 2 1 2, ,j nd d+  . 

In common case for iD , 1iD +  we produced in analogous fashion, beginning with duplicating in 1iD +  the 
same characters of iD  before first meeting “2”. Then we assign “1” for next digit of 1iD +  and further digits 
are determined in accordance with rules for 2D . One can represent the digit-wise rules as next scheme: 

,1 ,2 , 1 , , 1 , 1 , , 1 ,

1 1,1 1,2 1, 1 1, 1 1,

1 1 1 2 2 2 0

1 2 2 2

i i i i j i j i j i j m i j m i j m i n

i i i i j i j m i n

x x
D d d d d d d d d d

D d d d d d

− + + − + + +

+ + + + − + + + +

=
↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓

=

  

  

  

 

One can give title of the procedure as pressing characters “2” with single inversion 0 - 1. 
Examples of 2-paths in 6-cube is represented step by step below (Figure 1). 

 

 
Figure 1. 2-paths (T1, T2) are drawn onto flat projection of 2-skeletone of 6-cube.   
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HH-distance may be taken in account constructing some k-paths (operation 6)). So 5 5×  table 
( )1 2,HH i jD Dρ  for 1T  and 2T  (2-paths in 6-cube) is following:  

11

12

1 13

14

15

202000
122000
112200
111220
111122

D
D

T D
D
D

   
   
   
   = =
   
   

     

, 

21

22

2 23

24

25

000022
000221
002211
022111
221111

D
D

T D
D
D

   
   
   
   = =
   
   

     

, 

( )1 2 21 22 23 24 25

11

12

13

14

15

,

2 3 3 4 4
3 4 4 4 4
4 4 4 4 4
4 4 4 4 3
4 4 4 3 2

HH i jD D D D D D D

D
D
D
D
D

ρ

 

It follows: ( )1 2, 4HH T Tρ =  (Figure 1).  
To remark although our exposition is short, the most of operations for cubants are realized digitwise, i.e. in 

parallel. It’s clearly visible, if we’ll use for computer the bitwise mapping 00∅ → , 0 01→ , 1 10→ , 2 11→ . 

4. Conclusions 
In conclusion, we give the main statement of the article. 

Minimal number s of k-faces in k-path between a.p. vertices in n-cube is equal to 1n k− + . The bounds for 
number of non-isomorphic k-path classes are { } ( ) ( )( )min , , # 1, , 1k n k K k n n k n k n kλ− ≤ ≤ − + − + , where λ  
are partitions integer ( )1k n k− +  in n  parts with constraint 1n k− +  for maximal part. Lower bound k  is 
always realized by staircase matrix. 
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